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a b s t r a c t

In this paper, we present a generic method/model for multi-objective design optimization of laminated
composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is
a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony
algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has
been developed and implemented successfully for the multi-objective design optimization of compos-
ites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the
composite component to achieve a specified strength. The primary optimization variables are the number
of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical
lamination theory is utilized to determine the stresses in the component and the design is evaluated
based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria
omposite
tructural optimization
ulti-objective optimization

and the tsai-wu failure criteria. The optimization method is validated for a number of different load-
ing configurations—uniaxial, biaxial and bending loads. The design optimization has been carried for
both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of
the different design configurations evolved has been presented. Finally the performance is evaluated in
comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO),
Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that

the lo
of PSO, AIS and GA for all

. Introduction

Now-a-days composites are becoming increasingly popular, due
o their superior mechanical characteristics, like very high stiffness
o weight ratios and amenability to tailoring of these properties.
emarkable variations in the characteristics of composite mate-
ials can be achieved by slightly altering their properties. Thus,
omposite materials offer the possibility to create an unlimited
et of different material behaviors that can be tailored to specific
tructural needs. The use of laminates increases the freedom in
esign and gives more control to fine-tune the material to meet

ocal design requirements. However, the analysis and design of
omposite materials is relatively more complex. Composite design
ptimization typically consists of identifying the optimal config-
ration that would achieve the required strength with minimum

verheads. The possibility to achieve an efficient design that ful-
lls the global criteria and the difficulty to select the values out
f a large set of constrained design variables makes mathematical
ptimization a natural tool for the design of laminated composite

∗ Corresponding author. Tel.: +91 080 229 32873; fax: +91 080 236 00134.
E-mail address: omkar@aero.iisc.ernet.in (S.N. Omkar).
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ading configurations.
© 2009 Elsevier B.V. All rights reserved.

structures [1]. Depending on the nature of application for which the
component is being designed, there would be a number of different
overheads like weight, cost, etc which have to be taken into con-
sideration for effective design optimization of composites. Thus,
making this problem multi-objective in nature. There has been
considerable amount of work carried out on composites’ design
optimization [1–7]. Laminate stacking sequence design optimiza-
tion has been formulated as a continuous optimization problem and
solved using various gradient based methods by Gürdal and Haftka
[2]. Bruyneel [3] has presented a general and effective procedure
based on a mathematical programming approach for the optimal
design of composite structures subjected to weight, stiffness and
strength criteria. Shin et al. [4] have investigated the minimum-
weight design of simply supported, symmetrically laminated, thin,
rectangular, especially orthotropic laminated plates for buckling
and post-buckling strengths. Adali et al. [5], Kumar and Tauchert [6]
and Pelletier et al. [7] have discussed the multi-objective design of
symmetrically laminated plates for different criteria like strength,

stiffness and minimal mass. Venkataraman and Haftka [8] have
presented a review of various approaches to the optimization of
composite panels.

Composite laminate design problems typically involve multi-
modal search spaces [8] with the design variables capable of taking

dx.doi.org/10.1016/j.asoc.2009.12.008
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:omkar@aero.iisc.ernet.in
dx.doi.org/10.1016/j.asoc.2009.12.008
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Nomenclature

a, b, h length, width, thickness of the plate
ELL, ETT, Ett longitudinal, transverse, normal elastic moduli
GLT, GLt, GTt shear moduli in longitudinal, lateral and traverse

directions
N, ˛, ˇ, � number of artificial bees, randomness amplitude of

bee, convergence rate, learning rate
Nx, Ny, Nxy, Mx, My, Mxy stress resultants, moment resultants

in X–Y plane
S shear strength in the X–Y plane
tk, �, N ply thickness, stacking sequence, number of plies
vLT, vLt, vTt lamina Poisson’s ratio’s in longitudinal, lateral and

traverse directions
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problem is said to be Pareto optimal if and only if there does not
exist another solution y, such that f(y) dominates f(x). The objective
�LL, �TT, �LT longitudinal, transverse, shear stress along
material axes

wide range of values, making this a combinatorially explosive
roblem. For such problems, traditional gradient based algorithms
re plagued with the problem of converging to locally optimal
egions of the design space. Multi-objective design of compos-
tes warrants the use of modern non-parametric optimization

ethods.
In pursuit of finding solution to these problems many

esearchers have been drawing inspiration from the nature. A host
f such nature inspired techniques have been developed namely
enetic Algorithm (GA) [9], Artificial Neural Networks (ANN) [10],
article Swarm Optimization (PSO) [11,12] and Artificial Immune
ystem (AIS) [13]. These algorithms with their stochastic means
re well equipped to handle such problems. Of these, GA has been
very popular tool for the combinatorial design optimization of

omposite structures [9]. It has been extensively employed for the
ptimal structural design and there are numerous successful imple-
entations available in the literature for the same [9,14–19].
In the current work, we present a generic multi-objective

pproach for the composite design optimization based on another
uch, relatively new swarm intelligence technique—Artificial Bee
olony (ABC) [20]. Swarm intelligence algorithms are a new range
f computational algorithms that have emerged from the behaviour
f social insects. Social insects are usually characterized by their
elf-organization (in numerous situations the coordination arises
rom interactions among individuals) and the absence of cen-
ral control. Still, complex group behaviour emerges from the
nteractions of individuals who exhibit simple behaviours by them-
elves. In social insects, every individual is autonomous. They can
nly obtain local information, and interact with their geographi-
al neighbours. All these features characterize swarm intelligence.
xamples of systems like this can be found in nature, includ-
ng bee colonies, ant colonies, bird flocking, animal herding, fish
chooling etc. Inspired by the bee behaviour, Artificial Bee Colony
20] is one of the generally applicable techniques used for opti-

izing numerical functions and real-world problems. Compared
ith GA and other similar evolutionary techniques, ABC has some

ttractive characteristics and in many cases proved to be more
ffective [20]. Both GA and ABC have been used extensively for
variety of optimization problems and in most of these cases

BC has proven to have superior computational efficiency [20,21].

urther, ABC does not use any gradient-based information. It incor-
orates a flexible and well-balanced mechanism to adapt to the
lobal and local exploration and exploitation abilities within a
hort computation time. Hence, this method is efficient in handling
arge and complex search spaces. ABC with its ability to handle
puting 11 (2011) 489–499

combinatorial explosive problems appears to be very promising
for the multi-objective optimization problem addressed in this
paper.

