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A New Bee Colony Optimization Algorithm with Idle-Time-

Based Filtering Scheme for Open Shop-Scheduling Problems 

Abstract 

Open Shop Scheduling Problems (OSSP) are one of the most time-consuming works 

in scheduling problems. Currently, many artificial intelligence algorithms can reduce the 

problem-solving time to an acceptable time range, and even can further downsize the 

range of solution space. Although the range of solution space is technically downsized, in 

most scheduling algorithms every partial solution still needs to be completely solved 

before this solution can be evaluated. For example, if there is a schedule with 100 

operations, then all 100 operations must be scheduled before the scheduler can evaluate 

its fitness. Therefore, the time-cost of unnecessary partial solutions is no longer saved. 

In order to improve the weakness stated above, this paper proposes a new bee 

colony optimization algorithm, with an idle-time-based filtering scheme, according to the 

inference of “the smaller the idle-time, the smaller the partial solution”, and the smaller 

the makespan (Cmax) will be”. It can automatically stop searching a partial solution with 

insufficient profitability, while the scheduler is creating a new scheduling solution, and 

therefore, save time-cost for the remaining partial solution. The architecture and details of 

the bee colony optimization heuristic rule is detailed in this paper. 

Keywords: Bee Colony Optimization; Open shop scheduling 

1. Introduction 

The shop-scheduling problem can be simply introduced as a problem of 

redistribution of resources or a problem of rearrangement of operations order. Open Shop 



  

Scheduling Problem (OSSP) is more difficult than JSSP and FSSP because its operations 

have no predefined order. When m>=3, OSSP is proved as a NP-complete problem [4,5]. 

In recent years, many heuristic rules for solving OSSP have been presented. One of 

the earliest heuristic rules is the branch and bound method, which regards the solution 

space as a tree with limited branches. Through the bound design of scientists, such as 

Lower Bound (the lower bound of a solution), the searching range of the solution space 

can be effectively downsized. The advantage of the branch and bound method is that the 

solution space is a clear tree structure, whose branches can be examined without omission 

to find a feasible solution. Its weakness is that the changes of feasible solutions are 

concentrated on certain branches, thus, that its feasible solution has an inherent lack of 

changeability. 

Intelligent heuristic rules for various colonies have aroused widespread exploration 

and application in recent years, such as GA, ACO, PSO, BCO, and their combinations. 

These heuristic rules integrate the techniques of random a number generator, parallel 

operations, probability rules, fitness functions, tabu serial, etc., and in the face of a 

problem with large solution space, attempt to solve problems, where a feasible solution 

lacks changeability, and to effectively exclude bad solutions more quickly, in order to 

come close to the optima or even obtain the optima. 

Sushil J. et al. [15] proposed to integrate the concepts of GA and CBRP, of which 

CBRP is directed at special cases to provide specific problem-solving inference 

principles. Christian Prins [16] suggested that, the characteristics of individuals in a GA 

colony were differed from each other, and their chromosomes could be rearranged to be 

applicable to the detection of a global optima from quasi-optimal schedules, meaning a 



  

feasible solution with diversity, found through GA, could meet the needs of feasible 

solutions from a large solution space. Ching-Fang Liaw [17] developed a HGA that 

incorporated a local improvement procedure, based on TS, for solving the open shop 

scheduling problem. The incorporation of the local improvement procedure enabled the 

algorithm to perform a genetic search over the subspace of the local optima, and then, TS 

performed the local improvement procedure, which costs heavy computing time on a 

computer, and therefore, it is only performed in several rounds of the local improvement 

procedure. Jason Chao-Hsien Pan et al. [26] proposed a hybrid genetic algorithm (HGA) 

for no-wait job shop scheduling problems. In this paper, the chromosome was represented 

by a vector of integer numbers. The hybridizing method was the Order Crossover adopted 

by Brizuela et al. The mutation method was to randomly exchange two genes in the same 

chromosome. A genetic operation was defined by cutting out a section of genes from a 

chromosome, for treatment as a sub problem. This sub problem was then transformed 

into an asymmetric traveling salesman problem (ATSP), and solved with a heuristic 

algorithm. Subsequently, this section, with a new sequence, was returned to replace the 

original section of chromosome. The experimental results showed that this hybrid genetic 

algorithm could accelerate the convergence and improve solution quality. 

