
Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
A novel bee swarm optimization algorithm for numerical
function optimization

Reza Akbari *, Alireza Mohammadi, Koorush Ziarati
Department of Computer Science and Engineering, Shiraz University, Shiraz, Iran
a r t i c l e i n f o

Article history:
Received 12 June 2009
Received in revised form 2 November 2009
Accepted 2 November 2009
Available online 10 November 2009

Keywords:
Bee swarm optimization
Numerical function optimization
Time-varying weights
Repulsion factor
1007-5704/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.cnsns.2009.11.003

* Corresponding author. Tel.: +98 9171003767.
E-mail addresses: rakbari@cse.shirazu.ac.ir (R. Ak
a b s t r a c t

The optimization algorithms which are inspired from intelligent behavior of honey bees are
among the most recently introduced population based techniques. In this paper, a novel
algorithm called bee swarm optimization, or BSO, and its two extensions for improving
its performance are presented. The BSO is a population based optimization technique
which is inspired from foraging behavior of honey bees. The proposed approach provides
different patterns which are used by the bees to adjust their flying trajectories. As the first
extension, the BSO algorithm introduces different approaches such as repulsion factor and
penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently
the balance between exploration and exploitation, time-varying weights (TVW) are intro-
duced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO–
RP and BSO–RPTVW) are compared with existing algorithms which are based on intelligent
behavior of honey bees, on a set of well known numerical test functions. The experimental
results show that the BSO algorithms are effective and robust; produce excellent results,
and outperform other algorithms investigated in this consideration.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Optimization has been an active area of research for several decades. As many real-world optimization problems become
increasingly complex, better optimization algorithms are always needed. In optimization problems, the objective is to find
the minimum or maximum of the function under consideration. So, unconstrained optimization problems can be formulated
as a D-dimensional minimization or maximization problem:
minðor maxÞ f ð~xÞ; ~x ¼ ðx1; x2; . . . ; xDÞ ð1Þ
where D is the number of the parameters to be optimized. There are many population based optimization techniques avail-
able for unconstrained numerical optimization. Genetic algorithms (GA), Particle Swarm Optimization (PSO), and Bee Algo-
rithms (BA) are among the most popular optimization algorithms which employ a population of individuals to solve the
problem on the hand. The success of a population based method depends on its ability to establish proper balance between
exploration and exploitation. A poor balance between exploration and exploitation may result a weak optimization method
which may suffer from premature convergence, trapping in a local optima, and stagnation.

GA is the most popular evolutionary algorithms, in which a population of individuals evolves according to a set of rules
such as selection, crossover and mutation [1]. In such algorithm, exploitation is obtained through selection, where individ-
. All rights reserved.

bari), a_mohammadi@cse.shirazu.ac.ir (A. Mohammadi), ziarati@shirazu.ac.ir (K. Ziarati).

http://dx.doi.org/10.1016/j.cnsns.2009.11.003
mailto:rakbari@cse.shirazu.ac.ir
mailto:a_mohammadi@cse.shirazu.ac.ir
mailto:ziarati@shirazu.ac.ir
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3143
uals move toward regions with higher fitness. Also, the exploration is provided by perturbing individuals using crossover and
mutation operators [2].

PSO is a swarm intelligence technique developed by Eberhart and Kennedy [3], inspired by the social behavior of bird
flocking and fish schooling. PSO has been shown successfully optimizes a wide range of continuous functions. The search
for an optimum in PSO is an iterative process that is based on random decisions. In PSOs, exploitation is obtained through
selecting the particle with best fitness as gbest and moving toward that particle. Each particle memorizes its previous best
position, represented as pbest to explore the space between its previous best position and global best position. Although, PSO
provides powerful methods for optimization problems, it suffers from different problems such as premature convergence
and stagnation. Different approaches such as inertia weight, and time-varying coefficients were proposed to alleviate these
problems [4–7].

The algorithms which are inspired from intelligent behaviors of honey bees constitute third class of population based
methods. These algorithms have been developed and applied to different engineering fields [8–14]. However, a few algo-
rithms based on this idea were presented in literature for numerical optimization. A numerical optimization algorithm based
on foraging behavior of honey bees, called Artificial Bee Colony (or ABC) was proposed by Karaboga in [15]. In ABC, the em-
ployer bees try to find food source and advertise them. The onlooker bees follow their interesting employer, and the scout
bee fly spontaneously to find better food sources. A virtual bee algorithm (or VBA) developed by Yang in [16]. The VBA aimed
to optimize the numerical function in 2 dimensions using a swarm of virtual bees which move randomly in the phase space
and interact by finding food sources corresponding to the encoded values of the function. The intensity of interactions be-
tween these bees results the solution for the optimization problem. Sundareswaran et al. proposed a different approach
based on natural behavior of honey bees in nectar collection in which the randomly generated worker bees are forced to
move in the direction of the elite bee. The elite bee represents the best possible solution [17]. The bees move based on a
probabilistic approach. The step distance of flight of bees is made as a variable parameter in the algorithm. The experiments
showed that the developed algorithms based on intelligent behavior of honey bees are successful in solving numerical opti-
mization problems and outperform other population based algorithm such as PSO, GA, and ACO [15–19].

Similar to other swarm based optimization algorithms, it is important to establish a proper balance between exploration
and exploitation in bee swarm optimization approaches. In a bee swarm, different behaviors of the bees provide this possi-
bility to establish powerful balancing mechanism between exploration and exploitation. This property provides the oppor-
tunity to design more efficient algorithms in comparison with other population based algorithms such as PSO and GA.

It seems that exploration of the search space is achieved through two different ways. The first way is provided by scout
bees. Spontaneous searching of the scout bees navigate them to explore new regions beyond that defined by employer or
onlooker bees. Patterns by which the foragers and onlookers control their movements may provide good exploration ap-
proach. For example experienced foragers can use historical information about location and quality of food source to adjust
their movement patterns in the search space. This approach alleviates the hard constriction on the search trajectory of a for-
ager bee and extends the search trajectory to a search area. Usually, in bee swarms, an exploitation mechanism is based on
two different behaviors. In first way, a honey bee advertise its’ food source by dancing in dance area. This behavior encour-
ages other bees to select a dancer bee and follow her. In the second way, a forager try to forage its’ food source without
advertising it.

This work presents a novel method based on foraging behaviors of honey bees. The proposed approach uses different
types of bees to optimize numerical functions. Each type of bees employs a distinct moving pattern. The scout bees fly ran-
domly over their nearby regions. An onlooker bee selects an experienced forager bee as its interesting elite and moves to-
ward that bee. An experienced forager bee memorizes the information of the best food source which is found so far by it.
It selects the best experienced forager bee as the elite bee, and adjusts its position based on the cognitive and social knowl-
edge. The BSO algorithm utilizes a set of approaches to mitigate the stagnation and premature convergence problems. These
approaches include repulsion factor, penalizing fitness, random walking, time-varying weights, and alleviating the hard con-
striction on the moving direction of the bees.