The multiple objectives considered here are—minimizing the
weight of the composite component and also minimizing the total
cost (manufacturing and material costs). The primary design vari-
ables are—number of layers, lamina thickness and the stacking
sequence. These variables are altered so as to attain an opti-
mum composite design that achieves both the above mentioned
objectives while satisfying the specified strength requirements.
In the current work, the stacking sequence is not restricted
to the popularly used schemes like {0/45/90}, {0} and {0/90}.
Instead, the ply orientation angles are also considered as vari-
ables of the optimization process, thereby allowing for evolving
new non-standard stacking schemes, appropriate for the spec-
ified application. This ensures a truly optimal design for the
given application as all the possible stacking sequences are
explored. The classical lamination theory is utilized to determine
the stresses at each layer for thin laminates subjected to force
and/or moment resultants and the design is evaluated based on
the specified failure criteria. The use of appropriate failure cri-
teria is crucial for the optimal design of composite laminates.
Since different failure mechanisms are relevant for different load-
ing combinations, in the current work we evaluate the composite
design for three different failure criteria; Tsai-Wu [22], Maxi-
mum Stress [1] and the Failure Mechanism based criteria [23].
This makes the optimization method truly generic and ensures a
completely optimum solution/configuration for the given applica-
tion.

The generic composite design optimization framework being
presented in the current work employs Vector Evaluated Artificial
Bee Colony (VEABC), a variant of the classical ABC for multi-
objective optimization. This method allows for separate evaluation
of the multiple objectives, which proves to be very appropriate for
the current problem. This is a swarm intelligence method which
employs separate swarms for each of the objectives and informa-
tion migration between these swarms ensures an optimal solution
with respect to all the objectives.

This paper is structured as follows: basics of multi-objective
problems are presented in Section 2. Section 3 introduces ABC and
VEABC. Details of the problem and its formulation are explained in
Section 4. The outline of the optimization process employed is given
in Section 5. The numerical results and discussions are presented
in Section 6. Finally, the comparison of nature inspired techniques
and conclusions are given in Sections 7 and 8 respectively.

2. Multi-objective optimization

Let X be a n-dimensional search space, and fi (x), i = 1. . .k, be
k objective functions defined over X. Furthermore, let gi(x) ≤ 0,
i = 1,. . .,m, be m inequality constraints. Then, the multi-objective
problem can be defined as finding a vector, x = (x1, x2. . .xn)T ∈ X that
satisfies the constraints, and optimizes the vector function,

f (x) = {f1(x), f2(x), ..., fk(x)}T. (1)

In the case of multi-objective problems the concept of Pareto
optimality [24,25] is introduced. A solution x of the multi-objective
functions fi(x), may be conflicting with each other, thus, most of the
time it is impossible to obtain for all objectives the global minimum
at the same point. Instead there exists a set of optimal trade-offs
which forms the solution set—the Pareto set and it is denoted by P*.
The set PF* = {f(x)|x ∈ P*} is called the Pareto front.
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between xij and vij using Eqs. (3) and (4)
(iii) Produce new solutions (new positions) vij for the onlookers
S.N. Omkar et al. / Applied So

. Artificial Bee Colony

In social insect colonies, each individual seems to have its
wn agenda; and yet the group as a whole appears to be highly
rganized. The algorithms based on swarm intelligence and social
nsects begin to show their effectiveness and efficiency to solve dif-
cult problems [9–13]. A swarm is a group of multi-agent system
uch as bees, in which simple agents coordinate their activities to
olve the complex problem of the allocation of labor to multiple for-
ge sites in dynamic environments. An important and interesting
ehavior of bee colonies is their foraging behavior, and in partic-
lar, how bees find a food source based on the amount of nectar
nd successfully bring nectar back to the hive. In a real bee colony
he bees are grouped as scout bees, employed bees and onlook-
rs. Initially, the foraging process begins in a colony by scout bees
unemployed bees) which explore food sources by moving ran-
omly. At the entrance of the hive is an area called the dance-floor,
here dancing takes place. Upon their return to the hive from a

oraging trip, it communicates by performing the so-called waggle
ance [26] so as to recruit other bees to go to the food source. A
ee waiting on the dance area for making decision to choose a food
ource is called an onlooker, which seems to learn information from
he dance regarding the food source: its nectar amount, the direc-
ion in which it will be found and its distance [26,27]. If the scouts
iscover rich food source then the scout bees are selected and clas-
ified as the forager bee (employed bee). After waggle dancing the
orager bee leaves the hive to get nectar with their fellow bees that
ere waiting inside the hive. The number of follower bees assigned

o nectar depends on the overall quality of the nectar. Upon arrival,
he bees take a load of nectar and return to the hive relinquish-
ng the nectar to a food-storer (onlooker) bee. In this way a good
ood source is exploited, and the number of foragers at this site is
einforced.

In a robust search process, exploration and exploitation process
ust be carried out together. In the ABC algorithm [20,21], the scout

ees control the exploration process, while the employed bees and
nlookers’ carryout the exploitation process in the search space.
he number of employed bees and the onlookers is equal to the
otal population. The employed bee whose food source has been
xhausted becomes a scout bee. The position of an enhanced nectar
mount of a food represents a possible solution to the optimization
roblem.

