
RESEARCH PAPER

Exploratory data analysis with artificial immune systems

Ying Wu Æ Colin Fyfe

Received: 28 November 2007 / Revised: 2 April 2008 / Accepted: 3 April 2008 / Published online: 26 April 2008

� Springer-Verlag 2008

Abstract We use a modified version of the CLONALG

algorithm to perform exploratory data analysis. Since we

wish to compare results from a number of methods, we

only report on linear projections which have unique solu-

tions. We incorporate a type of Gram Schmidt

orthogonalisation [15] into the affinity maturation process

to capture multiple components. We combine the new

algorithm with reinforcement learning [17, 20] and with

cross entropy maximization [13, 19]. Finally we combine

several different non-standard adaptation methods using

bagging and show that we get reliable convergence to

accurate filters.

1 Introduction

In this paper, we develop immune-inspired algorithms for

exploratory data analysis. Exploratory data analysis

encompasses clustering, linear projections, manifold find-

ing and any combination of these. We illustrate our

methods on simple projection problems, principal compo-

nent analysis (PCA), independent component analysis

(ICA) and canonical correlation analysis (CCA). We use

these linear methods since we wish to compare different

non-standard adaptation methods but all the methods can

be easily shown to e.g. model nonlinear manifolds [20].

Given the data set represented by antigens, all the

algorithms perform the same goal: the antibodies are

generated in order to improve their affinity defined in

different forms according to different projection problems.

We begin by extending the well-known CLONALG

algorithm [1, 4, 5] to projection problems, in which a

little modification is made to the way that we perform the

affinity proportional maturation in an artificial immune

network. We then derive a modified CLONALG algo-

rithm in which the cloning and maturation process is

performed in a smoother way. In addition, it is often

important to identify multiple components in projection

methods. We continue to extend our modified CLONALG

algorithm so that multiple components can be identified

directly in the immune system itself.

We then continue to improve the performance of the

non-standard adaptation methods by combining the algo-

rithms we have previously derived or extended. We point

out that the ‘‘better performance’’ is not limited to

improving the accuracy of the final results, but also

reducing the necessary size of data set and the number of

iterations required to achieve the global optimum. We will

demonstrate how well the combined algorithms work in

comparison to the results of their parent algorithms. Two

combined algorithms are developed. One is to incorporate

cross entropy [13] into the immune system and the other is

to integrate the immune-inspired algorithm with the

Q-learning method [17].

Finally, we combine the three non-standard adaptation

methods by bagging [9]. A new way is presented to

determine the final solution based on the quality of the

local solutions from the bags. The experimental results

show this combined method converges to the optimal

solution more reliably and stably and with higher accuracy

than the individual methods.

Y. Wu � C. Fyfe (&)

School of Computing, The University of the West of Scotland,

Paisley, Scotland

e-mail: colin.fyfe@uws.ac.uk

Y. Wu

e-mail: ying.wu@uws.ac.uk

123

Evol. Intel. (2008) 1:159–169

DOI 10.1007/s12065-008-0012-x

2 Projection with immune-inspired algorithms

In this section, we extend artificial immune systems to

solve projection problems. We demonstrate that we can

apply the CLONALG algorithm to projection problems

with a little modification. Keeping in mind that it is usually

necessary to identify multiple components, we present a

new way which incorporates deflationary orthogonalisation

into the immune algorithm directly. We show that our

method is quite general and can be easily applied to dif-

ferent projection methods.

2.1 The linear projections

We shall use our algorithms on some standard linear pro-

jection problems. The problems are

PCA [12] is the linear projection of a data set which

retains most of the variance in a data set. Alternatively it

can be defined as the linear projection which gives least

mean squared error between the projections and the

original data set. Thus if our data set is xi, i = 1,...,N,

where each xi is of dimension d, the first sample

principal principal filter will be the vector w1 which is

also of dimension d.

ICA [11] finds linear filters which provide projections

which are as independent of each other as possible.

Consider a set of independent signals, si, i = 1,...,B and

a set of observations which are linear mixtures of these

signals (sometimes corrupted with noise) so that x = As.

Then ICA attempts to find filters, W, so that the outputs

y = Wx are the original signals (up to a scaling factor

and permutation).

CCA [15] finds the best linear filters of two data sets

simultaneously so that the projections of the data sets

have highest possible correlations.

The two most common orthogonalization algorithms

are the Gram-Schmidt method [21] and symmetric

orthogonalization [10]. Deflationary orthogonalization by

the Gram-Schmidt method [21] is a simple and popular

way to orthogonalize the weight vectors w1,...,wN. Pro-

vided that we have estimated j-1 weight vectors

corresponding to the first j-1 components and we run the

same algorithm for the next weight vector wj, we estimate

wj first and subtract the projection (wj
T wk)wk, k = 1,...,j-1

from wj, so we have a new weight vector w0j and finally

wj is set to be w0j: More precisely, we follow the steps to

estimate wj:

1. Randomly initialize the weight vector wj.

2. Perform the same algorithm on wj as performed on the

previous j-1 components.

3. Do the following orthogonalization:

wj wj �
Xj�1

k¼1

ðwT
j wkÞwk ð1Þ

4. Normalize wj by wj wj=jjwjjj:
5. Set j = j + 1 and go back to the first step.

2.2 The CLONALG algorithm

Inspired by the clonal selection principle and the affinity

maturation process, de Castro and von Zuben [7] have

developed a clonal selection algorithm, named CLO-

NALG, to perform pattern recognition and optimization.