Christian Blum [10] hybridized ant colony optimization (ACO) with a beam search 

to overcome difficult combinatorial optimization problems. This method caused the 

probability ACO mechanism to produce a group of complete solutions, and then used the 

beam search to perform improvement procedures of partial solutions. This method could 

randomly search the solution space and direct the solution to optimal branches. 



  

D. Y. Sha and Cheng-Yu Hsu [2] modified the particle position representation using 

priorities, and the particle movement using an insert operator, and implemented a 

modified parameterized active schedule generation algorithm (mP-ASG) to decode a 

particle position in a schedule. In mP-ASG, the search area between non-delay schedules 

and active schedules could be reduced or increased by controlling the maximum delay 

time allowed. Changsheng Zhang et al. [27] proposed an alternate two-phase particle 

swarm optimization algorithm, called ATPPSO, to solve flow shop-scheduling problems, 

with an objective of minimizing makespan, which included two processes, the attraction 

process, and the repulsive process, which executed alternatively. In the attraction process, 

every particle was attracted to the individual optimum location and current global 

optimum location. In the repulsive process, every particle could avoid the worst 

individual location, which could not only diversify the colonies, but also increase the 

speed to the convergence of ATPPSO algorithm. I-Hong Kuo et al. [28] proposed an 

efficient a new hybrid particle swarm optimization model, named HPSO, to solve flow 

shop-scheduling problems. HPSO combined a random-key (RK) encoding scheme and an 

individual enhancement (IE) scheme. The RK encoding scheme could encode the 

locations in RK virtual space as locations in a FSSP solution space. In the RK virtual 

space, each location was represented by a vector of real numbers, while in FSSP solution 

space, each location was represented by a vector of integer numbers. For example, 

locations (0.3, 0.5, 0.2, and 0.4) in the RK virtual space could be encoded as locations (3, 

1, 4, and 2) in the FSSP solution space. The advantage of using the RK encoding scheme 

was that it could make full use of the query ability of PSO. The idea of an IE scheme was 

to exchange the order of two operations in the same job, and if the makespan after the 



  

exchange was good, it was retained. Using an IE scheme could enhance the local search 

ability of particle swarm. 

Chin Soon Chong et al. [18] proposed a novel approach that used the honeybee 

foraging model to solve job shop-scheduling problems. This approach decided whether 

the branch from node A or node B was formed by the side length ratio between nodes A 

and B, as well as the heuristic distance between nodes A and B. The branching 

probability was calculated according the average profitability of the previous round. Li-

Pei Wong et al. [19] published the Big Valley Landscape Exploitation (BVLE) method, 

which proposes to define a sole search space, called a landscape, when a heuristic search 

approach was applied to a combinatorial optimization problem. Exploring the search 

space with different numbers of search operations could create different landscapes, as 

the content of the landscape might change with the number of heuristic operations. The 

structures of these landscapes could help search for the global optima. In the BVLE 

structure, the local optima in some clusters may tend to appear near other local optima, 

and every cluster would form a valley centered on the global optimum. BVLE suggested 

that the new starting point for a search should be based on the previous local optimum, 

other than a random point in the search, because good candidate solutions can often be 

found near a local optimum. 

This study proposes a new bee colony optimization algorithm, with an idle-time-

based filtering scheme, which can automatically stop searching a partial solution with 

insufficient profitability, while the scheduler is creating a new scheduling solution, and 

therefore, save on time-cost for the remaining partial solution. 



  

The remainder of this paper is organized as follows: Section 2 introduces OSSP; 

Section 3 describes the born foraging behaviors of a bee colony; Section 4 defines the 

computerized bee colony behaviors; Section 5 describes the origin and development of 

ASG, and then summarizes the mP-ASG used in experiments; Section 6 discusses the 

experimental results. 

2. The Open Shop Scheduling Problem (OSSP) 

Shop-scheduling problems (SSP) can be introduced simply as problems of 

redistribution of resources, or a problem of rearrangement of operational order. SSP is 

mainly divided into following three types: 1. FSSP, 2. JSSP, and 3. OSSP 

As far as the difficulty for solving, OSSP is more difficult than JSSP and FSSP, due 

to the fact that it has no predefined order of operations in the same job. When m>=3, 

OSSP is proved to be an NP-complete problem [4,5]. 

In this paper, the definitions [6,7,and 8] of OSSP are summarized, as follows: 

Suppose the existing resources are m sets of machines, and the jobs are j pieces.  

(1) Each job contains m operations 

(2) Each operation must cost time pij. 