At the first step, create a population of n artificial bees placed
andomly in the search space representing the food source posi-
ion, where n denotes the size of population. After initialization, the
opulation of the positions (solutions) is subjected to repeated iter-
tion of the search processes of the employed bees, the onlooker
ees and scout bees. This search process can be divided into two
hases:

(i) Exploration phase
For each solution xij, where i = 1,2. . .n and j is dimensional

vector. The scout bees explore a new food source with xi. This
operation can be defined as in (2)

xj
i
= xj

min + (xj
max − xj

min)rand(0, 1) (2)

Here the value of each component in every xi vector should be
clamped to the range [xmin, xmax] to reduce the likelihood of
scout bees leaving the search space (S). The population spread
is restricted within the search space S i.e xij ∈ S and in Eq. (2)

xmin and xmax is the lower and upper limit respectively of the
search scope on each dimension.

ii) Exploitation phase
In this phase, assuming the scout bees which have explored

food source are selected as employed bees, which randomly
puting 11 (2011) 489–499 491

perturb to the nearest neighbour, this produces a modifica-
tion on the position (solution) in her memory depending on
the local information (visual information) and tests the nectar
amount (fitness value) of the new source (new solution). If the
nectar amount of the new one is higher than that of the previ-
ous one, the bee memorizes the new position and forgets the
old one. Otherwise it memorizes the position of the previous
one. After all employed bees complete the search process; they
communicate the nectar information of the food sources and
their position information with the onlooker bees on the dance
area. An onlooker bee evaluates the nectar information taken
from all employed bees and chooses a food source with better
nectar amount. As in the case of the employed bee, onlooker
bee also produces a modification on the position in her memory
and checks the nectar amount of the candidate source. Provid-
ing that its nectar is higher than that of the previous one, the
bee memorizes the new position and forgets the old one.

An artificial onlooker bee chooses a food source depending on
the new positions, using Eq. (3).

Pi =
{

vi, if (f (xi) ≥ f (vi))
xi, if (f (xi) ≤ f (vi))

(3)

In order to select the better nectar position found by an onlooker,
Ob is defined as

Ob = arg min
Pi

f (Pi), 1 ≤ i ≤ n (4)

where Pi is the best fitness value of the solution i which is propor-
tional to the nectar amount of the food source in the position i and
n is the number of food sources which is equal to the number of
employed bees.

In order to produce a candidate food position from the old one
in memory, the ABC uses the following Eq. (5):

vij = xij + ˛(xij − xkj) (5)

where k = 1, 2,. . .,n and j = 1, 2,. . .,D are randomly chosen indexes.
Although k is determined randomly, it has to be different from i. ˛ is
an adaptively generated random number. It controls the production
of neighbour food sources around xij and represents the comparison
of two food positions visually by a bee. As can be seen from (5), as
the difference between the parameters of the xij and xkj decreases,
the perturbation on the position xij gets decreased, too. Thus, as
the search approaches the optimum solution in the search space,
the step length is adaptively reduced. The food source of which
the nectar is abandoned by the bees is replaced with a new food
source by the scout bees. A brief description of ABC algorithm is
given below

ALGORITHM: A High-Level Description of ABC

1. Create a initial population of artificial bees within the search
space xij

2. Evaluate the fitness of the population
3. While (stopping criterion not met)
(i) Produce new solutions (food source positions) vij in the neigh-

bourhood of xij for the employed bees using Eq. (5)
(ii) Evaluate the fitness value and apply the selection process
from the solutions xij, selected depending on Pi and evaluate
them

(iv) Determine the abandoned solution (source) xij, if exists, and
replace it with a new randomly produced solution xij for the
scout bee using Eq. (2)
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(v) Memorize the best food source position (solution) achieved so
far

4. End while

There have been several other recent methodologies proposed
or solving optimization problems based on the inspiration from the
ay honey bees forage for food. They are as follows: (i) the multi-

bjective optimization using the Bees Algorithm proposed by Pham
nd Ghanbarzadeh [28]; (ii) the virtual bee colony by Yang [21]; (iii)
he Bee Colony Optimization (BCO): principles and applications by
eodorovic et al. [29].

The algorithm used in this paper is based on the Parallel Vec-
or Evaluated Artificial Bee Colony, a multilevel bee variant of
BC, which is inspired by the Vector Evaluated Genetic Algorithm

VEGA) [30] and Vector Evaluated Particle Swarm Optimization
VEPSO) [11,12]. It can be observed from the literature that this
pproach to composite design optimization has not yet been exten-
ively explored.

.1. Vector Evaluated ABC—VEABC

The VEABC is a multi-objective ABC method inspired by the
oncept and main ideas of VEGA algorithm [30] and VEPSO algo-
ithm [11,12]. The VEABC algorithm is conceptually simple. It is
imilar to two single objective functions being separately eval-
ated by separate artificial bees. The multiple objectives being
onsidered here are disparate in nature and hence this renders
he separate/exclusive evaluation of the multiple objectives more
ppropriate. VEABC is very well suited for the current problem, as it
s capable of searching for multiple optimal solutions in a very vast
olution space, in a single run using swarm intelligence techniques.

The key issue in these swarm intelligence algorithms is that
he fitness of an individual in a population depends on individu-
ls of a different population. This enhances the capability of the
lgorithm to better explore and exploit the search space, thereby
ore accurately detecting the convex, concave or partially con-

ex and/or concave and/or discontinuous Pareto fronts [30,31]. The
ain features of VEABC are explained in detail below:
The Vector Evaluated method assumes that M swarms D1,

2. . .DM each of size n aim to optimize simultaneously M-objective
unctions. Each swarm is exclusively evaluated according to one of
he objective functions. In VEABC, a population of n artificial bees
f M swarms placed randomly in the search space, evaluate the fit-
ess of the best food source visited by artificial bees, and then from
ach swarm select bees that have highest fitness as forage bees.
pdate to new position (solution) after the recruitment is man-
ged by the forager bees. The best solution is obtained after certain
ime of progression based on the number of bees visiting the same
ocation.

At each time step for M swarms each of size n artificial bees;
he distance (randomness amplitude) and direction (convergence
ate) of each bees is changed towards its most favourable position
solution). The random factor prevents the swarm getting stuck in
he wrong place and speed of convergence is used to identify the
ate at which bees converge to a solution.