The main immune aspects in the CLONALG algorithm [7]

include:

– maintenance of a specific memory set;

– selection and cloning of the most stimulated antibodies;

– death of non-stimulated antibodies;

– affinity maturation and re-selection of the clones

proportionally to their antigenic affinity;

– generation and maintenance of diversity.

For optimization problems, there is no explicit antigen

population defined. Instead the antigen is represented by

the objective function to be optimized. Also, an antibody

affinity corresponds to the evaluation of the objective

function for a given antibody. Some notations are shown

below:

– Ab: antibody repertoire in a population, Ab 2 SN�L;

where N is the size of the population, L is the

dimension of the antibody and S is the underlying

space of the antibodies;

– Ag: population of antigens to be recognized. For

optimization, Ag is defined to be the objective function

to be optimized;

– fi: the affinity vector of the ith antibody in relation to

antigen Ag;

– Abfng : n antibodies from the population of antibodies

with highest affinities in relation to antigen

Ag;Abfng 2 Sn�L;

– C: population of Nc clones generated from

Abfng;C 2 SNc�L;

– Nc: the size of population of clones C;

– C*: population from C after the affinity maturation

process;

– Abfdg : set of d new antibodies that will replace d low-

affinity antibodies in Ab.

The CLONALG algorithm can then be described as

follows [7]:

1. Randomly generate a population of antibodies Ab.

2. Determine the affinities of all the N antibodies to form

the affinity vector fi, i = 1,...,N.

160 Evol. Intel. (2008) 1:159–169

123

3. Select the n antibodies with highest affinity from Ab to

compose a new set Abfng:
4. Clone the n selected antibodies independently and

proportionally to their antigenic affinities to form a

repertoire C. The higher the antigenic affinity, the

higher the number of clones generated for each of the n

selected antibodies. The size of population C is Nc.

5. The repertoire C is submitted to an affinity matura-

tion process inversely proportional to the antigenic

affinity, generating a population C* of matured

clones: the higher the affinity, the smaller the

mutation rate.

6. Determine the affinity f* of the matured clones C*.

7. From this population of mature clones C*, select n

clones with highest affinities to be the antibodies in the

new population Ab in the next iteration.

8. Finally, replace the d % lowest affinity antibodies from

Ab by new individuals.

2.3 Linear projections with the modified CLONALG

algorithm

We first consider the immune-inspired algorithm for the

problem of ICA. In an artificial immune system, we define

the mixed observations to be the antigens, Ag. Each anti-

body Abi in a population of antibodies Ab represents a

possible solution of the kth independent component filter

wk. One of the most common principles for ICA is to make

all independent components as non-Gaussian as possible,

which is often measured by the kurtosis of the distribution.

Thus an antibody affinity corresponds to the evaluation of

the absolute value of the kurtosis of the distribution of the

recovered signals, wkxi, where xi corresponds to an antigen

Agi.

We consider a batch-learning CLONALG algorithm.

Thus given the antigens, those antibodies with high affin-

ities will be selected and cloned. Then these clones suffer

an affinity maturation process, in which those antibodies

with the highest affinity suffer the lowest mutation rates,

whereas the lowest affinity antibodies have high mutation

rates. After this mutation process, those matured clones

with high affinities are kept in the new population of

antibodies that will be used in the next iteration. Therefore,

with the antibodies’ affinity in the immune system

improved, the demixing matrix will be optimized. We

define the affinity as

f i ¼ jkurtðAbT
i XÞj: ð2Þ

where X is a matrix containing all the mixed samples xj and

the subscript i identifies the ith individual in the population.

The modified CLONALG algorithm in detail is summa-

rized as follows:

1. Initialize each antigen so that it corresponds to each

observation in the data set. The size of the data set is N.

Set t = 0.

2. Randomly generate a population of real-value anti-

bodies Ab(t) where the superscript is determined by the

number of iterations of the algorithm performed. The

size of the population is NAb.

3. Determine the affinities to all the NAb antibodies to

form the affinity vector f.

4. Select the n antibodies with highest affinity from Ab(t)

to compose a new set Abfng:
5. Clone the n selected antibodies independently to form

a repertoire C. The number of clones for each

antibody in Abfng is round(b�N), thus the size of

population of clones is Nc ¼
Pn

i¼1 roundðb � NÞ ¼
n � roundðb � NÞ; where, in this paper, round(�) is the

operator that rounds its argument towards the closest

integer and b is a parameter that determines the

number of clones.

6. The population of clones C is submitted to an affinity

maturation process. Each clone is matured by c0ij ¼
cij þ a expð�f iÞl; where l is drawn from a Gaussian

distribution with zero mean and unit variance,

l�Nð0; 1Þ and cij is defined as the jth clone of the

ith parent antibody and a is a parameter that controls

the decay of the inverse exponential function. We have

a new population C* of matured clones.

7. Determine the affinity f* of the matured clones C*.

8. From this population of mature clones C*, select n

clones with the highest affinities to be the antibodies in

the new population Ab(t+1) in the next iteration.

9. Finally, replace the ð1� n
NAb
Þ � 100% lowest affinity

antibodies in Ab(t) by the new individuals.