The paper is organized as follows. Section 2 introduces the intelligent behaviors of honey bees. Description of the pro-
posed BSO algorithm along with approaches for mitigating of stagnation and premature convergence are presented in Sec-
tion 3. Section 4 reports numerical test functions, experimental settings of the algorithms, and experimental analysis on the
proposed approach in comparison with other algorithms. Finally, Section 5 concludes this work.
2. Intelligent behaviors of honey bees

A swarm of honey bees capable to perform complex tasks using relatively simple rules of individual bees’ behavior. Col-
lecting, processing, and advertising of nectars are examples of intelligent behaviors of honey bees [12]. One of the main dif-
ferences of the bee swarm in comparison with other population based methods is that it contains different types of bees such
as scouts, onlookers, foragers, etc. Therefore, a bee swarm can provide different types of patterns which are used by the bees
to adjust their flying trajectories. Therefore, we expect that this capability result effective and robust algorithms to solve
highly complex problems.

A bee may have one of the following types: (employed/unemployed) forager, scout, onlooker, recruit, and experienced
forager [10–13]. The type of a bee depends on the action which is performed and the level of information which may be used

3144 R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155
by it. A potential forager will start as unemployed forager. This type of bee has no knowledge about the environment, and the
position of food sources in the environment. There are two types of unemployed foragers with different flying patterns, so-
called scout and onlooker bees. Scout bees fly spontaneously around the hive and search for new food sources without any
knowledge about the environment. Usually, small part of a swarm is selected as scout bees. It is possible to adjust the num-
ber of scout bees adaptively according to the gathered information from the environment. The onlooker bees wait in the nest,
process the information shared by employed foragers, and select their interesting dancers. After that, the unemployed for-
ager can be a recruit and can start searching by using the knowledge from the selected dancer bee.

The employed forager bees provide information about the environment and the currently discovered food sources for the
onlooker bees and advertise them on the dance floor. The provided information by employed foragers is shared with a prob-
ability proportional to the profitability of the food source. So, the onlooker bees can employ a probabilistic approach to
choose an employed forager between numerous dancers and adjust its search trajectory toward the most profitable source.
The onlooker bees choose more profitable food sources with a greater probability, since more profitable sources provide
more valuable information. Hence, more profitable food sources attract more recruit bees.

After choosing the food source by the recruit bee, she flies to finds the food source. After finding the food source, the re-
cruit bee switches its type to the employed forager. The employed forager bee memorizes the location of food source and
then starts exploiting it. After the foraging bee takes a part of nectar from the food source, it returns to the hive and saves
the nectar to a food area in the hive. After saving the food, the bee enters to the decision making process and select one of the
following three options (type of the bee at the next time depends on its selection) [10,11]:

– If the nectar amount decreased to a low level or exhausted, she abandons the food source (the forager bee becomes to
unemployed forager).

– If there are still sufficient amount of nectar in the food source, it can continue to forage without recruiting the nestmates
(the bee remains its type as forager).

– It can perform waggle dance to inform the nestmates about the same food source. After that it recruits the nestmates
before she returns to the food source (the bee remains its type as forager).

A bee may select one of these options to switch its type based on different information such as quality of food source, its
distance from the hive, its direction, and ease of extracting the food source. For numerical optimization, the food source is
considered as a point in the search space, and its’ quality corresponds to the fitness of the point [15].

The forager bees can memorize their historical information about the location and quality of food sources and use this
information to make decisions at the next times intelligently. The bees which have this capability are called experienced for-
agers [10]. Using the historical information results a bee with more intelligence than forager bees. An experienced forager
bee may obtain this intelligence using the information from waggle dance and use this information to select the next oper-
ation. For example, the bee may try to explore a food source if there are some other bees confirm the quality of that food
source; she may adjust its flying trajectory based on information of the previously found food source and the new food
sources, or she can be scout bee to search new areas if the fitness of the food source decreases rapidly.
3. Bee swarm optimization algorithm

In this section we present the proposed bee swarm optimization algorithm (BSO). The BSO algorithm contains three types
of bees: experienced forager, onlooker, and scout bees which fly in a D-dimensional search space S � RD to find the optimum
solution. Assume that we have a set of bees in a swarm which represented as b. As shown in Fig. 1, these bees are partitioned
as b ¼ # [j [n based on their fitness, where n;j, and #, respectively represent the sets of experienced forager, onlooker, and
scout bees. In BSO algorithm, the fitness of a bee represents the quality of food source which is found by that bee so far. In
this work, the percentage of scout, forager and experienced forager are determined manually. We use a small part of bees as
scouts. The other part of bees is divided equally to onlooker and experienced forager bees (i.e. nðjÞ ¼ nðnÞ). Each bee i is asso-
ciated with a position vector~xðb; iÞ ¼ ðxðb; i1Þ; xðb; i2Þ; . . . ; xðb; iDÞÞ, which represents a feasible solution for an optimal prob-
lem in the D-dimensional search space S. In BSO algorithm, each position vector ~x b; ið Þ represents a food source with an
associated quality which is represented as fitð~xðb; iÞÞ.

The pseudocode of the BSO algorithm is presented in Fig. 2. The BSO employs stochastic process to find optimal solution.
Initially, number of the bees, nðbÞ, percentage of experienced forager, onlooker, and scout bees, and maximum number of
iterations, Itermax, are determined. Also, other parameters are initialized. After that, at the start time of the algorithm all
the bees are positioned randomly in the search space:
~x0ðb; iÞ ¼ Initði; SÞ 8i 2 b ð2Þ
where Initði; SÞ is the initialization function which associates a random position to the bee i in the search space S. After ini-
tialization, the bees of the swarm employ the following process to adjust their positions throughout iterations until the ter-
mination condition is met. At each iteration of the algorithm, the fitness of each bee is calculated and they are sorted based
on their fitness values using the SortðÞ function. Thereafter, each of the bees is classified as experienced forager, onlooker or
scout. A predefined percentage of the bees which have the worst fitness are selected as scouts, while the remaining bees are

Fig. 2. Pseudocode of bee swarm optimization algorithm

Fig. 1. The structure of the bee swarm and the flying patterns of the bees: the scout bees perform random walk around their current positions. An onlooker
bee selects an experienced forager probabilistically as its interesting elite bee and follows it. The experienced forager bees memorize their historical
information, select the global best bee as the elite bee and update their position according social and cognitive knowledge.

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3145

3146 R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155
divided equally as experienced foragers and onlookers. The first half of these bees which have better fitness is selected as
experienced foragers and the other half are selected as employers. Classification of bees into the three categories provides
a swarm with highly dynamic behavior which can use different flying patterns. The flying patterns are presented in
Fig. 1. The experienced forager, onlooker, and scout bees use these flying patterns to probabilistically adjust their trajectories
in the search space for finding new food sources with better nectars.