For a given M swarm every bee continuously updates itself
owards the above mentioned best solution. Thus a new generation
f community comes into being, which has moved closer towards
better solution, ultimately converging onto the optimal solution.

n practical operation, for the scale of n number of artificial bees,
he current location of all the artificial bees is expressed as [j]Di(t) at

given time-t for jth swarm. The fitness function, which is deter-
ined by the optimization problem, assesses the extent of most

avourable position (solution). The best position of the whole pop-
lation which gave the overall best value of the fitness function is
best. Then the VEABC’s swarms should be updated according to
puting 11 (2011) 489–499

Eq. (6).
[j]D(i+1) = ˛(r − S) + (1 − ˇ)[j]Di + � [k]Dbesti (6)

Here the superscripts represent the ABC parameters for the jth
swarm. Here ˛ is the randomness amplitude of bee, ˇ is the con-
vergence rate and � is the learning rate. The factor r is randomly
generated within the range {0, 1} and S is the step size. The VEABC
assumes that the search behavior of a swarm is affected by a neigh-
boring swarm—kth swarm. The parameter k can be selected in a
number of ways, resulting different information migration schemes
between the multiple swarms. The equation is essentially made up
of three parts. The first and second parts are the distance and direc-
tion of the bees, which gives the convergence rate and randomness
amplitude of the bee. The third part is the best estimates, which
expresses the most favourable position (solution). These three parts
together determine the solution space searching ability. The first
and second parts cause the bees to search the whole and avoid local
minimum. The third part reflects the information sharing by forage
bee related to most favourable position (solution) to their fellow
bees. Subsequently the bees reach an effective and best position.

4. The optimization problem—problem formulation

The current problem has been framed as a multi-objective
optimization problem of having to minimize both the weight
of the component as well as the total cost for a composite for
required strength, so that it satisfies the specified failure criteria.
The decision variables considered are the number of layers, stacking
sequence and the lamina thickness. It has been clearly illustrated
in the earlier sections that these variables have very wide ranges
and are associated with a number of different constraints. Thus,
this problem falls under the class of constrained non-linear opti-
mization problem with a vast solution space. Generally constrained
non-linear optimization problems (CNOP) are made up of three
basic components; a set of variables, objective function(s) to be
optimized and a set of associated constraints that define the fea-
sible solution space. The goal is to find the values of the variables
within the feasible space that optimizes the objective function(s)
while satisfying the constraints. ABC has been successfully used for
many standard optimization problems and has established itself as
a very effective optimization tool [20]. However, its application in
multi-objective and constrained optimization problems is a new
area.

4.1. Structural analysis model

In the current study, the generic model given in [23] is used for
the design of the composite laminate. Here, expressions of clas-
sical laminated plate theory (CLPT) are employed for designing of
the composite laminates with desired in-plane stiffness properties.
Laminates symmetric about the mid-plane are considered for the
design and weight estimation. The stress resultants (Nx, Ny, Nxy) are
obtained for the laminate subjected to in-plane stresses using the
expression{

Nx

Ny

Nxy

}
=

[
A11 A12 A16
A21 A22 A26
A61 A61 A66

]
{ε} (7)

where {ε} is the strain matrix and the coefficients of [A] are given
as,

N∑

Aij =

k=1

(Q̄ij)(k)(Zk − Zk−1) (8)

(Q̄ij)(k) are the transformed reduced stiffness of the kth ply and
the (Zk − Zk−1) represent the thickness of the corresponding kth ply.
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The description of the three failure criteria, Tsai-Wu failure
riteria [22], Failure Mechanism Based failure criterion [23] and
aximum Stress failure criterion and the design constraints are

iven by Omkar et al. in [11,13].

.2. Objective functions

The objectives considered for the design optimization are two
old; firstly to minimize the weight of the composite compo-
ent and secondly to minimize the total cost involved (material
osts + manufacturing costs).

.2.1. The weight function
The procedure for the determination of optimum weight of the

aminate is as follows. For a given loading condition, the design vari-
bles are ply thickness, stacking sequence and the number of plies.
educed stiffness and compliance matrices are obtained for the
iven material properties. The strains, curvatures, global stresses
nd material ply stresses are then obtained. Finally, failure condi-
ion of the ply is obtained by checking each ply stress condition
ith the strength of the lamina. The optimum weight of the lam-

nate is calculated such that all plies satisfy the failure condition.
otal width of the composite laminate with n�i representing the
umber of layers at orientation angle �i with thickness of t mm is
iven by;

= [{
12∑
i=1

(n�i)}t] (9)

eight, Wt = �hab (10)

here � is the density of the material of the composite laminate

.2.2. The cost function
Considering the economics is a very important design objective.

his is very aptly justified due to the high costs of the composite
aterials. The component is optimized with respect to minimum

ost ‘g’, which can be formulated as the sum of the material and
anufacturing costs. The cost function developed by Kovacs et al.

32] for carbon-fibre-reinforced plastic (CFRP) sandwich-like struc-
ure with aluminium (Al) is used,

Total cost = material cost + manufacturing cost
g = gmatl + gmanufact

(x) = [gmatl{Wt} + 4 + gmaf{(
12∑
i=1

(n�i))14min + 110min}]$ (11)

The main contribution to the material cost arises from the raw
aterial for the composite plates. The manufacturing cost is a direct

unction of time (in minutes) associated with manufacturing of the
aminates, which includes the time lost in press form preparation,
ayer cutting, layer sequencing and final working. The indices gmatl
nd gmaf are determined based on the material being used and the
ype of manufacturing process employed.