There are a few modifications from the classic CLONALG

algorithm. While the classic CLONALG algorithm encodes

the individuals of the population using binary strings, the

algorithm here is based on real-valued vectors. We also

apply affinity proportional maturation. In our case, after the

n clones with highest affinities are selected for the new

population Ab(t+1), we generate another (NAb-n) new

individuals. We therefore optimize the demixing matrix W

by adjusting the position of the antibodies in the search

space to reach the global optimum.

To illustrate the modified CLONALG algorithm for

ICA, we use a 2-dimensional real data set, ‘chirp’ and

‘gong’, provided by Matlab. The number of original signals

is 10,000 and we set NAb = 100, n = 10, b = 0.1. So

Nc = 100. These values were set after initial trial and

experimentation suggested that they were appropriate val-

ues. The number of iterations for the estimation of each

independent component is 10. The Gram-Schmidt method

is performed to identify all the independent components. In

Evol. Intel. (2008) 1:159–169 161

123

Fig. 1, we see that all the independent components have

been identified with extremely high accuracy as shown in

Tables 1 and 2. We can also evaluate the performance of

our ICA algorithm using the Amari error [6], where we

compare the final W and V, the true demixing matrix, by

dðV ;WÞ ¼ 1

2M

XM

i¼1

PM
j¼1 jaijj

maxj jaijj
� 1

 !

þ 1

2M

XM

i¼1

PM
i¼1 jaijj

maxi jaijj
� 1

 !
ð3Þ

where aij = (VW-1)ij and V is the true demixing matrix.

For the above results, the Amari error is only 0.0028.

Moreover, Fig. 2 shows that although the number of iter-

ations is 10, the modified CLONALG algorithm can

identify the independent component as early as the first two

iterations, and so the speed of convergence is also extre-

mely fast.

Therefore, in the modified CLONALG algorithm, the

clones belonging to the same parent antibody Abi are

samples from the Gaussian distribution with mean Abi and

variance exp(-fi). We also find from the experiments that a

smaller variance when cloning and maturing the parent

antibody leads to higher accuracy and smoother conver-

gence. Thus, in practice, the parent antibodies are cloned

and matured by

c0ij�NðAbi; a expð�f iÞÞ; a 2 ð0; 1�: ð4Þ

We apply the modified CLONALG algorithm to solve

PCA. We use a 5-dimensional data set in which each

element, xi is drawn from N(0,i2), the zero mean Gaussian

distribution with variance i2. The first principal component

is readily identified as the fifth input dimension. The goal

of PCA is to find the linear projection of a data set which

contains maximal variance, thus the affinity between the

antigens and the antibody is defined as

f i ¼
1

1þ expð�cðAbT
i XÞ2Þ

: ð5Þ

The size of the data set is 10,000 and we set NAb = 100,

n = 10, b = 0.1, a = 0.5, c = 0.00001. The number of

iterations is 100. Table 3 shows that the modified CLO-

NALG algorithm has identified the first principal

component with high accuracy and we see in Fig. 3 that the

algorithm can identify the first principal component within

five iterations and then climbs towards the global optimum.

In addition, we can see in Tables 3 and 4 that the accuracy

is improved by setting a smaller variance in (4).

2.4 Multiple components

It is frequently necessary in projection methods to identify

multiple components. It is straightforward to apply the

Gram-Schmidt method [21] to identify multiple compo-

nents. Thus assuming the first j-1 weight vectors have

been estimated, we change step 2 in the modified CLO-

NALG algorithm, where for each antibody Abi
j, we perform

Abj
i Abj

i �
Pj�1

k¼1ðAbj
iwkÞwk; where wk corresponds to

the kth weight vector previously estimated and Abi
j corre-

sponds to the ith antibody for the current weight vector.

Then by using the same data set as in the previous sub-

section, Table 5 shows that all the principal components

have been identified.

However, we are more interested in identifying multiple

components within the artificial immune system itself. We

consider each weight vector wi previously estimated as a

memory cell in a population Abfmg in which Abk
fmg corre-

sponds to the kth memory cell in the population. The

distance between one antibody Abi and these memory cells

0 5000 10000
−5

0

5

0 5000 10000
−5

0

5

0 5000 10000
−5

0

5

0 5000 10000
−5

0

5

10

0 5000 10000
−5

0

5

0 5000 10000
−5

0

5

Fig. 1 ICA with modified CLONALG algorithm. Top: the original

signals. Middle: mixed observations. Bottom: recovered ICs

Table 1 The kurtosis of the original signals, mixed observations and

recovered independent components (ICs)

Kurtosis 1 Kurtosis 2

Original signals 7.0592 3.1467

Mixed observations 3.7093 5.8907

Recovered ICs 7.0590 3.1467

Table 2 Correlation between the original sources and recovered

signals

Signal 1 Signal 2

Recovered signal 1 1.0000 0.0014

Recovered signal 2 0.0003 1.0000

162 Evol. Intel. (2008) 1:159–169

123

in population Abfmg can be measured, so that a low dis-

tance implies that the antibody Abi is similar to the weight

vectors previously estimated. Thus the basic idea is that the

antibodies selected to be cloned and matured should have

high distances from the memory cells.

We re-structure the modified CLONALG algorithm for

multiple components: at iteration t, we first evaluate the

distance between each antibody in Ab generated in step 2

and the memory cells in Abfmg: The N 0Ab antibodies with

highest distance are selected and others are eliminated from

the population. The N 0Ab antibodies are then cloned and

matured. The modified CLONALG algorithm for multiple

components is summarized as follows:
1. Initialize each antigen corresponding to each data

point in the data set. The size of the data set is N.

