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Abstract 

This paper is concerned with the development of intelligent decision support methodologies 
for nurse rostering problems in large modern hospital environments. We present an approach 
which hybridises heuristic ordering with variable neighbourhood search. We show that the 
search can be extended and the solution quality can be significantly improved by the careful 
combination and repeated use of heuristic ordering, variable neighbourhood search and 
backtracking. The amount of computational time that is allowed plays a significant role and 
we analyse and discuss this. The algorithms are evaluated against a commercial Genetic 
Algorithm on commercial data. We demonstrate that this methodology can significantly 
outperform the commercial algorithm. This paper is one of the few in the scientific nurse 
rostering literature which deal with commercial data and which compare against a 
commercially implemented algorithms. 



It is clear that the efficient rostering of healthcare personnel can lead to the more effective 
utilisation of valuable resources. Healthcare institutions around the world are becoming 
increasingly interested in the deployment of decision support technology to aid the personnel 
scheduling process. A very general form of the nurse rostering problem could be described as 
follows: Given a set of shifts and a set of nurses over a certain time period, assign each shift 
to a nurse subject to a set of constraints. The constraints are usually defined by regulations, 
working practices and the preferences of the nurses.  

The problem of nurse rostering is relatively easily described but like most real world search 
problems it is far from easy to automatically generate very high quality solutions. Indeed, 
there have been many papers over the years from across operational research and artificial 
intelligence that have tackled the problem in one form or another. A wide range of 
approaches and techniques have been investigated and used. Ernst et al. (2004) identified 28 
different categories of methods that have been used on personnel scheduling problems. These 
include constraint logic programming, constructive heuristic, expert systems, genetic 
algorithms, integer programming, set partitioning, simple local search and simulated 
annealing. A recent review of automated nurse rostering approaches found that although there 
has been a lot of research in the area, surprisingly few of the methods were tested on real 
world data (Burke et al. 2004). The paper went on to conclude that even fewer have actually 
been implemented in real hospital wards. 

Of those techniques that have been applied on real-world problems metaheuristic methods 
seem to dominate. One approach which has been applied in multiple real world hospitals is a 
hybrid tabu search (Burke, De Causmaecker and Vanden-Berge, 1999). The tabu search is 
integrated with techniques which are usually observed in manual scheduling approaches. The 
algorithm has been incorporated into software that has been used to create nurse rosters in 
over forty Belgian hospitals and copes with many shift types, work regulations and skill 
categories. This work was hybridised with an evolutionary approach (Burke et al., 2001) to 
produce a methodology which could generate higher quality solutions but at the cost of 
increased computational time. Variable Neighbourhood  Search (Mladenović and Hansen, 
1997, 1999) has also been applied and tested on highly constrained real world nurse rostering 
data (Burke et al. 2003). The authors found that VNS could be effectively used to escape 
from the local optima found using single neighbourhood heuristics. They also commented 
“After reaching a local optimum, we recommend the exploration of wider environments”. 

Another investigation on real data explored a genetic algorithm approach (Aickelin and 
Dowsland, 2000), which successfully exploits problem specific knowledge in tackling the 
problem. Although the method is tailored for that particular problem instance, the underlying 
concepts could be applied to other nurse rostering problems. In 1998, Dowsland was also able 
to match the quality of schedules produced by an expert human scheduler using a highly 
developed tabu search (Dowsland, 1998). The algorithm ‘oscillates’ between trying to 
improve the cover and improving the preference costs. As well as using tabu lists, candidate 
lists and diversification strategies the search also uses a large neighbourhood created by 
looking for chains of overall improving swaps. Aickelin and Li (2004) have since 
experimented with the application of bayesian optimisation and classifier systems to similar 
nurse rostering problems. The results are close to those produced by an optimal integer 
programming method and the authors concluded that with further effort and experimentation 
the algorithms could well improve even more. Bellanti et al. tackled a problem with hard 
constraints and objectives (or soft constraints) using various local search techniques (Bellanti 



et el., 2004). The authors presented good results for a tabu search and iterated local search 
which use neighbourhoods defined by changing the assignment of night shifts. 