.3. Decision variables and constraints

The definition of a directional laminate composite requires the
pecification of the fibre direction, the number of layers and the
hickness of each layer. Hence, these form the design variables of
he laminate design optimization process.
The stacking sequence describes the orientation of the plies i.e.
he number of plies placed at different orientation angles. This
tacking sequence has a pronounced effect on the properties of the
omposites and greatly affects the strength of the composite com-
onent. In the current work, fibre orientation angles are considered
puting 11 (2011) 489–499 493

within the range of {−75◦, +90◦} in steps of 15◦, hence 12 different
possible values of orientation angle �;

� = {−75◦/ − 60◦/ − 45◦/ − 30◦/ − 15◦/0◦/15◦/30◦/45◦/60◦/

75◦/90◦} (12)

Here we have considered the number of layers present at each of
the different fiber orientation angles as the actual decision variables
for the optimization process. The second decision variable—the
thickness of the lamina, has been considered to be within the range
of 0.05–0.5 mm. In this case, we have assumed each layer to be of
the same thickness i.e. {t1/t2/,. . .,/ti}= t.

The minimum value of weight and total cost is achieved by
determining the optimal configuration, given by,

{n�1/n�2/, . . . , /n�i}sym {t1/t2/, . . . , /ti} (13)

where, n�i is the number of layers at a fibre orientation angle �i and
ti is the thickness of ith layer of the laminate. In the current prob-
lem, we have a total of thirteen decision variables. Twelve variables
{n�1/n�2/,. . .,/n�12} corresponding to the number of layers at each
of the twelve different fiber orientation angles. Further, the plies
at different fiber orientation angles are discrete variables capable
of only integer values within the specified range. Also, the lamina
thickness is assumed as a discrete variable in view of retaining the
practicality of the solution evolved. The lamina thickness had been
constrained such that it is only capable of taking values within the
specified range with a minimum increment of 0.001 mm.

In laminated composite structures, ply thickness (t), number of
plies (N) and orientation angles (y) are the major variables. These
variables contribute to the major strength and stiffness of the lam-
inate. Hence, these/only three design variables are considered for
the design optimization of laminated composite structures.

Mathematically,
Minimize weight: Min{w = f (x)}, f (x) weight objective function
Minimize cost: Min{c = g(x)}, g(x) cost objective function
Such that, strength > minimum strength: generic failure crite-

rion,
Strengths are calculated using the reference structural mathe-

matical model [33].
A possible solution, x = {[n�1/n�2/ . . . /n�i], t}
Number of layers at each orientation angle, n�i∀n�i ∈ Z+�Z+ =

[0, . . . , 50]
Also,

12∑
i=1

(n�i) > 0∀�i ∈ ��� = [−90 + (15i)]o for i = 1 . . . 12. (14)

Thickness, t ∈ S; S = [0.05 mm, 0.5 mm].

5. The optimization process

A carbon/epoxy composite laminate is considered in current
work. The material properties considered for the study are given
in Table 1. The laminate subjected to in-plane loadings are shown
in Fig. 1.

Here, the ABC method is incorporated with the necessary
modifications to render it applicable to constrained non-linear opti-
mization problems with discrete design variables. The key point
in the constrained optimization process is dealing with the con-
straints associated with decision variables. In the current work, the

constraints are effectively handled by preserving the feasibility of
the solutions evolved. In order to constrain the optimum solution
to the feasible space, each artificial bee is made to search the entire
solution space but keeping track of only the feasible solutions as
it progresses. Further, this process is accelerated by initializing the



494 S.N. Omkar et al. / Applied Soft Computing 11 (2011) 489–499

Table 1
Mechanical properties of the carbon fibre reinforced plastic lamina (AS4 and Epoxy 3501-6) (moduli are in GPa).

Elastic moduli of laminate Lamina Poisson’s rations Rigidity moduli of laminate
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rtificial bees within the feasible solution space. The design vari-
bles involved in the current optimization problem are discrete in
ature. The ABC algorithm used in the current work is modified to
andle discrete variables. The twelve variables [n�1/n�2/,. . .,/n�12]
orresponding to the number of layers at each of the twelve differ-
nt fiber orientation angles are capable of taking only integer values
ithin the specified range making them discrete in nature. Further,

he lamina thickness—t is also considered to be a discrete variable,
apable of taking values between the specified ceiling and floor
imits with a least count of 0.001 mm. This consideration has been
aken in view of retaining the practicality of the evolved solution
n terms of its manufacturability.

VEABC employs two or more swarms to probe the search
pace and information is exchanged among them. Each swarm
s exclusively evaluated with one of the objective functions, but,
nformation coming from other swarm(s) is used to influence its

otion in the solution space. Thus, exchanging this information
mong swarms leads to Pareto optimal points. Specifically, in this
ase since there are two objective functions, two swarms (X1, X2)
f N artificial bees each are used. X1 evaluates the weight objec-
ive function and X2 evaluates the cost objective function. There
s no necessity for a complicated information migration scheme
etween the swarms as only two swarms are employed. Each
warm is exclusively evaluated according to the respective objec-
ive function. The most favourable position (solution) of the second
warm (X2) is used for calculation of the new favourable posi-
ion (solution) of the first swarm (X1) and accordingly the most
avourable position (solution) of the first swarm (X1) is used for
alculation of the new favourable position (solution) of the second
warm (X2).

The artificial bee’s position updates equations for the first
warm—X1

X1]D(i+1) = ˛(r − S) + (1 − ˇ)[X1]Di + � [X2]Dbesti (15)

The artificial bee’s position updates equations for the second
warm—X2

X2]D(i+1) = ˛(r − S) + (1 − ˇ)[X2]Di + � [X1]Dbesti (16)
The particles of both the swarms (X1, X2) move in solution space
ccording to the above mentioned equations, successively aligning
hemselves with respect to both the objective functions in each
teration and finally converging on the global optimum solution.