2. Randomly generate a population of real-valued

antibodies Ab(t). The size of the population is NAb.

3. Measure the distances between each antibody Abi and

the memory cells Abfmg according to (6) and select

the N 0Ab antibodies with highest distance. For the first

component, this step is omitted and N 0Ab = NAb.

4. Determine the affinities to all the N 0Ab antibodies to

form the affinity vector fi.

5. Select the n antibodies with highest affinity to

compose a new set Abfng:
6. Mature and clone the n selected antibodies indepen-

dently according to (4) to form a population C*. The

size of the population of clones is Nc ¼Pn
i¼1 roundðb � N 0AbÞ:

7. Determine the affinity f* of the matured clones C*.

8. From this population of mature clones C*, select n

clones with highest affinities to be the antibodies in

the new population Ab(t+1) in the next iteration.

9. Finally, replace the ð1� n
NAb
Þ � 100% lowest affinity

antibodies in Ab(t) by new randomly generated

individuals.

10. Add the cell with highest affinity to the memory cells.

1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

4.5
The kurtosis and its avg of the de−mixed observations

Iterations

f(x
)

1 2 3 4 5 6 7 8 9 10
0.1469

0.1469

0.1469

0.1469

0.1469

0.1469

0.1469

0.1469

0.1469
The kurtosis and its avg of the de−mixed observations

Iterations

f(x
)

Fig. 2 Affinity of the

population. Highest (solid line)

and average (dashed line). Left:
affinity for the first IC. Right:
affinity for the second IC

0 20 40 60 80 100

0.57

0.575

0.58

0.585

0.59

0.595

0.6

0.605
convergence

Iterations

f(
x)

Fig. 3 Affinity of the population by the modified CLONALG

algorithm for PCA. The vertical axis shows the affinity in each

iteration. The horizontal axis shows the number of iterations. Solid
line: the highest affinity. Dashed line: the averaged affinity

Table 3 The first principal component with 5-dimensional artificial

data by CLONALG algorithm with a = 0.7

PC1 -0.0168 0.0153 0.0122 0.0369 0.9992

Table 4 The first principal component with 5-dimensional artificial

data by the modified CLONALG algorithm with a = 1

PC1 -0.1030 0.1022 -0.1328 -0.0213 0.9802

Table 5 The weights from the artificial data experiment for five

principal components with the Gram-Schmidt method

PC1 -0.0168 0.0153 0.0122 0.0369 0.9992

PC2 -0.0211 -0.0276 0.1082 0.9927 -0.0379

PC3 -0.0225 0.0225 0.9929 -0.1084 -0.0088

PC4 -0.0187 0.9986 -0.0201 0.0289 -0.0164

PC5 0.9968 0.0188 0.0245 0.0197 0.0154

Evol. Intel. (2008) 1:159–169 163

123

11. If not at maximum iterations, go back to step 3.

In step 3, the distance between each antibody Abi in Ab

and the memory cells in Abfmg can be measured by angle

between two vectors,

DAbi
¼
Xj�1

k

AbjT
i � Abk

fmg

jAbj
ij � jAbk

fmgj

�����

�����: ð6Þ

To illustrate our algorithm, we consider the problem of

CCA. We consider that there are two sets of antigens, Ag1

and Ag2 to represent the two sets of data and accordingly

two populations of antibodies, Ab1 and Ab2, are generated

to represent the two weight vectors. We define the affinity

between the antigens and the antibody using

where X1 = Ag1 and X2 = Ag2. We use an artificial data

set similar to what has been used in [14], in which there are

two sets of artificial data, one of which is 4-dimensional

and the other is 3-dimensional: each of the elements is

drawn from the zero-mean Gaussian distribution, Nð0; 1Þ
and we add an additional sample from Nð0; 1Þ to the first

elements of each vector and then divide by 2 to ensure that

there is no more variance in the first elements than in the

others. To generate the second correlation, we add an

additional sample fromNð0; 0:5Þ to the second elements of

each vector, so that the second correlation is smaller than

the first one. We set N 0Ab = 100, n = 10, b = 0.1, a = 0.5,

c = 0.00001 and for multiple components, NAb = 10000.

The number of iterations is 500.

In Table 6, we see that the correlation components

(CCs) have been identified. Figures 4 and 5 show that the

speed of convergence is fast. We also find that the con-

vergence of immune-inspired algorithms is not as smooth

as that of our previous non-standard adaptation methods,

reinforcement learning [20] and cross entropy [19]; instead

the algorithms can identify a local optimum quickly and

finally converge to the global optimum.

3 Combining non-standard adaptation methods

We have previously extended reinforcement learning [20]

and cross entropy methods [19] to solve projection prob-

lems. In the previous section, we demonstrate that immune-

inspired algorithms can be applied to solve the same

problems. In this section, we develop algorithms that can

achieve better performance in solving projection problems

by combining these non-standard adaptation methods. The

‘‘better performance’’ is not only to increase the accuracy

of the final optimized solution, but also decrease the size of

data set needed for consistent performance and the number

of iterations required. We first incorporate the cross

entropy method into an artificial immune system, in which

a new clone and maturation process is present. Then we

show that the immune-inspired algorithm can be integrated

with temporal difference learning. The algorithms in this

section are applied to identify the first principal component

of PCA so that the results can be easily compared with

those achieved previously.