In BSO algorithm, the food sources with poor qualities are abandoned and replaced by the new food sources which are
found by the scout bees. The scout bees employ a random flying pattern to discover new food source and replacing the aban-
doned one with the new food source. A scout bee walks randomly in the search space and updates the position of the food
source if the new food source has better quality than previously found food source by that bee. The scout bee walks ran-
domly in a region with radius s. The search region is centered at current position of the scout bee. So the next position of
a scout bee is updated using the following equation:
~xnewð#; iÞ ¼~xoldð#; iÞ þ Rwðs;~xoldð#; iÞÞ ð3Þ
where~xoldð#; iÞ represents the position of the abandoned food source which is replaced by the new food source positioned at
~xnewð#; iÞ, and Rw is a random walk function that depends on the current position of the scout bee and the radius search s. The
initial value of radius s is a percentage of jXmax � Xminj, where Xmax and Xmin, respectively represent the maximum and min-
imum values of the search space along a dimension. The value of s is linearly decreased from smax to smin throughout iter-
ations. The scout bees adjust their walking based on the s. The large value of s at the first iterations enables scout bees
walking with large step size to explore wide regions in the search space. While the small values of s in the last iterations
encourage the scout bees to walk more precisely within small regions.

The success of an optimization algorithm highly depends on the balancing mechanism between exploration and exploi-
tation. As mentioned in Section 2, poor balance between exploitation and exploration results a weak algorithm. In previous
work on bee algorithms such as [15–19], there exists a hard constriction on the trajectories of bees (e.g. the forager bees
gravitates only to the elite bee). This may result the premature convergence. To cope with this problem, BSO employs the
experienced foragers that use their historical information about the food sources and their qualities. The information which
is provided for an experienced forager bee is based on its own experience (or cognitive knowledge) and the knowledge of
other experienced forager bees in the swarm. The cognitive knowledge is provided by experienced foragers. These bees
memorize the decisions that they have made so far and the success of their decisions. An experienced forager i remembers
the position of the best food source, denoted as ~bðn; iÞ ¼ ðbðn; i1Þ; bðn; i2Þ; . . . ; bðn; iDÞÞ, and its quality which is found by that
bee at previous times. The position of the best food source is replaced by the position of the new food source if it has better
fitness (i.e.~bðn; iÞ ¼~xðn; iÞ if ðfitð~xðn; iÞÞ > fitð~bðn; iÞÞÞ). The social knowledge is provided by sharing the nectar information of
the food sources which are found by experienced forager bees. All the experienced forager bees select the best food source
which is found by the elite bee as their interesting area in the search space. The position of the best food source is repre-
sented as the vector~eðn; �Þ ¼ ðeðn; �1Þ; eðn; �2Þ; . . . ; eðn; �DÞÞ. The elite bee is selected as an experienced forager with the high-
est fitness (i.e. fit�en; ð�Þ > fitð~bðn; iÞÞ 8i 2 n). Since the relative importance of cognitive and social knowledge can vary from
one cycle to another, random parameters are associated to each component of position update equation. So, the position
of an experienced forager bee i 2 n is updated using the following equation:
~xnewðn; iÞ ¼~xoldðn; iÞ þxbrbð~bðn; iÞ �~xoldðn; iÞÞ þxereð~eðn; �Þ �~xoldðn; iÞÞ ð4Þ
where rb and re are random variables of uniform distribution in range of [0, 1] which model the stochasticity of the flying
pattern, the parameters xb and xe, respectively control the importance of the best food source ever found by the ith bee
and the best food source which is found by elite bee, and~xnewðn; iÞ and~xoldðn; iÞ, respectively represents the position vectors
of the new and old food sources which are found by the experienced forager i 2 n. The second component in the right side of
the position update equation is the cognitive knowledge which represents that an experienced forager is attracted towards
the best position ever found by that bee. The third component is the social knowledge which represents that an experienced
forager is attracted towards the best position~eðn; �Þ which is found by the interesting elite bee. The aforementioned flying
pattern extends the movement trajectory of an experienced forager bee from a line to an area as shown in Fig. 1, and im-
proves their searching abilities.

An onlooker bee uses the social knowledge provided by the experienced forager bees to adjust its moving trajectory at the
next time. At each cycle of the algorithm, the nectar information about food sources and their positions (social knowledge)
which are provided by the experienced forager bees are shared in the dance area. After that, an onlooker bee evaluates the
provided nectar information, employs a probabilistic approach to choose one of the food sources and follows the experienced
forager bee which found the selected food source. In other word, an onlooker bee i selects an experienced forager j from set n
as its own interesting elite bee, denoted as~eðn; iÞ ¼ ðeðn; i1Þ; eðn; i2Þ; . . . ; eðn; iDÞÞ, with probability pj. The probability pj is de-
fined as a relative fitness of the selected experienced forager j in the set n:
pj ¼
fitð~xðn; jÞÞPnðnÞ

c¼1fitð~xðn; cÞÞ
ð5Þ
where fitð~xðn; iÞÞ is the fitness value of the food source which is found by the experienced forager bee j which is proportional
to the quality of food source, and nðnÞ is the number of experienced forager bees. The roulette wheel approach is used by

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3147
onlooker bees for selecting their interesting elite bees. In this approach, as the quality of a food source is increased, the prob-
ability of its selection is increased, too. The flying trajectory of an onlooker bee i is controlled using the following equation:
Fig. 3.
forager
~xnewðj; iÞ ¼~xoldðj; iÞ þxereð~eðn; iÞ �~xoldðj; iÞÞ ð6Þ
where~eðn; iÞ is the position vector of the interesting elite bee for onlooker bee i 2 j which is selected using (5),~xoldðj; iÞ and
~xnewðj; iÞ, respectively represents the position of the old food source and the new one which are selected by the onlooker bee
i, and were probabilistically controls the attraction of the onlooker bee towards its interesting food source area.