(3) The operations in a same job are randomly ordered, but at a time, only an 

operation can be handled. 

(4) No preemptive, which indicates that no operation can interrupt other operations. 

(5) At one time, a machine can handle only one operation, and each job can only be 

handled by one machine. 

In this paper, the problem is to minimize the makespan (Cmax) of OSSP. Here, makespan 

has the same meaning as Cmax, that is, the time needed for completing all jobs. 



  

3. The native foraging behavior of a honeybee colony 

Frisch, Karl von (The 1973 Nobel Prize winner) and his students [11] decoded the 

dance language of bees. They noted that the direction information of a bee dance 

indicated the location of a food source, relative to the sun, and the distance of the food 

source was signaled by different kinds of dance. Wenner, Adrian M., and Patrick H. 

Wells [12, 13] argued that floral odors on a forager's body were the primary cues that 

enabled the recruit-bees to locate new food sources. Either dance languages or floral 

odors indicate that there is communication between bees that fulfill foraging behaviors. 

The self-organization of bees [14] is based on several simple behavioral rules of 

insects. The best examples are locating and collecting nectar. Each bee collects nectar 

according to the route indicated by the forager bee that found the foraging route. Each 

hive has a dance area where the forager bee that found the food source dances to tell the 

foraging route, and in doing so, persuades other bees to follow the route to gather nectar. 

When a forager bee prepares to leave the hive to gather nectar, it will follow a 

dancer bee towards the nectar area. After arriving at the nectar area, the forager bee will 

collect nectar, fly back to the hive, and release the nectar to the bees which are in charge 

of food storage. After the forager bee releases the nectar, it may execute the following 

operations (a) or (b) or (c) according to a specific probability: 

(a) abandon the existing nectar area and fly to an unvisited area. 

(b) return to the nectar area to collect food but not call other bees.  

(c) come back to the beehive to call other bees to collect food in this nectar area. 

In the “dance area” of a beehive, the dancer bee indicates different food areas by 

dances, which meanings are not yet clear. However, scientists hold that “dances are 



  

functions that denote the quality of a food source”, in other words, different dances might 

represent different qualities of food. In addition, not all worker bees go for food at the 

same time. As proven by experiments, the proportion of forager bees is related to both 

“the total number of bees” and “the number of forager bees outside”. Based on the above 

description and understanding, this study develops a BCO computerized model, as 

defined in Section 4. 

4. Computerized bee colony and its behavior 

4.1. BCO algorithm 

The foraging behaviors of bees include Forward Pass and Backward Pass. Forward 

Pass expresses the process of a forager bee leaving the beehive and flying towards a food 

source; Backward Pass denotes the process of a forager bee returning to the beehive and 

sharing the food source information with other forager bees (role change). The pseudo-

code of the algorithmic framework of BCO developed by this paper is on the basis of 

foraging behaviors of bees, as shown in Fig. 1. 

 

Figure 1 Algorithmic framework of BCO. 
 

In Forward Pass, a forager bee will perform corresponding foraging operations in 

accordance with its roles (dancer, follower, or scout). The forager bee may evaluate the 

profitability of every partial route during a foraging trip. If the profitability of this partial 

route is not qualified, the forager bee will decide whether to terminate the foraging trip 

and return to the hive. In Backward Pass, upon a return to a hive from a food source, the 

forager bee must release the food (scheduling solution), and share the food source 

information with other forager bees (role change). 



  

The termination criterion of a bee algorithm can be set as “fixed problem-solving 

time”, “fixed rounds”, or “fixed threshold value” (a value that is deemed as sufficiently 

good by the decision-maker). This paper adopts “fixed rounds” as the termination 

criterion. The details of forward pass and backward pass are described in Section 4.2 and 

Section 4.3. The termination criterion of OSSP can be defined as the fixed problem-

solving time, or the fixed rounds to obtain an acceptable solution. This study employs 

fixed rounds as the termination criterion. 

4.2. The forward pass of BCO 

In OSSP, the foraging route of a forager bee is mapped according to priorities of a 

group of operational orders. In the forward process, if the profitability of the forager 

bee’s foraging route at node op meets the expectations of the bee colony, then the forager 

bee continues forward; however, if profitability does not meet expectations, then the 

forager bee abandons this forage route and returns to the hive. An algorithm of the 

forward pass of BCO is as shown in Fig. 2. 

 

Figure 2 Algorithm for the forward pass of BCO. 
 