3.1 Artificial immune system with cross entropy

In this subsection, we incorporate the cross entropy method

[13] into an artificial immune system, and evaluate the

0 50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8

1
CC= 1

co
si

ne
 o

f a
ng

le
 b

et
w

ee
n

w
 a

nd
 o

pt
im

al
 d

ire
ct

io
n

0 50 100 150 200 250 300 350 400 450 500
−1

−0.98

−0.96

−0.94

−0.92 CC= 2

Fig. 4 Convergence of the CCA weight vectors to the optimal

directions; the horizontal axis shows the number of iterations of the

algorithm. Top: the first canonical correlation. Bottom: the second

canonical correlation

Table 6 The first two canonical

correlation (CC) weight vectors

found with the artificial data

m1 m2

1st CC 0.9967 0.9999

-0.0510 0.0094

0.0613 -0.0131

0.0137

2nd CC -0.0692 0.0028

-0.9942 -0.9986

0.0146 0.0529

0.0806

f i ¼
1

1þ expðcjjAbT
1iX1 � AbT

2iX2jj þ jðAbT
1iX1Þ2 � 1j þ jðAbT

2iX2Þ2 � 1jÞ
: ð7Þ

164 Evol. Intel. (2008) 1:159–169

123

optimal solution as that with higher accuracy. The cross

entropy method can achieve the global optimum by

defining a family of probability density functions

ff ð. ; vÞ; v 2 Vg on the data set @ and we make adaptive

changes to the probability density function according to the

Kullback-Leibler cross-entropy. In brief, we have an iter-

ative algorithm working on a probability density function

with a specific set of parameters. We update the parameters

at each iteration in order to make the event in which we are

interested more likely at the next iteration.

Considering the modified CLONALG algorithm in Sect.

2.3, for a selected antibody Abfngi in population Abfng; we

have a series of matured clones drawn from a Gaussian

distribution with the mean Abfngi and the variance exp(-fi).

We denote the clones belonging to its parent antibody Abfngi
as C�i with C�ij corresponding to the jth clone of the ith

parent antibody. Thus we wish to maximize the affinity

function f(C�ij) over all clones in C�i : Denoting the maxi-

mum by c*, we have

c� ¼ max
c�ij2C�i

fðc�ijÞ ð8Þ

Then we can use (8) as our cross entropy criterion. The

algorithm in detail is as follows:

1. Initialize each antigen corresponding to each data

point in the data set. The size of the data set is N.

2. Randomly generate a population of real-value anti-

bodies Ab(t). The size of the population is NAb.

3. Determine the affinities to all the NAb antibodies to

form the affinity vector fi.

4. Select the n antibodies with highest affinity from Ab(t)

to compose a new set Abfng:
5. Each selected antibody Abfngi is matured and cloned

according to (4) to form a population C�i : The number

of clones in C�i is roundðb � NAbÞ:
6. Determine the affinities f* of the matured clones C�i :

Let ĉt be the 1� . clone quantile, above which we

identify the ‘‘elite’’ clones. Use the ‘‘elite’’ clones to

generate a new antibody Abi
(t+1).

7. Put all these new antibodies Abi
(t+1), i = 1,...,n to form

part of the new population Ab(t+1).

8. Replace the ð1� n
NAb
Þ � 100% lowest affinity antibod-

ies in Ab(t) by new individuals to form the other part of

Ab(t+1).

To illustrate the modified CLONALG algorithm with cross

entropy, we use the same 5-dimensional data as previously

in which the first principal component is readily identified

as the fifth input dimension. The size of the data set is

10,000 and we set NAb ¼ 100; n ¼ 10; b ¼ 0:1; a ¼
0:5; . ¼ 0:5: The number of iterations is 100. We can see

that our algorithm has identified the first principal compo-

nent with much higher accuracy in Table 7. Figures 6 and

7 show that our algorithm has converged extremely fast.

Furthermore, we have found that the cosine of the angle

between the estimated weight vector and the optimal vector

is higher than 0.99, even when the number of iterations is

reduced to 10.

We compare the results by the classic CLONALG

algorithm, the modified CLONALG algorithm and the

CLONALG algorithm with cross entropy. The experiments

are performed with the same size of data set, 10,000, and

the same number of iterations, 100. Figure 8 shows that

although all of the algorithms can identify the first principal

component quickly, the two latter algorithms are more

efficient than the classic CLONALG algorithm.

3.2 Temporal difference (TD) learning with artificial

immune system

We have demonstrated that reinforcement learning with

Q-learning [17] can be applied to solve projection prob-

lems with high accuracy. However, this algorithm suffers

from the drawback that the speed of convergence is slow,

0 50 100 150 200 250 300 350 400 450 500
0.452

0.454

0.456

0.458

0.46

0.462

0.464

0.466

0.468

0.47
convergence

Iterations
f(x

)
0 50 100 150 200 250 300 350 400 450 500

0.446

0.448

0.45

0.452

0.454

0.456

0.458

0.46

0.462

0.464
convergence

Iterations

f(x
)

Fig. 5 Affinity of the

population. Highest (solid line)

and average (dashed line). Left:
affinity for the first CC. Right:
affinity for the second CC

Table 7 The first principal component with 5-dimensional artificial

data by our modified CLONALG algorithm with cross entropy

PC1 0.0036 0.0007 0.0077 -0.0053 0.9999

Evol. Intel. (2008) 1:159–169 165

123

which leads to a large number of iterations. In this sub-

section, we improve the algorithm by integrating immune-

inspired algorithms with Q-learning.