The BSO algorithm provides a swarm of bees with different flying patterns. This heterogeneity results an effective pop-
ulation based algorithm for optimizing numerical functions. The random pattern is used by the scout bees. The BSO algo-
rithm employs the scout bees to control diversity and stochasticity of the behaviors of the bees in the swarm. Usually,
increasing diversity of population is used as a way to mitigate stagnation problem. In BSO algorithm, diversity of bee swarm
is effectively controlled by adjusting the percentage of scout bees. Employing scout bees in an efficient way may produce
valuable results. Re-initialization of scout bees is a one way which is performed to maintain diversity of population [19].
Re-initialization is a good choice in first iterations of the algorithm. In the last iterations, the algorithm tends to converge
to optimum position, in such case, stagnation may occur and it seems that re-initialization is not useful. The BSO algorithm
encourages the scout bees to fly randomly over the local areas to achieve better positions. The proposed approach perma-
nently encourages the population to exit from stagnation state by exploring the nearby regions using scout bees. This ap-
proach provides excellent result in cases when the gradient does not point toward optimum solution or multiple local
optima exist in direction of global optimum solution. The probabilistic pattern is used by the onlooker bees. The onlooker
bees utilize the social knowledge about the food sources and their positions and probabilistically select one of them. This
pattern encourages the swarm to control efficiently the exploration and convergence towards global optimum. Usually, pre-
mature convergence and stagnation may occur due to hard constriction on the movement trajectories of the individuals of a
Distribution of different types of bees on the two dimension search space. Triangle, circles and squares, respectively represent scout, experienced
and onlooker bees.

3148 R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155
population. The third flying pattern which is used by experienced forager bees alleviates these problems. In our method,
experienced foragers memorize the information of the previously found food sources and utilize this information to improve
the diversity of the algorithm.

As a convenient observation, the convergence behavior of the BSO algorithm is presented. The convergence of BSO algo-
rithm for a group of n = 11 bees (5 experienced foragers, 5 onlookers, and 1 scout) for two dimensional Sphere function is
shown in Fig. 3. Fig. 3(a)–(d) presents the distribution of bees with different roles at 5th, 10th, 15th, and 20th iterations.
The circles, squares, and triangle signs, respectively represent experienced forager, onlooker, and scout bees. As described
before, and shown in this figure we can see that the distribution of bees in the first iterations depicts that BSO algorithm
prefer exploration, while shrinking bees in last iterations represents that BSO algorithm tends to exploit around local optima.
This process is occurred due to stochastic behaviors of bees which modify topology of the swarm constantly. At each cycle of
the algorithm, the worst bee is selected as scout bee. The experienced foragers and onlookers are selected based on their
fitness. So, the onlooker and scout bees are placed at the border of the swarm while the experienced forager bees are placed
inside the swarm (the dashed circle partition the swarm into the experienced forager and onlooker bees). The experienced
forager bees select the best bee as their interesting elite bee, and onlooker bees stochastically select their interesting elites
from the experienced forager bees which are placed at the interior region of the swarm. This process provides powerful way
to maintain balance between exploration and exploitation. The onlooker and scout bee control the global search while the
experienced forager bee maintain the convergence towards the global optimum.

3.1. Approaches to mitigate stagnation

Stagnation and premature convergence are the major weaknesses of the population based algorithms. As mentioned be-
fore, the flying patterns in BSO algorithm control diversity of the swarm and provide an effective way to balance between
exploration and exploitation. This approach alleviates the premature convergence problem. An extension of the BSO algo-
rithm which aims to alleviate stagnation problem and improve its performance is suggested in this section. The stagnation
occurs when the algorithm reaches its convergence in which the stagnant individuals of the population choose the same po-
sition and the population traps to local optima. We propose the following approaches (repulsion factor and penalizing fit-
ness) aiming to alleviate stagnation to improve the performance of the BSO algorithm in terms of minimizing numerical
functions. We call the BSO algorithm with these extensions as BSO–RP.

Repulsion factor: The concept of repulsion technique was first introduced in PSO methods [20–22]. As stated by Eberhart
[23], ‘‘the repulsion technique adds the ability to guarantee that all individuals of a population will not move toward the best
solution which is found so far. Therefore, an algorithm with repulsion technique can have the ability to avoid already found
solutions and, therefore, to have more chance to find new position of search space with better fitness”. The repulsion tech-
nique provides this ability by increasing diversity of the population. To increase diversity, a repulsion technique encourages a
part of individuals to move in opposite directions of their elites.

In bee colony algorithms, the onlooker bees move according to the past experience of forager bees. In this approach the
new population inherits the experience of the past population and the individuals of population move toward the food
sources which are found by forager bees according to their fitness. This procedure causes that the population ignores a part
of search space that is behind of forager bees and may containing better solutions. So, the population may spend more time
to explore this part of search space.

In order to alleviate this problem and enhance the searching ability of the bees in BSO–RP, we suggest a parameter called
repulsion factor. The repulsion factor, represented as sign rð Þ, encourage a bee to modify its search direction and move toward
a region which may ignore by the population. Based on these considerations, the position update equations for onlooker and
experienced foragers are modified as follows:
~xnewðj; iÞ ¼~xoldðj; iÞ þ signðrÞfxereðeðn; iÞ �~xoldðj; iÞÞg ð7Þ

~xnewðn; iÞ ¼~xoldðn; iÞ þ signðrÞfxbrbð~bðn; iÞ �~xoldðn; iÞÞ þxereð~eðn; �Þ �~xoldðn; iÞÞg ð8Þ
where signðrÞ is defined as:
signðrÞ ¼
1 if ðr 6 Prf Þ
�1 if ðr > Prf Þ

�
ð9Þ
where r is a random parameter which is chosen uniformly from the interval [0, 1], and Prf is a predefined probability which
controls the rate of repulsion in the swarm. The repulsion factor maintains the diversity of the population by means of Prf

parameter. As the value of Prf increases the level of diversity in population decreases. As a consequence, this approach suc-
cessfully extends the search range of the population.

Penalizing fitness: To further mitigate the stagnation problem we use a parameter called penalty. As stated by Parsapolous
[24], the penalty parameter is used to escape from local optima. The penalty is assigned to the fitness of a solution. In BSO
algorithm, the best solutions are maintained by experienced forager bees. At stagnation time, usually, a part of experienced
forager bees trapped in local optima and other bees stop moving once they catch up with their interesting experienced for-
ager bees. Therefore, we can use penalty parameter for the stagnant experienced forager bees to escape them from local op-

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3149
tima. Penalty is a function of solution age. Solution age is determined as a number of iterations in which the solution is not
changed. The fitness of a stagnant bee i is decreased using the following equation:
fitð~xðb; iÞÞ ¼ qðaiÞ � fitð~xðb; iÞÞ ð10Þ
where qðaiÞ represents the penalty function, and ai is the age of the bee i. The penalty of a bee increases as its age increases.
The penalty decreases the fitness of a bee which is trapped in a local optima, and encourages that bee to escape form its’
position and gravitate toward other bees.
3.2. Time-varying weights

Another concept ‘‘time-varying weights” (TVW) is introduced here to further improve the performance of BSO algorithm.
During the first stages of a swarm optimization method we prefer that individuals of the swarm wander through the entire
search space without convergence toward local optima, while during the last stages, it is desirable to improve the moving
patterns of individuals to enhance convergence toward the optimum solution. The optimization algorithms based on bee col-
onies provide more flexibility than other population based algorithms to control the wandering and converging mechanism
respectively in the first and the last iterations. In one hand, the bee algorithms use scout bees which wander through entire
search space throughout iteration. In other hand, the onlooker bees stochastically select the forager to follow them. This pro-
cess provides relatively good exploration through search space. However, a drawback of the bee algorithm is that the onloo-
ker bees are gravitated toward selected foragers rapidly. This may encourage the individuals to cluster around local optima
and premature convergence occurs.