According to Fig. 2, before leaving a hive, each forager bee colony first assigns 

roles. Each forager bee �, based on the results of foraging in the last round, decides which 

role to play on this foraging trip. The roles fall into three types: scout, dancer, and 

follower, which are detailed as follows: 

(1) Scout: If forager bee � has never foraged, or the profitability of the foraging 

route it found in the last round is average, its role in this round would be as a scout. The 

computerized scout bee would randomly search for a foraging route. 



  

(2) Dancer: If the profitability of a foraging route found by forager bee � in last 

round is greater than the bee colony’s expectations, its role would be as a dancer in this 

round. The computerized dancer bee will go to the food source, according to the foraging 

route of the last round; until the idle-time in that route is greater than zero, it will then go 

to search for a new foraging route. 

(3) Follower: If the profitability of a foraging route found by forager bee � in the last 

round is smaller than the bee colony’s expectations, its role would be as a follower in this 

round. The computerized follower bee would go to the food source following the dancer 

bee; until the idle-time in the foraging route of the last round is greater than zero, it would 

randomly search for a new foraging route. The follower randomly selects a dancer to 

follow. 

According to the inference of “the smaller the idle-time of a partial solution is, the 

smaller the makespan (Cmax) will be”, this paper presents An Idle-Time Based Filtering 

Algorithm (ITBF), which automatically stops searching a partial solution of insufficient 

profitability, while the scheduler is creating a new scheduling solution. This filtering 

algorithm could be written into pseudo-code, as shown in Figure 3. 

 

Figure 3 An Idle-Time Based Filtering Algorithm (ITBF) 
 

In accordance with Fig. 3, when a forager bee leaves the hive, each node that forager 

bee � passes through in the foraging route directly corresponds to one schedulable 

operation of a schedule. For example, the node op in the foraging route directly 

corresponds to the schedulable operation op in an actual schedule. 



  

While the forager bee advances, if the yield rate at the current node meets the 

expectations of the bee colony, the forager bee will continue to advance. However, if the 

yield rate at the current node cannot meet the expectations of the bee colony, the forager 

bee would abandon its foraging and return directly to the hive. 

θPf  is the yield rate produced by forager bee �, upon arriving at the node. 

colonyPf
 is the yield rate generally accepted, which is produced by the whole forager 

bee colony, upon arriving at the node. 

θC  is the makespan ( maxC ) of forager bee �. 

The new bee colony optimization algorithm developed in this paper takes each 

scheduling operation as a foraging area; during the course of foraging, the idle-time of 

partial scheduling is regarded as reciprocal of profitability, thus, the larger the idle-time is, 

the smaller the profitability is. When the profitability of a partial foraging route of a bee 

is smaller than the average acceptable profitability of the whole bee colony, this 

scheduler would automatically stop searching the foraging route of this bee, while the 

scheduler is creating a new scheduling solution, saving the time-cost of the remaining 

partial solution. 

The paper employs particle swarm optimization [25] to divide the optimum solution 

into individual optimum solutions, and colony optimum solution. This paper separates 

yield rate into individual yield rates, and colony yield rate: 

(1) Individual yield rate = θPf = the yield rate produced by forager bee �, upon 

arriving at the node. 



  

(2) Colony yield rate = colonyPf
= the yield rate generally accepted, which is 

produced by a forager bee, upon arriving at the node. 

θPf  should be calculated by the mathematical axiom 4.2.A, and colonyPf
 by the 

mathematical axiom 4.2.B. 

)4.2.A.....(..........
1
θθ
opI

Pf =  

where 
θ
opI

 is the total idle time produced by forager bee �, upon arriving at node op. 

)4.2.B.....(..........
1

ε×
= best

op
colony I

Pf  

where 
best
opI

 is the total idle time produced by the best forager bee, upon arriving at 

node op. 

The results of the best forager bee represent the whole forager colony’s advance, 

which currently produces the shortest total idle time. � denotes one real number larger 

than zero, which can be set by the user at the decision-maker’s discretion. A larger � 

indicates the lower yield rate generally accepted by the whole forager bee colony, and the 

longest allowable idle time, and longest allowable time for matter solution. 