The Q-learning method has been introduced in [17]. This

method directly approximates the optimal action-value

function, Q*, by the learned action-value function, Q, and

the best possible action selected in the subsequent state:

Qðst; atÞ Qðst; atÞ þ a½rtþ1 þ c max
a

Qðstþ1; aÞ
� Qðst; atÞ�:

With reinforcement learning, the state of the system at any

time is the data sample presented to the system at that time,

i.e. st = xt. However, instead of sampling the weight vector

w from the distribution Nðm; b2IÞ with the current

estimate of the parameters, m and b2, we define the action

to be to generate a population of antibodies Abi, where the

modified CLONALG algorithm is performed to maximize

the Q-value of the current data point xt. Thus the affinity

function is defined to calculate the Q-value of the antibody.

At each iteration, we keep a note of the greatest Q-value

and only update the Q-value of the data point by the

antibody Abi� with the highest Q-value. We therefore re-

structure the learning algorithm as follows:

1. Randomly generate a population of real-value anti-

bodies Ab(t). The size of the population is NAb.

2. Randomly select a data point xt to be the current state

st. Denote the current Q-value of the state st as Qt

3. Determine the reward ri for each antibody Abi in

population Ab.

4. Determine the Q-value of each antibody Abi in

population Ab to form the affinity vector fi by

DQAbi
 aðri þ cQAbi� � QtÞ ð9Þ

QAbi
 QAbi

þ DQAbi
ð10Þ

5. Select the n antibodies with highest affinity from Ab

to compose a new set Abfng: Denote the antibody

with the highest affinity as Abi� :
6. Update the Q-value of data point xt with the affinity

of Abi� :
7. Mature and clone the n selected antibodies indepen-

dently according to (4) to form a population C*. The

size of population of clones is Nc ¼
Pn

i¼1 round

ðb � NAbÞ:
8. Determine the affinity f* of the matured clones C*.

9. From this population of mature clones C*, select n

clones with highest affinities to be the antibodies in

the new population Ab(t+1) in the next iteration.

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

1.05

Iterations

co
si

ne
 o

f a
ng

le
 b

et
w

ee
n

w
 a

nd
 o

pt
im

al
 d

ire
ct

io
n

Fig. 7 Convergence of the PCA weight vector to the optimal

directions. The vertical axis shows the cosine of the angle between

the current filter and the optimal filter. The horizontal axis shows the

number of iterations

0 20 40 60 80 100
0.97

0.975

0.98

0.985

0.99

0.995

1

Iterations

co
ns

in
e

of
 a

ng
le

 b
et

w
ee

n
w

 a
nd

 o
pt

im
al

 d
ire

ct
io

n

Fig. 8 Convergence of the PCA weight vector to the optimal

directions. Dash-dot line: by the classic CLONALG algorithm.

Dashed line: by the modified CLONALG algorithm. Solid line: by the

CLONALG algorithm with cross entropy

0 20 40 60 80 100

0.57

0.575

0.58

0.585

0.59

0.595

0.6

0.605
convergence

Iterations

f(
x)

Fig. 6 Affinity of the population by our modified CLONALG

algorithm. Highest (solid line) and average (dashed line)

166 Evol. Intel. (2008) 1:159–169

123

10. Finally, replace the ð1� n
NAb
Þ � 100% lowest affinity

antibodies in Ab(t) with new individuals.

To illustrate the Q-learning with immune-inspired algo-

rithm, we use the same 5-dimensional data in which the

first principal component is readily identified as the fifth

input dimension. The size of the data set is 100 and we set

NAb = 100, n = 10, b = 0.1,a = 0.5. The number of

iterations is 2,000. We can see that our algorithm has

identified the first principal component with high accuracy

in Table 8. Figure 10 shows that our algorithm converges

quickly and the greatest Q-value is maximized step by step

as shown in Fig. 9.

We can see that our Q-learning with immune-inspired

algorithm has improved the performance of the Q-learning

method in projection problems in terms of the number of

iterations and with a much reduced size of data set. Fig-

ure 10 also shows that when the number of iterations is

2,000 and the size of data set is 100, the Q-learning method

alone can not identify the first principal component: we

have to increase the size of the data set and the number of

iterations so that this Q-learning method can converge to

the optimal solution.

4 Ensembles of the non-standard adaptation methods

Recently, algorithms based on non-standard adaptation

methods have been developed to solve projection problems

and the results have shown that all the algorithms can

converge to the optimum stably and with high accuracy.

However, to achieve highly accurate results, it is always

necessary to set the parameters of an algorithm carefully

and usually a high volume of data is required, otherwise,

the algorithm may fail to find the optimal solution, or

become unstable. In this section, we investigate ensemble

methods in the context of using non-standard adaptation

methods to solve projection problems. Specifically, we

investigate bagging to perform reinforcement learning,

cross entropy methods and immune-based algorithms in

parallel, through which the converged optimum is more

stable and reliable and with higher accuracy.