The aforementioned concerns encourage us to propose dynamic weights for the BSO algorithm (BSO–RPTVW). The dy-
namic weights aim to enhance the global search in the first iterations and encourage the bees to converge toward the opti-
mum solution in the last iterations. This approach has been widely used in PSO methods [25,26]. To achieve this goal the
dynamic weights are developed for (3) and (5). The Eqs. (3) and (5) show that, for experienced foragers, the search toward
the optimum solution is guided by the two weight parameters (the cognitive component and the social component) while for
onlookers, the search is guided only by social component. However, it seems that proper control of these two components is
very important to find the optimum solution accurately and efficiently.

It seems that a relatively high value of the xb, in comparison with the weight xe, encourage the individuals to wander the
search space, while a relatively high value of the xe may lead bees to prematurely converge toward a local optimum. Con-
sidering this property, we reduce the importance of the cognitive part and increase the importance of the social part. For this
purpose, the forager bees start with a large cognitive part and small social part at the first iterations and end with a small
cognitive part and a large social part. This allows the bees to move around the search space in the first iterations without
converging toward local optima. Also, the bees are allowed to converge to the best solution in the last iterations. In our mod-
el the weights are dynamically adjusted through iterations. Normally, the value of xb is set to a high value and decreased and
the value of xe is set to a low value and increased linearly through iterations to balance between individual knowledge and
that of the others. The dynamics weights xb and xe are represented as the following formulations:
xb ¼ xb;max �
xb;max �xb;min

itermax
� iter ð11Þ
xe ¼ xe;min þ
xe;max �xe;min

itermax
� iter ð12Þ
where xb;max and xe;max, respectively represent the maximum values of the cognitive and social parts, xb;min and xe;min,
respectively represent the minimum value of the cognitive and social part, iter is the current iteration number, and
itermax is the maximum number of allowable iterations. In this paper, the weight xb changes linearly from 1.5 to 0.75 while
the weight xe linearly increases from 0.75 to 1.5.
4. Experiments

In this section, the experiments that have been done to evaluate the performance of the proposed BSO algorithm and its
two extensions for a number of analytical benchmark functions are described. The previous studies on optimizations algo-
rithms based on foraging behavior of the honey bees show that these algorithms have better performance in comparison
with other population based algorithms such as genetic algorithms and PSOs [15–19]. So, we only focus on optimization
algorithm inspired from foraging behavior of honey bees in this study. There exists few numerical function optimization
algorithms based on the bee colony concepts. However, the performance of BSO algorithm is evaluated in comparison with
two other algorithms based on artificial bees. The comparisons are carried out in the case of numerical continuous functions.
The continuous test functions in this experiment have been extensively used to compare population based optimization
algorithms.

Table 1
The benchmark functions, their rand, optimum value, and maximum values for position and velocity.

Function Formula Type Range Optimum position Optimum value

fSph fSphðxÞ ¼
Pn

i¼1x2
i

Unimodal [�100, 100] (0,0,. . .,0) 0

fRos fRosðxÞ ¼
Pn�1

i¼1 ð100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2Þ Unimodal [�30, 30] (1,1,. . .,1) 0

fRas fRasðxÞ ¼
Pn

i¼1ðx2
i � 10 cosð2pxiÞ þ 10Þ Multimodal [�5.12, 5.12] (0,0,. . .,0) 0

fShf6
fSchf6 ¼ 0:5� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1þx2
2ð Þ

p� �2
�0:5

ð1þ0:001ðx2
1þx2

2ÞÞ
2

Multimodal [�100, 100] (0,0,. . .,0) 0

fGri fGriðxÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� 	

þ 1 Multimodal [�600, 600] (0,0,. . .,0) 0

fAck fAckðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
1x2

i

q� 	
� exp 1

n

Pn
1 cosð2pxiÞ

� �
þ 20þ e Multimodal [�30, 30] (0,0,. . .,0) 0

3150 R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155
4.1. Benchmarks

To test the performance of BSO, six well known benchmark functions are used here for comparison, both in terms of opti-
mum solution after a predefined number of iterations and the rate of convergence to the optimum solution. These bench-
marks are widely used in evaluating performance of population based methods [4–7]. The first two functions are
unimodal, while others are multimodal. A function is called unimodal, if it has only one optimum position. The multimodal
functions have two or more local optima.

Table 1 gives the test functions, mathematical expression, their optimum values, their optimum positions, and ranges. To
test the robustness of the algorithms, the most common initialization ranges used in the literature for these benchmarks
considered in this paper. This commonly accepted approach, called asymmetric initialization, is used in this paper. In asym-
metric initialization the individuals of a population are initiated only in the right side of the search space, while the symmet-
ric initialization employs the entire search space (the works presented in [9,13] were used symmetric initialization).
Considering this approach, each bee has been initialized with a position which is randomly chosen in range Xmax

2 ;Xmax
� �

.
To control the explosion of each bee, the excessive searching outside the predefined search space is limited. During a trial
of each algorithm, the position values of a bee are limited to interval ½Xmin; Xmax�.

We select these test function as each of them is a candidate for a different class of real-world problems. They have dif-
ferent characteristics (e.g. they are unimodal or multimodal, or have dependent or independent variables). A robust optimi-
zation algorithm maintaining balance between exploration and exploitation, controlling diversity, mitigating premature
convergence and stagnation to cope with problems of different types.

The Sphere has independent variables, contains no local optima, and have smooth gradient toward global optimum. It
represents an easy problem which successfully solved by many population based optimization algorithm. The Rosenbrock
function has smooth slope around its’ global optimum position, its global optimum lays inside a long, narrow, and parabolic
shaped flat valley, its variables are strongly dependent, and the gradient do not point towards its optimum position. All of
these cause that the convergence toward the global optimum in Rosenbrock be relatively difficult. This function has been
frequently used to test the optimization algorithms. The algorithms with hard constriction on movement trajectories of their
individuals may easily encounter to stagnation. The Schaffer’ f6 is a multimodal function with dependant variables. It has
smooth slope around global optimum, so methods with poor flying patterns encounter problem in regions nearby global
optimum. An optimization algorithm should increase diversity of the population to cope with the problem of this type.