When forager bee � arrives at node op, the scheduler immediately carries out an 

assessment of the yield rate produced by forager bee � from the start to the present. If the 

yield rate produced by forager bee �, upon arriving at the node, is less than the yield rate 

generally accepted, which is that produced by the whole forager bee colony, and the 

makespan produced by the forager bee � is equal to infinite, then the foraging journey 

would be ended. The behavior of an advancing forager bee is stopped in its search for a 



  

food source upon arrival at the node, when its individual yield rate is less than the 

acceptable colony yield rate. This is the reason why this new bee colony optimization 

algorithm presented in this paper can greatly reduce search operation time. 

4.3. The backward pass of BCO 

When returning, the forager bees returns to the hive, puts down the nectars and 

pollens for the food-storing bees, and then decides and executes the following rules of 

bee classification: 

(1) Changing into a dancer bee: the dancer bees persuade other bees to return to a 

food source through performing dances. To change into a “dancer bee”, the conditions of 

formula 4.3.A1 must be met, in which 
dancerC  is the minimum standard for changing into 

a dancer bee. The makespan consumed by forager bee � must be less than, or equal 

to,
dancerC  in order to change into a dancer bee. 

dancerC  is calculated by formula 4.3.A2, 

in which � is calculated by 4.3.A3. The dancer ratio included in formula 4.3.A3 is the 

parameter value introduced from outside the scheduler. Dancer_ratio controls the 

quantity of dancer bees, and dancer_ratio=50 means that the quantity of the dancer bees 

must account for 50% of the forager bees. 

)14.3.A.....(..........dancerCC ≤θ
 

)24.3.A.....(} C of percentile  the,C, >= C | C { �-thPP �� =∞≠θθθ
 

)34.3.A.....(..........100) * ( = iodancer_rat�  

(2) Changing into follower bees: the follower bees go to a better food source 

following the dancer bees. To change into a “follower bee”, the conditions of the formula 

4.3.B1 must be met, in which 
followerC  is the minimum standard for changing into a 



  

follower bee. The makespan consumed by forager bee � must be less than, or equal to, 

followerC   in order to change into a dancer bee. � value is included in formula 4.3.B2, and 

calculated by formula 4.3.B3, in which the follower ratio is a parameter value introduced 

from outside the scheduler. Follower ratio controls the quantity of follower bees. 

Follower ratio=50 means that the quantity of the follower bees account for 50% of the 

forager bees. 

)14.3.B.....(..........followerCC >θ
 

)24.3.B.....(} C of percentile   the,C, >= C | C { �-thPP =∞≠ γ
θ

γ
θθ

 

)4.3.B3.....(..........100) * ( = atiofollower_rγ  

(3) Changing into scout bees: the scout bees look for food sources in an independent 

and random manner, without calling together other bees or following any dancer bee. All 

forager bees that fail to meet formulas 4.3. A1 and 4.3.B1 would be changed into scout 

bees. 

Whole bee colony optimization algorithm: the returning course could be transformed 

into pseudo codes, as shown in Figure 4. 

 

Figure 4 New bee colony optimization algorithm: returning course 

5. Active Schedule Generation 

Active Schedule Generation (ASG) algorithms may be derived from the definition 

of left-shift adjustment scheduling, by Wiest [20]. Arno Sprecher et al. [21], with respect 

to the Resource-Constrained Project Scheduling Problem (RCPSP), gave a formal 



  

definition to semi-active schedules, active schedules, and non-delay schedules, 

respectively. 

Goncalves et al. [22] argued that the best schedule lies in a set of all active 

schedules. However, such a set is extremely large, and contains schedules with relatively 

large time delays. Therefore, such schedules have poor quality results in solving such 

matters as makespan and Cmax. To lessen solution space, Goncalves et al. turned to the 

P-ASG, whose basic concept lies in the control of permitted time delays of each 

operation. By means of controlling the maximum allowable time delay, the scheduler is 

able to decrease or increase its solution space. 

The mP-ASG algorithm introduced by D. Y. Sha et al. [2, 3] is a modification of the 

original P-ASG [22], called the Modified Parameterized Active Schedule Generation 

(mP-ASG). Such an algorithm can more precisely control the search range of a solution 

space. By using such superior characteristics, the “Bee Foraging Route” is decoded into 

an actual schedule. The mP-ASG published by D. Y. Sha et al. is shown in Figure 5. 

 

Figure 5 The mP-ASG algorithm, developed by D. Y. Sha et. al. 

6. Experimental results 

6.0. Experimental Process 

The computer utilized in this experiment is a Lemel M8066 notebook computer, 

produced by the Synnex Technology International Corporation. 