4.1 Bootstrapping and bagging

Bagging was proposed by Breiman [2], which is based on

bootstrapping [9] and aggregating concepts. Bootstrapping

[9] is a simple and effective way of estimating a statistic of

a data set. Suppose we have a data set, D = xi, i = 1,...,N:

bootstrapping creates a number of pseudo data sets, Di, by

sampling from D with uniform probability with replace-

ment of each sample. Thus each data point has a

probability of N�1
N

� �N � 0:368 of not appearing in each

bootstrap sample, Di. Aggregating means we can perform

the same or even different algorithms in parallel. Typical

applications with bagging are prediction [3, 8], classifica-

tion [16] and data pre-processing [18].

In detail, bagging consists of selecting B data sets,

D1,...,DB from D by randomly selecting a member of

D with replacement and each data set Db will almost

certainly contain only some members of the original data

set D. From a classification perspective, each classifier

0 500 1000 1500 2000
0.9

1

1.1

1.2

1.3

1.4

1.5

Iterations

Q
−v

al
ue

Fig. 9 Q-value maximized by our Q-learning with immune-inspired

algorithm. The vertical axis shows the maximum Q-value. The

horizontal axis shows the number of iterations

0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6

0.8

1

Iterations

co
si

ne
 o

f a
ng

le
 b

et
w

ee
n

w
 a

nd
 o

pt
im

al
 d

ire
ct

io
n

Fig. 10 Convergence of the PCA weight vector to the optimal

directions. Dashed line: by Q-learning method alone. Solid line: by Q-

learning with immune-inspired algorithm in this subsection

Table 8 The first principal component with 5-dimensional artificial

data by Q-learning with immune-inspired algorithm

PC1 -0.0194 0.0125 0.0647 0.1152 -0.9910

Evol. Intel. (2008) 1:159–169 167

123

Cb(x) is then constructed based on the data set Db. All the

classifiers are combined by simple majority voting or some

average combination rule. Furthermore, the elements of

Tb = D-Db can be used to access how accurate the

training of the individual classifier is liable to be.

4.2 Non-standard adaptation methods with bagging

We consider the problem of PCA and use the same 5-

dimensional data in which the first principal component is

readily identified as the fifth input dimension. The size of

data set is 1,000. We create the first 20 bags by selecting

from the data set and we perform the reinforcement

learning algorithm on each bag. The number of iterations is

200,000. The learning rate is initialized to 0.1, which is

reduced step by step. We create the second 20 bags using

the cross entropy method with batch-learning. The number

of iterations is 2,000. We set the number of random sam-

ples as each iteration as 50 and . ¼ 0:1: We create the last

20 bags with the modified CLONALG algorithm. The

number of iterations is 500 and we set NAb = 100, n = 10,

b = 0.1, a = 0.5. For all of the 60 bags, the number of data

points in each bag, NDb
is 500.

Therefore, each bag has one local solution, wb. We

present a new way, self-organized majority voting, to

decide the final solution according to these local solutions.

We first evaluate how well each local solution has been

optimized by

Jwb
¼
XN

i¼1

jwbxij: ð11Þ

We denote that local solution that has been optimized best

as the winning local solution, wb� : Then the weight of one

local solution in the final solution is defined proportional to

the distance between each local solution, wb, and the

winner, wb� ;

hb� ðbÞ ¼ expð�cjjwb � wb� jj2Þ ð12Þ

Then the final solution is calculated by

w ¼
PB

b¼1 hb� ðbÞwbPB
b¼1 hb� ðbÞ

: ð13Þ

We compare the final solution by our method with the

average first principal component filters by reinforcement

learning, cross entropy method and modified CLONALG

algorithm respectively. Table 9 shows that the final solu-

tion by this method has higher accuracy than the individual

methods. We can also see that bagging with self-organized

majority voting is more efficient than bagging with simple

majority voting.

We decrease the size of data set to 500 with 100 data

points in each bag. In such a situation, all the non-standard

adaptation algorithms used in this subsection become much

more unstable and unreliable. However, we see that the

final solution by bagging with self-organized majority

voting is much more stable and reliable than those by other

methods as shown in Table 10.

5 Conclusion

We have, in this paper, used an artificial immune system to

solve projection problems by developing immune-inspired

algorithms. We have first demonstrated that the CLONALG

algorithm can be applied to independent component anal-

ysis. The data set is represented by antigens and the artificial

immune system improves the affinity by generating a series

of populations of antibodies. The affinity is defined in dif-

ferent ways in order to solve different projection problem.

We have performed the affinity maturation process used by

artificial immune networks in the CLONALG algorithm,

which we consider to be more suitable for projection

problems. We have developed a smoother way to perform

the cloning and maturation process and the results have

shown that the performance is much improved.