Ackley’s is a widely used multimodal test function. This function has one narrow global optimum basin and numerous
local optima. In comparison with other multimodal functions, it represents a relatively easy problem as it has shallow local
optima. There is no dependency between variables of the Rastrigrin test function. The cosine modulation produces frequent
local optima. So, this test function is highly multimodal which makes it to be a complex problem. An optimization algorithm
should provide an efficient balance between exploration and exploitation and have good diversity to overcome the problems
of this type. The Griewank’s function is based on the Sphere function. Similar to Rastrigrin function it has many wide spread
local optima regularly distributed. Its second component represents linkage between variables which make it to a difficult
multimodal problem. The local optima are located in direction of gradient, so an optimization algorithm should provide effi-
cient balance between global and local search to solve this type of problem. The Griewank’s function with high dimension-
ality seems unimodal.
4.2. Settings of the algorithms

Simulations were performed to observe the performance of the proposed algorithm for finding optimum solutions. There
are few algorithms in the literatures for numerical optimization based on foraging behaviors of honey bees. The performance
of the new method (BSO) and its two extensions (BSO–RP and BSO–RPTVW) are compared with the performance of the Arti-
ficial Bee Colony (ABC) [15], and Bee and Foraging Algorithm (BFA) [17] methods. These algorithms have a few parameters;
part of them is common while another part is specific for each algorithm.

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3151
Common parameters are number of dimensions of the search space, maximum generation, population size, and total
number of trials. For all test functions with exception of 2D function Schaffer’s f6, three different dimension sizes, 10, 20
and 30 are tested. The corresponding maximum generations are 5000, 7500 and 10,000, respectively. For Schaffer’s f6 func-
tion, the maximum generation is set to 2000. For all the test functions, the population size is set to 200, and a total of 100
trials for each experimental setting are conducted.

In BFA, the parameter k, the distance of flight, has key role. We set k ¼ 11 for all test functions. The parameter pt which
controls the selection of elite bee or other forger bees is set to 0.8. The percentage of onlooker and scout bees is controlled by
parameter pt throughout iterations. The onlooker bees are gravitated toward elite bee.

The same settings as presented in [15,19] are used in this paper for ABC algorithm. The percentage of onlooker and em-
ployed bees are equally set to 50% of the colony and the number of scout bees is selected as one.

In BSO algorithm, the percentage of onlooker bees is 48% of the swarm, the experienced forager bees is 48% of the swarm,
and the scout bees is 4% of the swarm. In BSO–RP algorithm, the control parameter prf is set to 0.8, and the maximum and
minimum values of the parameter s are set as smax ¼ 1 and smin ¼ 0:2. In BSO–RPTVW algorithm, the maximum values of the
dynamic weights are set 1.5 (i.e. xb;max ¼ xe;max ¼ 1:5), and their minimum values are set to 0.5 (i.e. xb;min ¼ xe;min ¼ 0:5).
The value of xb linearly decreases from its’ maximum value to its’ minimum value, while the value of xe linearly increases
from its’ minimum value to its’ maximum value.

4.3. Experimental results

In the experiments, the number of iterations to reach a predefined threshold was specified for each function. Different
success criteria for different functions are presented in the literatures. For Schaffer’s f6, the success criterion was set to
0.00001, whereas for the other functions, the stopping criteria were set to 0.0001. After the final iteration, if the minimum
value was reached by the algorithm was not below the threshold, the trial was considered unsuccessful. The values of mean,
standard deviations, success rate, and the average number of iterations before the algorithms reach the success criteria in
terms of each test function which are obtained by the BFA, ABC, BSO, BSORP, and BSO–RPTVW algorithms are given in Tables
2 and 3.To ease of observation, the best results obtained by the algorithms are shown in bold. The X sign in Table 3 represents
that the corresponding algorithm was failed in reaching success criteria in all trials. The average fitness of the algorithms
which are smaller than E�45 are considered as 0.

First, the performances of the algorithms are considered in terms of average optimum values for 100 trials. The results
show that all the algorithms provide good performance for Sphere and Schaffer’s f6; however BSO and ABC strongly produce
better results than BFA. It is clear from the result that for Rosenbrock function, the reduction of the quality of the average
optimum was occurred for BFA and ABC compared with BSO and its two extensions. As described previously the BSO algo-
rithm and its two extensions employ different flying patterns which help the swarm to maintain global search and to control
convergence towards global optima. These capabilities help the algorithm to cope with the smooth slope of the Rosenbrock
function. For all the benchmark functions, the BSO algorithm and its two extensions outperform BFA and ABC methods. The
BSO–RP and BSO–RPTVW produce better results in terms of optimum solution than BSO algorithm. This is occurred, due to
using repulsion factor and penalizing fitness as well as time-varying weights which maintain the diversity of algorithm and
control the global and local searches regardless of the type of the considered function. The results show that the BSO and its
extensions produce consistent results for unimodal, multimodal functions with dependent or independent variables.

The success rate which is related to the convergence of each method to the stopping criteria represents the stability of the
algorithms. It is clear from the results that all the methods have converged to the stopping criteria for sphere function. The
BFA algorithm has poor success rates on other test functions. The BFA algorithm only achieved 100% success rate on Sphere
function in 10 dimension and Schaffer’ f6 function. This algorithm fails in reaching success criteria for Rosenbrock and Gri-
ewank functions in 10, 20, and 30 dimensions as well as Rastrigrin function in 30 dimensions. Its success rates vary from 3%
to 73% for other test functions in different dimensions. This problem occurs due inability of BFA in providing proper balance
between exploration and exploitation. All the bees in BFA except scout bees select the elite bee as their interesting dancer
and adjust their trajectories toward the elite bee without considering other valuable information. So, they are gravitated rap-
idly toward the elite bee and the premature convergence will be occurred.

The ABC algorithm achieves a success rate 100% on Sphere, Rastrigrin, Ackley, and Schaffer’s f6 function in 10, 20, and 30
dimensions. While ABC algorithms have good success rate in most of the test functions, their success rate drastically de-
crease in the case of Rosenbrock function. This is caused due to very smooth slope of the Rosenbrock function nearby its glo-
bal optimum position. Further, for the Griewank function in 10 dimensions, only 47 out of 100 trials from the ABC method
have converged to stopping criteria.

It is clear from the success rate results that the BSO method and its two extensions produce stable solutions for solving
numerical optimization problems. The success rate of 100% on all the test functions in 10, 20, and 30 dimensions were
reached by BSO, BSO–RP, and BSO–RPTVW algorithms.

4.3.1. BSO with mitigation approaches (RP) and time-varying weights (TVW)
The effects of mitigation approaches and time-varying weights on the performance of the BSO algorithm are presented. In

this investigation, all the test functions, except Schaffer’s f6, were used in 40 dimensions, and maximum number of gener-
ations was set to 10,000. The average best fitness of the proposed algorithms for 100 trials for each test function is repre-

Table 2
Average fitness values, standard deviation, and the success rate of the algorithms for the benchmark functions for 100 trials.