The central processing unit (CPU) used is Intel® Pentium® M 740(1.73 GHz).  

The operating system used is Microsoft Windows XP, with SP2.  

The program language used is Microsoft Visual Basic 6.0. 



  

According to the paper concerning the application of the ASG series algorithm 

(ASG, P-ASG, mP-ASG), by Goncalves et al. [22] and D. Y. Sha et al. [2, 3], this paper 

summarizes two phases required for an ASG series algorithm, when applied in an actual 

solution of scheduling. 

(1) The precedence of all schedulable operations is determined based on select 

heuristic rules. 

(2) The ASG series algorithm is applied to decode the precedence of schedulable 

operations into an actual schedule (scheduling solution) 

Based on the above-mentioned two phases required for an ASG series algorithm in 

an actual application of a scheduling solution, this paper designs experimental processes, 

through which the efficiency of two algorithms are compared, as shown in Figure 6. 

 

Figure 6 The flowchart of Experimental Process 

 

Algorithm A utilized in this paper is the PSO-mP-ASG, developed by D. Y. Sha et 

al. [2]; Algorithm B is the BCO-mP-ASG developed by this paper. The test questions and 

results applied herein are described in the next section. 

6.1. Test set of experiments 

The test questions are the tai_20 × 20_* OSSP test set presented by Taillard [23]. 

The test set provides two groups of experimental parameters, i.e. “processing time” and 

“machine configuration”, each of which is composed of a 20x20 numerical matrix. For 

OSSP, question complexity reaches 400! 

6.2. Test of experimental fairness 



  

The computer utilized in this experiment is a Lemel M8066 notebook computer, 

produced by the Synnex Technology International Corporation.  

The central processing unit (CPU) used is Intel® Pentium® M 740(1.73 GHz).  

The operating system used is Microsoft Windows XP, with SP2.  

The program language used is Microsoft Visual Basic 6.0. 

To strengthen experimental fairness, this experiment employs the same program 

language, and four tests are conducted on the same hardware platform, in order to 

determine: (1) whether there is a proportional relationship between PSO-mP-ASG and 

BCO-mP-ASG, with no ITBF, in terms of the number of solutions achieved, within a 

specified time; (2) whether there is a proportional relationship between PSO-mP-ASG 

and BCO-mP-ASG, with no ITBF, in terms of the difference in optima achieved, within 

the same quantity of colony individuals, and the same execution time; (3) whether there 

is a proportional relationship between PSO-mP-ASG and BCO-mP-ASG, with no ITBF, 

in terms of test results of the same specified quantity of colony individuals, and the same 

execution time; (4) What effect may be exerted upon the number of solutions achieved by 

BCO-mP-ASG, to which ITBF is added, within a specified time. The test results are 

shown in Figure 7, Figure 8, Figure 9, and Figure 10, respectively. 

 

Figure 7 Number of solutions achieved by PSO-mP-ASG within the specified time 

 

Figure 8 Number of solutions achieved by BCO-mP-ASG, with no ITBF, within the 

specified time 

 



  

The test results, as shown in Figure 7 and Figure 8, reveal that the number of 

solutions achieved by PSO-mP-ASG is fully identical with that by BCO-mP-ASG, with 

no ITBF. 

 

Figure 9 Test results of PSO-mP-ASG and BCO-mP-ASG with no ITBF 

 

The test results shown in Figure 9 reveal that no great gap occurs among all 

experimental results of PSO-mP-ASG and BCO-mP-ASG, with no ITBF, with the same 

number of colony individuals and the same execution time. For example, the average gap 

of Best solutions achieved by PSO-mP-ASG is 1.32%; the average gap of Best solutions 

achieved by BCO-mP-ASG, with no ITBF, is 1.35%; the average gap of Average 

solutions achieved by PSO-mP-ASG is 10.60%; the average gap of Average solutions 

achieved by BCO-mP-ASG, with no ITBF, is 10.02%; the average t (time for achieving 

optima) required for PSO-mP-ASG is 11.67s, while the average t (time for achieving 

optima) required for BCO-mP-ASG, with no ITBF, is 11.72s. 

Experimental parameters used in Figure 9 are as follows: 

(1) Parameters for the PSO-mP-ASG 

The particles = 30, run time duration = 30 seconds. 

The inertia weight w was decreased linearly from wmax to wmin during a run.  

The parameter wmax= 0.9, wmin=0.3. The initial value of w = 0.9. 