Fig. 1. A typical loading configuration of the composite component.
�Tt Tt direction GLT LT direction GTt Tt direction GtL tL direction

0.4 6.6 3.93 6.6

The performance of the ABC is very sensitive to the control
parameter choices. The ABC parameters used in the current case
are listed in Table 2. The number of artificial bees is decided by
trial and error method. A number of simulations are carried out
with different number of swarm particles and the optimal solu-
tion is observed when ten times the number of dimensions of the
problem is taken as the number of artificial bees. As the current
problem is 13-dimensional, 130 artificial bees are used for both
the swarms. During initialization, it is ensured that all the artificial
bees are within the feasible solution space, since randomly initial-
ized artificial bees are not always confined to the feasible solution
space. The ABC parameters are the same for each swarm and for all
simulation runs.

The remaining parameters, Randomness Amplitude of bee ˛, the
Convergence rate ˇ and the Learning rate � are adjusted dynamically
during the optimization. A starting value of ˇ = 1 is used to initially
accommodate a more global search and is dynamically reduced to
ˇ = 0. The ˇ value is adaptively allocated as per Eq. (17);

ˇ = ˇmax − [{(ˇmax − ˇmin)/itmax}it] (17)

where ˇmax is the initial Convergence rate value, ˇmin is the final
Convergence rate value, it is the current iteration number and itmax

is the maximum number of iterations. The initial higher value
may result in greater population diversity in the beginning of the
optimization, whereas at a later stage lower values are favoured,
causing a more focused exploration of the search space. Similarly,
Randomness Amplitude of bee ˛ and the Learning rate � are also
adjusted dynamically.

Following is the overview of the algorithm of the modified
VEABC employed for the current optimization problem.

The algorithm

1. Initialize both swarms (X1, X2) randomly within the feasible
solution space.

a. All artificial bees are repeatedly initialized until it satisfies all
the constraints.

2. While the end condition is false.
3. For both the swarms exclusively evaluate each of the objec-

tives.
a. X1: Evaluates the weight-objective function.
b. X2: Evaluates the cost-objective function.
4. If the fitness value is better for the current solution than the

previous best solution, then assign the current solution as
the best solution—for both the swarms.

5. Adaptively generate the Randomness Amplitude of bee, the
Convergence rate and the Learning rate.

6. For both the swarms update the bee positions towards the
most favourable position (solution) from the other swarm.
7. After each update check whether the variables of each artifi-
cial bee of both the swarms satisfy the constraints.

8. IF the number of iterations without updating the best value
of both Swarms > maximum number of iterations THEN con-
dition = true, End. Else the whole process is repeated (Back
to 2).
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Table 2
The ABC parameters.

Convergence rate ˇ = [1,. . .,0.4], adaptively allocated (decreasing from 1 to 0.4 with each iteration)
Learning rate � = [1,. . .,0.4], adaptively allocated (decreasing from 1 to 0.4 with each iteration)
Randomness amplitude of bee ˛ = [4,. . .,0], adaptively allocated (decreasing from 4 to 0 with each iteration)

S = 0.75
N = 130
Max it = 1000 iterations
500 iterations

6

b
b
m
o
t
T

o
c
m
c
o
m
p
d
p
c
i
o
p
a

e
s
l
b
a
s
i
T
i
d
s
p
s

T
R

Step size
Number of swarm particles
Maximum number of iterations
End condition (number of iterations without update in the best values)

. Results and discussions

The simulation studies have been carried out on specimen car-
on/epoxy laminate plate with in-plane dimensions of a = 10 m,
= 10 m. L, T and t are designated as longitudinal, transverse, nor-
al directions of the plate and a typical loading configuration

f the plate is illustrated in Fig. 1. The physical properties of
he unidirectional carbon/epoxy laminate material are listed in
able 1.

It is crucial to use the appropriate failure criteria to achieve an
ptimal design configuration [11,13]. Hence in this study, we have
onsidered three different failure theories to arrive at a truly opti-
al design of the composite laminate for the considered loading

onfiguration. This essentially forms the design constraints for the
ptimization process in terms of the required strength. The opti-
um design of the laminate is obtained in terms of thickness of

ly, stacking sequence, number of plies at each orientation which
oes not fail under the considered failure criteria for a given in-
lane loading configuration. In the current study, three different
ombinations of in-plane loadings are considered—uniaxial, biax-
al and bending loads, for the multi-objective design optimization
f the composite component. The results of the design optimization
rocess i.e. the evolved optimal designs, for each loading condition
re presented and discussed in the coming sections.

Further in the current work, a comparative study of the differ-
nt design configurations evolved with both the fixed and variable
tacking schemes has been carried out. For bending and biaxial
oading configurations the design optimization has been carried
y the proposed ABC model with the stacking scheme fixed and
lso with it being treated as a design variable. For fixing the
tacking sequence, two of the most popularly used standard stack-
ng schemes: {0/90}S: SS1 and {0/±45/90}S: SS2 are considered.
he optimal design configurations evolved for the standard stack-

ng schemes SS1 and SS2 have been compared with the optimal
esign configurations evolved by considering the lamina stacking
equence also as a variable of the optimization process. These com-
arisons shed light on the extent of influence of the lamina stacking
equence in the design optimization of the composite components.

able 3
epresentative results—optimum configurations obtained for uniaxial loading configurat

Loading (N/mm) Failure theory Number of Pl
Nx

1000

Failure mechanism based failure theory

4
4
4

10
10

Tsai-Wu failure theory

10
4

10
10

4

Maximum stress based failure theory

4
10
10
10
10
Fig. 2. Minimum weights obtained for different failure theories with standard and
non-standard stacking sequences for biaxial loading condition.

6.1. Uniaxial loading

This is a fairly simple configuration of loading with the forces
being applied on the component in only one direction (either in
L, T or t directions). Uniaxial loading corresponds to fiber breaks
and fiber compressive types of failures with uniaxial compressive
loadings accounting for the fiber compressive – failures and the
uniaxial tensile loads resulting in fiber breaks – failures.