Func. Dim. Max Iter. BFA ABC BSO BSO–RP BSO–RPTVW

Avg. Stdv. Avg. Stdv. Avg. Stdv. Avg. Stdv. Avg. Stdv.

fSph 10 5000 0.000031 0.00024 4.926E�28 2.187E�25 8.475E�123 3.953E�122 5.325E�116 8.422E�116 1.723E�118 7.401E�118
20 7500 0.000892 0.00103 3.071E�25 5.368E�23 2.361E�115 7.348E�115 9.147E�114 4.473E�113 7.194E�114 1.510E�113
30 10000 0.093786 0.02745 6.355E�24 1.240E�22 4.728E�102 1.372E�101 6.320E�107 2.928E�106 3.218E�111 6.672E�111

fRos 10 5000 7.2084513 9.436551 0.009252 0.010890 3.617E�7 5.081E�5 9.418E�8 2.192E�6 1.858E�9 3.204E�8
20 7500 13.927110 16.830792 0.012870 0.017322 9.201E�7 1.102E�5 1.297E�8 8.053E�7 8.952E�9 1.460E�7
30 10000 21.276334 25.03812 0.034010 0.048012 5.865E�6 8.519E�5 1.722E�7 6.940E�5 6.027E�8 4.392E�6

fRas 10 5000 0.003821 0.006513 4.398E�24 6.195E�23 4.171E�64 7.834E�64 2.438E�95 6.177E�95 8.5543E�93 4.814E�92
20 7500 0.017613 0.100691 2.011E�22 7.048E�21 7.899E�61 2.215E�60 7.553E�88 3.510E�87 6.903E�91 3.149E�90
30 10000 0.967820 4.24561 8.609E�22 5.332E�21 6.228E�59 8.496E�59 5.942E�83 1.837E�82 2.631E�86 7.258E�86

fAck 10 5000 0.000085 0.000237 8.462E�12 9.307E�12 7.105E�19 5.482E�18 9.021E�20 2.931E�18 1.813E�20 7.264E�19
20 7500 0.000639 0.003406 3.285E�13 1.034E�12 2.131E�19 4.603E�18 5.286E�19 6.462E�18 9.741E�20 3.108E�19
30 10000 0.001398 0.002054 7.632E�13 2.760E�12 1.460E�18 8.130E�17 2.372E�19 4.903E�17 2.372E�19 5.206E�17

fGri 10 5000 3.209850 4.298031 0.000219 0.000691 3.823E�46 6.679E�46 8.194E�47 2.468E�46 7.991E�53 3.931E�52
20 7500 1.792011 1.973611 3.170E�9 1.725E�7 8.402E�47 3.928E�46 9.356E�49 4.514E�48 6.812E�53 4.740E�52
30 10000 0.981425 1.023101 5.578E�10 3.008E�8 4.161E�47 7.523E�47 6.322E�49 1.097E�48 5.695E�54 2.243E�53

fShf6 2 2000 9.381E�8 1.0348E�7 3.806E�16 3.183E�14 1.069E�49 3.170E�49 5.398E�51 7.286E�51 3.546E�56 6.538E�56

3152
R

.A
kbari

et
al./Com

m
un

N
onlinear

Sci
N

um
er

Sim
ulat

15
(2010)

3142–
3155

Table 3
The success rate and the average number of iteration before the algorithms reach the success criteria for the benchmark functions for total of 100 trials.

Func. Dim. Max Iter. BFA ABC BSO BSO–RP BSO–RPTVW

Avg. Iter. Succ.Rate Avg.Iter. Succ. Rate Avg. Iter Succ. Rate Avg. Iter Succ. Rate Avg. Iter Succ. Rate

fSph 10 5000 196.9 1 124.6 1 95.7 1 96.2 1 98.1 1
20 7500 423.8 0.73 387.0 1 313.2 1 317.8 1 321.4 1
30 10000 783.4 0.21 556.2 1 490.6 1 498.3 1 512.6 1

fRos 10 5000 X 0.00 X 0.00 549.3 1 193.6 1 91.0 1
20 7500 X 0.00 X 0.00 804.5 1 365.3 1 103.2 1
30 10000 X 0.00 X 0.00 1225.2 1 548.0 1 123.8 1

fRas 10 5000 3693.4 0.07 498.6 1 487.1 1 567.3 1 605.7 1
20 7500 3782.5 0.03 1109.3 1 946.4 1 973.9 1 1038.2 1
30 10000 X 0.00 1590.4 1 1243.8 1 1270.5 1 1314.6 1

fAck 10 5000 2725.8 0.35 461.2 1 207.6 1 199.1 1 206.5 1
20 7500 3137.4 0.14 703.5 1 343.2 1 329.3 1 323.2 1
30 10000 3485.2 0.08 942.6 1 438.9 1 438.1 1 439.8 1

fGri 10 5000 X 0.00 478.0 0.47 431.8 1 220.3 1 215.0 1
20 7500 X 0.00 1031.3 1 515.3 1 350.1 1 348.1 1
30 10000 X 0.00 1485.8 1 611.4 1 445.7 1 443.9 1

fShf6 2 2000 198.3 1 126.7 1 93.0 1 86.3 1 85.4 1

Fig. 4. The logarithm of average fitness for sphere and Rosenbrock functions. Horizontal and vertical axes, respectively represent number of iterations and
logarithm of the average fitness.

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3153
sented in Figs. 4–6. The vertical axis in each diagram represents the logarithm of average fitness, and the horizontal axis rep-
resents the iteration number.

Figs. 4–6 show that BSO–RP and BSO–RPTVW converge faster then BSO algorithm at the early stage of optimization pro-
cess for Rosenbrock and Griewank functions. For the Sphere function, BSO and BSO–RP almost converge faster than BSO–
RPTVW. For Ackley and Schaffer’s f6, all the algorithms have almost same convergence speed, and finally, for Rastrigrin func-
tion, faster convergence is provided by BSO and BSO–RPTVW. As a consequence, it is clear from Figs. 4–6 that BSO and its two
extensions have fast convergence rate, and significant improvement in convergence speed is not achieved by adding miti-
gation approaches and time-varying weights. However, BSO–RPTVW is slightly faster than BSO and BSO–RP.

It is clear from Figs. 4–6, that the average optimum solution in terms of the predefined number of generations is improved
by applying mitigation approaches and time-varying weights. The BSO–RP and BSO–RPTVW produce better results then BSO
for all the test functions. The BSO–RP and BSO–RPTVW produce the same result for Ackley function. The percentage of
improvement provided by two extensions was 10% for Ackley function. The BSO–RP improves the performance of BSO more
than 10% in optimizing Rosenbrock function, further improvement is achieved by time-varying weights. Up to 4%, 8%, 15%
improvements respectively were obtained by BSO–RP for optimizing Sphere, Griewank, and Rastrigrin functions. Further
improvements were obtained by BSO–RPTVW algorithm (10%, 20%, 28% for optimizing Sphere, Griewank, and Rastrigrin
functions). For the Schaffer’s f6 function BSO and BSO–RP relatively produce same results, the improvement up to 10%
was obtained using time-varying weights.