We have also presented a new way to perform defla-

tionary orthogonolization, in which multiple components

are identified by the immune system directly. We regard

the weight vectors previously estimated as memory cells

and the basic idea is that the distance between antibodies

selected to be cloned and matured in a new population and

those memory cells, is as large as possible. Thus for a

population of antibodies, we select the antibodies with

Table 9 The first principal component filters identified by bagging

with self-organized majority voting and simple majority voting and

the average first principal component filters by reinforcement learn-

ing, cross entropy method and the modified CLONALG algorithm

Self-organized voting 0.0143 0.0197 0.0501 0.0915 0.9943

Simple voting 0.0142 0.0197 0.0505 0.0957 0.9909

Reinforcement learning 0.0136 0.0149 0.0400 0.0887 0.9929

Cross entropy method 0.0103 0.0192 0.0519 0.1176 0.9877

CLONALG algorithm 0.0188 0.0249 0.0599 0.0814 0.9920

Table 10 The first principal component filters identified by bagging

with self-organized majority voting and simple majority voting and

the average first principal component filters by reinforcement learn-

ing, cross entropy method and the modified CLONALG algorithm

Self-organized voting 0.0198 0.0369 0.0707 0.1086 0.9907

Simple voting 0.0224 0.0461 0.0978 0.3109 0.8974

Reinforcement learning 0.0217 0.0380 0.0991 0.2126 0.9531

Cross entropy method 0.0247 0.0558 0.1047 0.4664 0.8018

CLONALG algorithm 0.0208 0.0456 0.0910 0.2770 0.9218

The size of data set is decreased

168 Evol. Intel. (2008) 1:159–169

123

largest distance to the memory cells, based on which we re-

select the antibodies with highest affinity. We consider this

way to be particularly suitable for an artificial immune

system in that all components can be identified with the

same affinity function.

We have investigated the combination of different non-

standard adaptation methods. We first incorporated the

cross entropy method into the modified CLONALG algo-

rithm. Instead of selecting the clones with highest affinity,

the antibodies in the new population are directly generated

according to the clones, where the cross entropy method is

performed. The results show that this combined algorithm

has higher accuracy with faster convergence. We have

compared it with the modified CLONALG algorithm. Then

we integrated the modified CLONALG algorithm with the

Q-learning method. All the antibodies aim to maximize the

Q-value of the current state. We demonstrated that such a

combined algorithm can not only identify the principal

component with high accuracy but also requires a smaller

size of data set. The number of iterations has also been

extremely reduced.

We have applied our algorithms to ICA, PCA and CCA

as examples. We have only demonstrated the combined

algorithms in identifying the first principal component,

which is more convenient for comparing the performance

of different algorithms, however it is worth noting that all

the immune-inspired algorithms are general methods that

can be applied to the other projection problems.

Finally, we have combined the three non-standard adap-

tation methods with bagging. We have also presented a self-

organized majority voting method to decide the final solution

based on the local solutions, where the proportion of a local

solution in the final solution is decided by the distance

between that local solution and the winner solution. The

experiments have shown our method can make the algo-

rithms more stable and reliable and with higher accuracy.

References

1. Ada GL, Nossal GJV (1987) The clonal selection theory. Sci Am

257(2):50–57

2. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–

140

3. Breiman L (1999) Using updaptive bagging to debias regression.

Technical Report 547, Statistics Department, University of

California

4. Burnet FM (1959) The clonal selection theory of acquired

immunity. Cambridge University Press, Cambridge

5. Burnet FM (1978) Clonal selection and after. Theor Immunol

300(19):1105–1107

6. Cichocki AA, Yang HH (1996) A new learning algorithm for

blind signal separation. Adv Neural Inf Process Syst 8:757–763

7. de Castro LN, Von Zuben FJ (2002) Learning and optimization

using the clonal selection principle. IEEE Transaction on evo-

lutionary computation, special issue on artificial immune systems,

vol 6, pp 306–313

8. Dybowski R, Roberts S (2001) Confidence intervals and predic-

tion intervals for feed-forward neural networks. Cambridge

University Press, Cambridge

9. Efron B, Tibshirani R (1993) An introduction to the bootstrap.

Chapman and Hall

10. Fan CY, Wang BQ, Ju H (2006) A new fastica algorithm with

symmetric orthogonalization. In: Communications, circuits and

systems proceedings, 2006 international conference, June, vol 3,

pp 2058–2061

11. Hyvarinen A, Karhunen J, Oja E (2001) Independent component

analysis. Wiley

12. Jolliffe IT (1986) Principal component analysis. Springer

13. Kroese DP, Rubinstein RY (2004) The cross entropy: a unified

approach to combination optimization, Monte-Calo simulation

and mechine learning. Spinger

14. Lai PL (2002) Neural implementations of canonical correlation

analysis. PhD thesis, University of Paisley

15. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis.

Academic Press

16. Skurichina M, Robert Duin PW (2002) Bagging, boosting and the

random subspace method for linear classifiers. Pattern Anal Appl

5(2):121–135

17. Sutton RS, Barto AG (1998) Reinforcement learning: an intro-

duction. The MIT Press

18. Wu Y, Fyfe C (2005) Pre-processing using topographic map-

pings. In: ICNNB05, vol 3, pp 1881–1884

19. Wu Y, Fyfe C (2008) Topology preserving mappings using cross

entropy adaptation. In: The 7th WSEAS international conference

on artificial intelligence, knowledge engineering and data bases,

AIKED’08

20. Wu Y, Fyfe C, Lai PL (2007) Stochastic weights reinforcement

learning for exploratory data analysis. In: 17th international

conference on artificial neural networks, ICANN2007, pp 667–

676

21. Zhang K, Chan LW (1997) Dimension reduction as a deflation

method in ica. SP Lett 13(1):45–48

Evol. Intel. (2008) 1:159–169 169

123

	Exploratory data analysis with artificial immune systems
	Abstract
	Introduction
	Projection with immune-inspired algorithms
	The linear projections
	The CLONALG algorithm
	Linear projections with the modified CLONALG algorithm
	Multiple components

	Combining non-standard adaptation methods
	Artificial immune system with cross entropy
	Temporal difference (TD) learning with artificial immune system

	Ensembles of the non-standard adaptation methods
	Bootstrapping and bagging
	Non-standard adaptation methods with bagging

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