We have considered a uniaxial tensile load of 1000 N/mm act-
ing in the longitudinal direction. The results of the optimization
process for this loading configuration are listed in Table 3. It can
be observed from the results that the different optimal designs
evolved for the three different failure criteria are quite compara-

ble. Further it can be seen from the table that the optimal designs
evolved for this loading configurations are quite simple, with a
majority of the evolved design configurations resulting in a stan-
dard stacking sequence of {0} (layers placed only at a 0◦ orientation)
irrespective of the failure criteria considered. This is very much in-

ion.

y Stacking sequence Thickness (mm) Wt (kg) Cost ($)

[02]S 0.133 101.08 499473
[02]S 0.133 101.08 499473
[02]S 0.133 101.08 499473
[05]S 0.053 100.7 497638
[05]S 0.053 100.7 497638
[05]S 0.053 100.7 497638
[02]S 0.133 101.08 499473
[05]S 0.053 100.7 497638
[05]S 0.053 100.7 497638
[02]S 0.133 101.08 499473
[02]S 0.133 101.08 499473
[05]S 0.053 100.7 497638
[05]S 0.053 100.7 497638
[05]S 0.053 100.7 497638
[05]S 0.053 100.7 497638
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Table 4
Representative results—optimum design configurations evolved for biaxial loading condition.

Loading (N/mm) Failure theory Number of Ply Stacking sequence Thickness (mm) Wt (kg) Cost ($)

Nx Ny Nxy

1800 1800 60

Failure mechanism based failure theory

12 [−152/754]S 0.073 166.44 822365
16 [−153/755]S 0.051 155.04 766074
16 [−153/755]S 0.051 155.04 766074

6 [−151/752]S 0.146 166.44 822365
16 [−153/755]S 0.051 155.04 766074

Tsai-Wu failure theory

16 [−153/755]S 0.051 155.04 766074
16 [−153/755]S 0.051 155.04 766074
20 [−152/−304/604]S 0.05 190.0 938780

6 [−151/752]S 0.146 166.44 822365
6 [−151/752]S 0.146 166.44 822365

Maximum stress based failure theory

6 [−151/752]S 0.146 166.44 822365
6 [−151/752]S 0.146 166.44 822365

16 [−153/755]S 0.051 155.04 766074
16 [−153/755]S 0.051 155.04 766074

6 [−151/752]S 0.146 166.44 822365
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ig. 3. Percentage weight savings for the different failure criteria between standard
nd non-standard stacking schemes for biaxial loading.

ine and agrees well with the strength requirements for a uniaxial
oading configuration.

.2. Biaxial loading (with shear)

This condition refers to loading of the composite component in
wo directions. We have considered a biaxial load of [1800 N/mm,
800 N/mm] with an added shear load of 60 N/mm. The results of
he multi-objective design optimization of composite laminates for
his loading configuration are listed (Table 4). It can be seen that the
ptimum composite configurations evolved for the different failure

onditions are similar.

Further, it can be observed from Table 4, that the optimal
onfigurations suggest a number of different (non-standard) stack-
ng sequences for the laminates. This can be attributed to the
act that the, lamina stacking scheme has also been considered

able 5
he optimal configurations evolved for fixed standard stacking schemes of {0/90} and {0

Loading (N/mm) Failure theory

Nx Ny Nxy

1800 1800 60

Failure mechanism based failure theory

Tsai-Wu failure theory

Maximum stress based failure theory
Fig. 4. Minimum weights obtained for different failure theories with standard and
non-standard stacking sequences for bending loads.

as a variable for the optimization process. Stacking schemes
such as {−15/75}S, and {−15/−30/60}S have been evolved. These
non-standard stacking schemes result in configurations with signif-
icantly lesser weights as compared to configurations with standard
stacking sequences. The optimal design configurations evolved
for the considered biaxial loading for the fixed stacking schemes
SS1 and SS2 are listed in Table 5. Comparing the results listed
in Tables 4 and 5 we can observe that, with the fixed stacking
sequences SS1 and SS2, we have arrived at an optimal configu-
ration with a minimal weight of 342 kg and 418 kg respectively.
Whereas a minimum weight of 155 kg is obtained with a non-

standard stacking scheme of {−15/75}S. The comparisons of the
minimum weights obtained by design optimization with the stack-
ing sequence fixed and it being treated as a variable is given in
Fig. 2. Significant savings in weight can be seen—the optimal design
evolved with variable stacking sequence results in a composite

/±45/90}—for the biaxial loading condition.

Stacking sequence Thickness (mm) Weight (kg)

[09/909]S 0.05 342
[08/±4510/904] 0.05 418
[09/909]S 0.05 342
[010/±456/906] 0.05 418
[012/9012]S 0.05 456
[08/±4518/904] 0.05 570
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Table 6
Representative results—optimum design configurations evolved for bending loads.

Loading (N/mm) Failure theory Number of Ply Stacking sequence Thickness (mm) Wt (kg) Cost ($)
Mx

−1800

Failure mechanism based failure theory

22 [010/301]S 0.125 522.50 2581414
22 [09/452]S 0.125 522.50 2581414
14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746

Tsai-Wu failure theory

22 [09/452]S 0.125 522.50 2581414
14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746

Maximum stress based failure theory

14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746
22 [010/301]S 0.125 522.50 2581414
14 [07]S 0.196 521.36 2575746
14 [07]S 0.196 521.36 2575746

Table 7
The optimal configurations evolved for fixed standard stacking schemes of {0/90} and {0/±45/90}—for bending loads.