Fig. 5. The logarithm of average fitness for Rastrigrin and Ackley functions. Horizontal and vertical axes, respectively represent number of iterations and
logarithm of the average fitness.

Fig. 6. The logarithm of average fitness for Griewank and Schaffer’s f6 functions. Horizontal and vertical axes, respectively represent number of iterations
and logarithm of the average fitness.

3154 R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155
In general, the results show that BSO optimizer and its two extensions act as highly consistent strategies in terms of opti-
mum solution, and provide robust behavior which is not strictly dependent on the type of the test function. Using mitigation
approaches and time-varying weights, excellent results were observed for all test functions considered in this investigation.
As a consequence, the BSO–RPTVW algorithm produces better results than BSO, BSO–RP, and other algorithms investigated
in this consideration.
5. Conclusions

The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently
introduced population based algorithms. In this paper, we have described a novel optimization algorithm, called BSO, based
on foraging behavior of honey bees. Also two further extensions were suggested which aim to improve the performance of
the BSO algorithm in terms of minimizing numerical functions within a predefined number of iterations. Different types of
flying patters were introduced into the BSO algorithm aiming to maintain proper balance between global and local search by
providing diversity into the swarm of bees.

Stagnation and premature convergence are the main deficiencies of the population based optimization algorithms when
solving numerical functions. To alleviate the stagnation, we proposed two new strategies which improve the performance of
BSO. First, the concept of penalty was introduced which encourages a stagnant bee to leave its position and move to new

R. Akbari et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3142–3155 3155
positions with better nectar. Second, another concept ‘‘repulsion factor” was introduced as a strategy to mitigate stagnation.
These extensions introduce significant improvement of performance compared with BSO. To mitigate the premature conver-
gence, linear weights were introduced to the BSO. Using dynamic weights provides good improvement in terms of optimum
solution for all the test functions.

The BSO algorithm and its extensions were compared with two other bee colony optimization algorithms on the six
benchmark functions. The experimental results showed that the introduction of mitigation strategies into the BSO algorithm
improves the performance in terms of optimum solution. Also the experiments results showed that the BSO and its exten-
sions are effective and powerful algorithm for numerical function optimization and outperform other algorithms investi-
gated in this study.

References

[1] Srinivasan D, Seow TH. Evolutionary Computation, CEC ’03, 8–12 Dec. 2003, Canberra, Australia; 2003. p. 2292–7.
[2] Boyer DO, Martnez CH, Pedrajas NG, Crossover operator for evolutionary algorithms based on population features. Available from: <http://

www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/Ortiz-Boyer.html>.
[3] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceeding of IEEE international conference neural networks, vol. 4; 1995. p. 1942–7.
[4] Eberhart RC, Shi Y. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of IEEE congress on evolutionary computation,

Seoul, Korea; 2001. p. 94–7.
[5] Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. In: IEEE

transactions on evolutionary computation, vol. 8, no. 3; 2004. p. 240–55.
[6] Suganthan PN. Particle swarm optimizer with neighborhood operator. In: Proceedings of the IEEE international congress evolutionary computation,

vol. 3; 1999. p. 1958–62.
[7] Suganthan PN. Particle swarm optimizer with neighborhood operator. In: Proceedings of the IEEE international congress evolutionary computation,

vol. 3; 1999. p. 1958–62.
[8] Cox Melissa D, Myerscough Mary R. A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. J Theor

Biol 2003;223:179–97.
[9] Karaboga N. A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Instit 2009;346:328–48.

[10] Baykasoglu A, Ozbakır L, Tapkan P. Swarm intelligence: focus on ant and particle swarm optimization; 2007.
[11] Teodorovic D, Dell Orco M. Bee colony optimization – a cooperative learning approach to complex transportation problems. J Adv OR AI Meth

Transport 2007:51–60.
[12] Teodorovic Dusan, Lucic Panta, Markovic Goran, Orco Mauro Dell’. Bee colony optimization: principles and applications. In: Proceeding of eighth

seminar on neural network applications in electrical engineering, Neurel; 2006. p. 151–6.
[13] Pham DT, Castellani M, Fahmy AA. Learning the inverse kinematics of a Robot manipulator using the bees algorithm. In: The IEEE international

conference on industrial informatics; 2008. p. 493–8.
[14] Bahamish Hesham Awadh A, Abdullah Rosni, Abdul Salam Rosalina, Protein conformational search using bees algorithm. In: Proceeding of second Asia

international conference on modelling & simulation; 2005. p. 238–44.
[15] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim

2007;39:459–71.
[16] Yang XS. Engineering optimizations via nature-inspired virtual bee algorithms. In: Lecture notes in computer science, Springer (GmbH); 2005. p. 317–

23.
[17] Sundareswaran K, Sreedevi VT. Development of novel optimization procedure based on honey bee foraging behavior. In: IEEE International conference

on systems, man and cybernetics; 2008. p. 1220–5.
[18] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. J Appl Mathe Comput 2009.
[19] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. J Appl Soft Comput 2008;8:687–97.
[20] Ho1 SL, Yang S, Ni G, Lo EWC, Wong HC. A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans Magnet

2005;41(5):1756–9.
[21] Sun TY, Lin CL, Liu CC. Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer. IEEE Trans Evolut

Comput 2006.
[22] Riget J, Vesterstrom JS. A diversity-guided particle swarm optimizer – the ARPSO EVALife. Tech. Rep. 2002-02.
[23] Eberhart Russell C, Shi Yuhui. Guest editorial special issue on particle swarm optimization. IEEE Trans Evolut Comput 2004;8(3):201–3.
[24] Parsaopoulos KE, Vrahatis MN. Recent approaches to global optimization problems through particle swarm optimization. J Nat Comput

2002:235–306.
[25] Eberhart RC, Shi Y. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of IEEE congress on evolutionary computation,

Seoul, Korea; 2001. p. 94–7.
[26] Akbari R, Ziarati K. Combination of particle swarm optimization and stochastic local search for multimodal function optimization. In: Proceeding of

IEEE Pacific-Asia workshop on computational intelligence and industrial application; 2008. p. 388–92.

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/Ortiz-Boyer.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/Ortiz-Boyer.html

	A novel bee swarm optimization algorithm for numerical function optimization
	Introduction
	Intelligent behaviors of honey bees
	Bee swarm optimization algorithm
	Approaches to mitigate stagnation
	Time-varying weights

	Experiments
	Benchmarks
	Settings of the algorithms
	Experimental results
	BSO with mitigation approaches (RP) and time-varying weights (TVW)

	Conclusions
	References