Another methodology that has been tested on complex real-world data from a UK hospital is 
case-based reasoning (Beddoe, Petrovic and Vanden-Berghe, 2002). This approach avoids the 
use of evaluation functions but instead aims to imitate how an expert human scheduler would 
produce a good schedule. This is done by storing observed scheduling techniques and 
retrieving and performing these moves or repairs whenever the situation is encountered again. 
As an extension to their work the authors also suggest a method in which it could be 
combined with a meta-heuristic approach. Another relatively recent approach is a 
combination of constraint networks and knowledge-based rules (Meisels, Gudes and 
Solotorevski, 1995). Their approach was implemented in a commercial software package and 
has been successfully used in a number of hospitals. 

Berrada, Ferland and Michelon (1996) developed a multi-objective mathematical 
programming model to represent a real world problem containing both hard and soft 
constraints in a Canadian hospital. The schedules produced met the standards required by the 
head nurses.  The authors also experimented with a tabu search and found that although it 
required greater computational time it was useful in some circumstances. Valouxis and 
Housos approach a nurse rostering problem using an approximate integer linear programming 
model to produce initial solutions. The initial solutions are then further optimised using a 
local search with a ‘2-opt’ neighbourhood and a tabu search (Valouxis and Housos, 2000). 
Their method compared very favourably with a constrained programming approach. In 2004, 
Bard and Purnomo (2005a) employ a combination of heuristic and integer programming 
methods to solve nurse preference scheduling problems with up to one hundred nurses and 
approximately thirteen hard and soft constraints. Individual nurse schedules are created by 
modifying a base schedule using swaps. These columns are then used to form a set covering 
type problem which when solved creates the overall schedule. Later they extended this work 
to further improve the quality of schedules by incorporating the use of a downgrading option 
(Bard and Purnomo 2005b). 

By defining fuzzy constraints (i.e. constraints that may be partially satisfied and partially 
violated) Meyer auf’m Hofe (2000) solves real world nurse rostering problems as constraint 
optimisation rather than constraint satisfaction problems. Branch and bound  and iterative 
improvement are used to quickly produce good rosters. The approach was developed using 
experience gained developing a software rostering system that is used in approximately 60 
German hospitals (Meyer auf’m Hofe, 1997). 

There are many more papers in the literature which are discussed in more detail in (Burke et 
al, 2004) and (Ernst et al, 2003). It is clear that relatively few papers in the literature have 
worked with real world data or been implemented in hospitals (Burke et al, 2004). One of the 
main goals in this paper is to develop an effective and efficient search approach to improve 
upon the genetic algorithm based approach that is currently employed within ORTEC’s 
Harmony software. As such, the methodology has to be able to handle all the requirements 
and constraints that are inherent in nurse rostering problems from the modern complex 
environments that are represented by today’s hospitals. 

 



This paper presents our investigation on combining a variable neighbourhood search with a 
method of heuristically unassigning shifts and repairing schedules using heuristic ordering. 
The next section describes the nurse rostering problem we were dealing with. Sections 2 and 
3 detail the algorithm and results respectively. In section 4 we draw conclusions on the 
success of this approach and possible future extensions. 

1. Problem Description 

The data for this problem was provided by ORTEC, an international consultancy company 
who specialise in planning, optimisation and decision support solutions. They support 
hospitals and other organisations all over the world with automated workforce management 
solutions. 

The schedules are planned in periods of one month. The ward consists of 16 nurses. 12 of the 
nurses are full time and work 36 hours per week. One nurse works 32 hours per week and the 
other 3 are also part time and work 20 hours per week. One of the full time nurses request no 
late shifts (hard constraint), another requests an early or a day shift on January 7th (soft 
constraint with weight 100). All the other constraints that need to be satisfied are presented in 
sections 1.2 and 1.3.  The data is very typical of their clients’ needs. 

1.1 Shifts and Shift Demand 

There are 4 different shift types in the problem. Table 1 shows the daily demand for these 
shifts. Each of the shift types cover 9 hours including one hour of resting time. So the actual 
working hour is 8 hours for each shift type. 