Loading (N/mm) Failure theory Stacking sequence Thickness (mm) Weight (kg)
Mx

Failure mechanism based failure theory
[013/901]S 0.1 532
[021/±453/901] 0.05 532
[014/901]S 0.1 570

c
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−1800 Tsai-Wu failure theory

Maximum stress based failure theory

omponent with nearly half the weight of components with fixed
tacking schemes. The percentage weight savings with variable
tacking sequence as compared to standard stacking sequences
S1 and SS2 are given in Fig. 3. This reaffirms the fact that the
tacking scheme is a crucial parameter for the design optimiza-
ion of composite laminates. Hence, including this as a design
ariable in the optimization process results in an optimal solu-
ion.
.3. Bending loads

Further, we have also considered a case with bending loads for
he design optimization of the composite component. The results
btained for this loading configuration are listed in Table 6. Again,

Fig. 5. Convergence patterns of both the weight an
[023/±451/903] 0.05 532
[013/901]S 0.1 532
[021/±453/901] 0.05 532

as in the previous case it can be seen form Table 6, that a num-
ber of different optimal design configurations with non-standard
stacking sequences have been evolved by the ABC model. Table 7
lists the optimal design configurations evolved for the fixed stack-
ing schemes SS1 and SS2. Fig. 4 depicts the minimum weights
obtained with fixed standard stacking schemes and variable stack-
ing scheme. For both the standard schemes of SS1 and SS2 optimal
design configurations with minimum weight of 532 kg respec-
tively, for all the three failure criteria are evolved. The optimal

design configuration evolved by ABC model, with the variable
stacking sequence has a minimal weight of around 521 kg. The
difference in weights is a mere 3% whereas with biaxial loading
weight savings is up to 50%. This can be attributed to a possi-
bility that the stacking sequence does not have a pronounced

d cost swarm for the different failure criteria.
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ffect on the bending stresses developed in a laminated compos-
te.

Here, it can be observed that the objectives more or less
einforce each other rather than being completely conflicting,
oth tending towards a configuration with lower weight. Both
he objectives—weight and costs are directly proportional to the
umber of plies. But the manufacturing cost increases with the

ncrease in the number of layers and also with reduction in
ly thickness. Finally, a configuration of lower ply and higher
hickness is obtained as optimal. This trend can be observed in
ll the test cases and for all the three failure criteria consid-
red.

The convergence pattern of the swarm population for the dif-
erent failure criteria for a given loading configuration is illustrated
n Fig. 5. In all the cases considered, the artificial bees converge and
he end condition is satisfied at 1000 iterations.

. Comparison of nature inspired techniques

Nature inspired techniques provide a more robust and effi-
ient approach for solving complex real-world problems [34,35].
n recent years, many nature inspired techniques such as Genetic
lgorithm (GA) [36], Artificial Immune System (AIS) [13], Particle
warm Optimization (PSO) [11], etc have been applied to optimal
tructural design.

Nagendra et al. [37] applied GA for the design for mini-
um weight stiffened panels with buckling constraints. The study

howed that the GA discrete design procedure was superior to other
lternatives for both stiffened panels with and without cutouts.
alott et al. [38] carried out the optimal design of laminated com-

osite sandwich panels with bending–twisting coupling using GA.
arayana Naik et al. [39] applied GA for the design optimization of
omposites using single-objective optimization for weight based
n the same failure criterion as used in this paper. Here the effect
f stacking sequence and loading on the optimum weight of the
aminate is studied and it is found that the optimum weight of
he laminate varies with the stacking sequence of the laminate.
amoı̌n et al. [40] implemented a micro-genetic algorithm to carry
ut the multi-objective optimization of the drilling process of a
aminate composite material. Jacob and Senthil [41] used a multi-
bjective GA for optimization of composites for strength, stiffness
nd minimal mass.

In the current work we employ the principle of vector evalu-
ted Genetic Algorithm [30] for solving the given multi-objective
ptimization problem. In VEGA the population is divided into m
ifferent parts for n different objectives; the selection operation is
one for each objective separately, filling equal portions of mating
ool [30]. Afterwards, the mating pool is shuffled, and crossover
nd mutation are performed as usual.

Omkar et al. [11,13] have used the swarm intelligence and
mmuno-computing techniques which includes PSO [11] and AIS
13] respectively for the design optimization of laminate compos-
te structures. The design variables, constraints and failure criteria
hat are used are same as in this paper. A comparison of the
esults obtained by these three methods and ABC is shown in
able 8. The results of the optimization process for the uniax-
al and bending loading configuration are listed in Table 8. It can
e observed from the results that the different optimal designs
volved for the three different failure criteria are quite compa-

able in all the nature inspired techniques. In the case of biaxial
oading configuration, the results of the multi-objective design
ptimization of composite laminates are better in ABC in compar-
son with that of AIS and GA. Therefore the performance of ABC is
n par with that of PSO, AIS and GA for all the loading configura-
ions. Ta
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. Conclusions

In this paper, we present a generic model for composite design
ptimization based on VEABC. In the current work, based on the ABC
lgorithm a new version of VEABC algorithm for discrete variables
as been developed and implemented successfully for the multi-
bjective design optimization of composites. The composite design
ptimization problem has been formulated as multi-objective opti-
ization problem with objectives of minimizing weight of the

omponent for a required strength and minimizing the total cost
ncurred. The number of layers, layer thicknesses and the stack-
ng sequence—have been considered as the design variables for
esign optimization. The composite design is evaluated based on
everal failure criteria such as Maximum stress, Tsai-Wu and Fail-
re mechanism based failure criteria. The proposed optimization
odel has been validated for a number of different in-plane loading

onfigurations from different regions of the failure envelope. Also, a
omparison has been brought out between configuration evolved,
ith the stacking schemes fixed and the stacking scheme being

reated as a variable of the optimization process. These compar-
sons bring out the significant weight savings obtained by treating
he stacking sequence also as a design variable instead of fixing it
ny of the commonly used standard stacking schemes like {0/90}S
nd {0/±45/90}S. It can be seen from the results that, in all the con-
idered cases the VEABC based optimization model has performed
uite satisfactorily in comparison with other nature inspired
echniques, evolving superior composite design that results in
ignificant weight savings. This comprehensively ascertains the
obustness of the proposed method. Further, this approach does
ot impose any limitation on the number of objectives and con-
traints. The VEABC based optimization model developed in this
aper allows for easy incorporation of any changes in design param-
ters. Inclusion of further constraints and objectives can be effected
ithout necessitating any major changes to current framework,
aking this VEABC based optimization model robust and generic,

roviding great deal of flexibility to extend it to any number of
ifferent composite configurations.
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