The parameter c1=0.2, c2=0.8. 

The parameter delayweight was increased linearly from 0 to 1 during a run. 

The initial value of delayweight = 0.01. 



  

No mutation operator was implemented. 

(2) Parameters for the BCO-mP-ASG with no ITBF 

The bees = 30, run time duration = 30 seconds 

The dancer ratio = 0.3.  

The follower ratio = 0.7. 

The imitation ratio = 0.6. 

The parameter ε  = 11.88. 

The parameter delayweight was increased linearly from 0 to 1 during a run. 

The initial value of delayweight = 0.01. 

6.2.4. Effect on number of solutions achieved with ITBF added within the specified time 

To understand what effect may be exerted upon the number of solutions achieved by 

BCO-mP-ASG, to which ITBF is added within a specified time, one test is conducted to 

observe the difference between the number of solutions achieved by BCO-mP-ASG with 

BCO-mP-ASG, and that of BCO-mP-ASG with no BCO-mP-ASG. The test method is as 

follows: BCO-mP-ASG, with ITBF, is utilized to continue solving each test question of 

tai_20 x 20_* series within the specified time, and when one integral scheduling solution 

is obtained, add one to the counter. 

 

Figure 10 Effect on number of solutions achieved with ITBF added to BCO-mP-ASG 

within a specified time 

 

Figure 10 shows that with respect to the test question tai_20 x 20_1, the number of 

solutions achieved by BCO-mP-ASG is increased from 90 to 450 within 10s after ITBF is 



  

added, of which S&B is 437, and DCS is 13. S&B refers to the times of forager bees 

returning to the hive from showing the way to a foraging location, and DCS means the 

times of the forager bees returning to the hive after completing their foraging journey. 

6.3. Test and comparison of BCO-mP-ASG with ITBF and PSO-mP-ASG 

6.3.1. Parameters for the PSO defined by D. Y. Sha et. al. 

The particles = 30. 

The inertia weight w was decreased linearly from wmax to wmin during a run.  

The parameter wmax= 0.9, wmin=0.3. The initial value of w = 0.9. 

The parameter c1=0.2, c2=0.8. 

The parameter delayweight was increased linearly from 0 to 1 during a run. 

The initial value of delayweight = 0.01. 

No mutation operator was implemented. 

Run until the average gap of Best solutions below 1%. 

6.3.2. Parameters for the BCO defined by Y.M. Huang and J.C. Lin 

The bees = 30. 

The dancer ratio = 0.3.  

The follower ratio = 0.7. 

The imitation ratio = 0.6. 

The parameter ε  = 11.88. 

The parameter delayweight was increased linearly from 0 to 1 during a run. 

The initial value of delayweight = 0.01. 

Run until the average gap of Best solutions below 1%. 

6.3.3. Test results and Tables 



  

 

Figure 11 The test results of PSO-mP-ASG and BCO-mP-ASG with ITBF 

 

Figure 11 shows the experimental results of PSO-mP-ASG and BCO-mP-ASG with 

ITBF solving the test questions of tai_20 x 20_* series. In this figure, BKS (Best-Known 

Solution) is a known optimum solution, Best is the optimum solution, T is the total time 

to achieve all solutions, t is the time to achieve the optimum solution, Average (average 

solution) is the average value of the sum of all solutions, Average time is the average 

time consumed, which is preferably small, and Average gap is the gap of average 

solutions, in which gap (gap value) the equal to (Cmax – BKS) / BKS (the smaller gap of 

one solution indicates that the solution has a smaller gap with BKS, and thus, it is a better 

quality solution). 

The average gap of Best solution achieved by PSO-mP-ASG solving the test 

question of tai_20 x 20_* series is 0.5%, while that of the BCO-mP-ASG solution of the 

same question is 0.65; the difference between them is only 0.15%. However, the average 

T (time for achieving all solutions) required for PSO-mP-ASG is 52.86s, while that of 

BCO-mP-ASG with ITBF is only 12.04. Furthermore, the average t (time for achieving 

optima) required for PSO-mP-ASG is 29.74, while that of BCO-mP-ASG with ITBF is 

only 5.89. 

Figures 12, 13, 14, and 15 show the differences, through bar charts, between the 

Best-Known solutions, PSO-mP-ASG solutions, and BCO-mP-ASG solutions. 