 
Shift Start 

time 
End 
Time 

Mon Tue Wed Thu Fri Sat Sun 

Day (D) 08:00 17:00 3 3 3 3 3 2 2 
Early (E) 07:00 16:00 3 3 3 3 3 2 2 
Late (L) 14:00 23:00 3 3 3 3 3 2 2 
Night (N) 23:00 07:00 1 1 1 1 1 1 1 

Table 1 : Shift types and weekly demand. 

1.2 Hard Constraints 

The following rules must be met at all times otherwise the schedule is considered infeasible 
and unacceptable. 

•  Cover needs to be fulfilled (i.e. no shifts must be left unassigned). 
•  For each day a nurse may start only one shift. 
•  Within a scheduling period a nurse is allowed to exceed the number of hours for 

which they are available for their department by at most 4 hours. 
•  The maximum labour time per week is on average 36 hours over a period of 13 

consecutive weeks if this period does not include work during night shifts. 
•  The maximum number of night shifts is 3 per period of 5 consecutive weeks. 



•  A nurse must receive at least 2 weekends off duty per 5 week period. A weekend off 
duty lasts 60 hours including Saturday 00:00 to Monday 04:00. 

•  Following a series of at least 2 consecutive night shifts a 42 hours rest is required. 
•  During any period of 24 consecutive hours, at least 11 hours of rest is required. A 

night shift has to be followed by at least 14 hours rest. An exception is that once in a 
period of 21 days for 24 consecutive hours, the resting time may be reduced to 8 
hours. 

•  The number of consecutive night shifts is at most 3. 
•  The number of consecutive shifts (workdays) is at most 6. 

1.3 Soft Constraints 

Ideally these requirements should be fulfilled. However, to obtain a schedule that meets all 
the hard constraints it is often necessary to break some of the soft rules. A weight is assigned 
to each soft constraint to reflect its importance (especially in comparison to other soft 
constraints). A weighting is simply a number. The higher the number, the more strongly 
desired the constraint or request is. The weights are set either by the head nurses or through 
feedback from the nurses about what qualities they desire in their schedules. As a rough guide 
the weights could be described as follows: 

Weight 1000 :  The constraint should not be violated unless absolutely necessary. 

Weight 100   :  The constraint is strongly desired. 

Weight 10     :  The constraint is preferred but not critical. 

Weight 1       :  Try and obey this constraint if possible but it is not essential. 

1.4 Evaluation Function 

The evaluation function is the sum of all the penalties incurred due to soft constraint 
violations. The penalty for each soft constraint is calculated either linearly or quadratically 
using the violation measurement factors listed in Table 2. also. The violation measurement 
factor is basically the degree to which the constraint is violated or the excess of the violation. 

A soft constraint with a linear penalty function is simply calculated as: The violation 
measurement factor multiplied by the weight. For example, it is preferable to have at most 
zero stand-alone or isolated shifts. This is a soft constraint with weight 1000. However, to 
produce a feasible schedule (i.e. one in which all the hard constraints are fulfilled) it may be 
necessary to allocate a nurse an isolated shift. This is one more than is preferred so a penalty 
of 1000 is incurred. If the nurse had two isolated shifts they would have a penalty of 2000 (2 
* 1000) . 

A quadratic penalty function is calculated as: The violation measurement factor squared and 
multiplied by the weight. For example, it is preferable that during a period of five weeks a 
nurse performs no more than three night shifts. This is a soft constraint with a weight of 
1000. However, it may be necessary to assign five night shifts in the five week period (i.e. 2 
more than preferred), then the penalty for this soft constraint violation would be 4000 (22 * 
1000). 



 
Constraint Weight Penalty 

Function 
Violation 
measurement factor 

For the period of Friday 22:00 to Monday 0:00 a nurse 
should have either no shifts or at least 2 shifts (‘Complete 
Weekend’). 

1000 Linear Number of non-complete 
weekends 

For any employees avoid stand-alone shifts. A stand alone 
shift is an isolated working day i.e. a shift on a day which 
is flanked by two days without shifts. 