 

Figure 12 The comparison of Best Cmax 
 



  

The X axle, in Figure 12, represents the number of test questions, where 1 denotes 

the test question tai_20 × 20_1, and 2 denotes the test question tai_20 × 20_2, and 3 

denotes the test question tai_20 × 20_3, etc. The Y axle denotes Best Cmax (optimum 

value of makespan). The left bar in the bar chart denotes Best-Known Solutions, the 

middle bar denotes the experimental results produced by PSO-mP-ASG, and the right bar 

denotes the experimental results produced by BCO-mP-ASG. The figure shows that Best 

Cmax of both BCO-mP-ASG and PSO-mP-ASG very closely approach the Best-Known 

Solution. 

 

Figure 13 The comparison of Average Cmax 
 

The X axle in Figure 13 represents the number of test questions, where 1 denotes the 

test question tai_20 × 20_1, and 2 the test question tai_20 × 20_2, and 3 the test question 

tai_20 × 20_3, etc. The Y axle represents Average Cmax (average value of makespan). 

The left bar in the bar chart denotes the experimental results produced by PSO-mP-ASG, 

and the right bar denotes the experimental results produced by BCO-mP-ASG. The figure 

shows that the Average Cmax of BCO-mP-ASG is slightly closer to the Best-Known 

Solution, than that of PSO-mP-ASG. 

 

Figure 14 The comparison of T (Time cost for all solutions) 
 

The X axle in Figure 14 represents the number of test questions, where 1 denotes the 

test question tai_20 × 20_1, and 2 the test question tai_20 × 20_2, and 3 the test question 

tai_20 × 20_3, etc. The Y axle represents T (time for achieving all solutions). The left bar 



  

in the bar chart denotes the experimental results produced by PSO-mP-ASG, and the right 

bar denotes the experimental results produced by BCO-mP-ASG. The figure shows that T 

time required by BCO-mP-ASG is obviously less than that required by PSO-mP-ASG. 

 

Figure 15 The comparison of t (Time cost for best solution) 
 

The X axle in Figure 15 represents the number of test questions, where 1 denotes the 

test question tai_20 × 20_1, and 2 the test question tai_20 × 20_2, and 3 the test question 

tai_20 × 20_3, etc. The Y axle represents t (time for achieving optima). The left bar in the 

bar chart denotes the experimental results produced by PSO-mP-ASG, and the right bar 

denotes the experimental results produced by BCO-mP-ASG. The figure shows that t 

time required by BCO-mP-ASG is obviously less than that required by PSO-mP-ASG. 

7. Conclusions  

This paper proposes a novel bee colony optimization algorithm for solving OSSP, 

which could largely decrease the T (the summation of all time-costs for obtaining all 

solutions) and t (the time-cost for obtaining the optima) times of the algorithm. 

The concrete details of heuristic rules of solving combinatorial optimization 

problems would vary with different problems. In order to shorten the time-cost for 

obtaining a possible bad solution, an idle-time-based filtering scheme is presented based 

on the processes of the Forward Pass of bee's foraging behaviors. The scheme takes each 

scheduling operation as a foraging area; and in the course of bee colony foraging, the 

idle-time of partial scheduling is regarded as the reciprocal of profitability, therefore, the 

larger the idle-time is, the smaller the profitability is. When the profitability of a partial 

foraging route of a bee is smaller than the average profitability accepted by the colony, 



  

this scheduler would automatically stop searching the foraging trip of this particular bee, 

while the scheduler continues creating a new scheduling solution, thus, saving time-cost 

for remaining partial solutions. 

Teodorovic and Dusan et al. [1] adopted the operations of abandon, continue, dance, 

and recruitment of the peers in the Backward Pass. In order to highlight the classification 

operations of information sharing and division of work by forager bees in the Backward 

Pass, this paper adjusts the Backward Pass for the roles of classification operations for 

dancer, follower, and scout. This adjustment converts the classification of abandon 

routes, dance, and recruitment the peers into the classification of follower or dancer, and 

turns the operation of continuing in the classification of scout. This classification makes 

clear the roles played by different forager bees. 

For the BCO heuristic rules, future study could attempt to develop a new 

“profitability equation”, and new methods to “follow” the dancer bee. 

For OSSP, future study can use a “different decoder” to decode the priorities of 

various heuristic rules into a schedule. 

The new BCO framework developed by this paper provides a novel method of 

viewing computerized bee colony heuristic rules. Future researchers could use or add this 

new BCO framework into their fields of application for solving other scheduling 

problems or combinatorial optimization problems. 
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