1000 Linear Number of isolated 
shifts 

For employees with availability of 30-48 hours per week, 
the length of a series of night shifts should be within the 
range 2-3. It could be before another series. 

1000 Quadratic Difference between 
length of series and 
acceptable length 
range. e.g. if 1 night 
shift, factor = 1, if 2 or 
3 night shifts, factor = 
0, if 4 night shifts, 
factor = 1, if 5 factor = 
2 etc. 

For employees with availability of 0-30 hours per week, 
the length of a series of night shifts should be within the 
range 2-3. It could be before another series. 

1000 Quadratic Difference between 
length of series and 
acceptable length range 

The rest after a series of day, early or late shift is a 
minimum of 2 days. 

100 Linear Factor is one if only 
one day of rest 
otherwise zero 

For employees with availability of 30-48 hours per week, 
within one week the number of shifts is within the range 4-
5. 

10 Quadratic Difference between 
length of series and 
acceptable length range 

For employees with availability of 0-30 hours per week, 
within one week the number of shifts is within the range 2-
3. 

10 Quadratic Difference between 
length of series and 
acceptable length range 

For employees with availability of 30-48 hours per week, 
the length of a series of shifts should be within the range of 
4-6. 

10 Quadratic Difference between 
length of series and 
acceptable length range 

For employees with availability of 0-30 hours per week, 
the length of a series of shifts should be within the range 2-
3. 

10 Quadratic Difference between 
length of series and 
acceptable length range 

For all employees the length of a series of early shifts 
should be within the range 2-3. It could be within another 
series. 

10 Quadratic Difference between 
length of series and 
acceptable length range 

For all employees the length of a series of late shifts 
should be within the range of 2-3. It could be within 
another series. 

10 Quadratic Difference between 
length of series and 
acceptable length range 

An early shift after a day shift should be avoided. 5 Linear Number of early shifts 
after days shifts 

A night shift after an early shift should be avoided. 1 Linear Number of night shifts 
after early shifts 

Table 2 : Soft Constraints 



As mentioned previously, a feasible schedule is a schedule that satisfies all the hard 
constraints. A penalty for an infeasible schedule can still be calculated but in our system a 
feasible schedule is always considered better than an infeasible schedule regardless of penalty 
values. Comparing feasible and infeasible schedules can be problematic for some algorithms 
such as a genetic algorithm as discussed by Aickelin and White. (2004). For our algorithm 
though these difficulties did not arise as we were always able to eventually find feasible 
solutions. 

It is now possible to define the objective of the problem: To find a feasible schedule with the 
lowest possible penalty caused by soft constraint violations. From the perspective of the head 
nurse, of course, the actual penalty hides a lot of information about the solution but it is not 
totally meaningless. By examining the penalty for each schedule it is possible to gain some 
idea of the schedule quality. For example, if the penalty is less than 1000 then we know that 
all the constraints with weight 1000 have been satisfied. However, the key to producing 
satisfactory schedules is obviously setting the correct weights and ensuring that all the 
required constraints are defined. Therefore it is essential that the end user either has a good 
understanding of how to set the weights and define constraints or they have clearly described 
their requirements to the software administrator. 
 

2. The Hybrid Variable Neighbourhood Search Algorithm 

The algorithm that we present in this paper is an iterative process in which variable 
neighbourhood search is followed by a schedule disruption and repair strategy. The repairing 
of the schedule is performed using a heuristic ordering technique. Back tracking is also 
performed to further improve the quality of the schedules produced. 

The overall process is illustrated by the pseudo-code in Figure 1. 

 
Create Initial Schedule 
REPEAT 
    Variable Neighbourhood Search 
    IF current penalty < best penalty  THEN 
        SET best schedule to current schedule 
        SET best penalty  to current penalty 
    ELSE 
        SET Current Schedule to Best Schedule (i.e. Backtrack one step) 
    ENDIF 
    Unassign shifts of a set of nurses 
    Repair schedule (using heuristic ordering method) 
UNTIL search terminated 

Figure 1. Pseudo-code of the overall hybrid algorithm 

2.1 Initialisation 

A heuristic ordering is used to create the initial schedule. In the experimentation section, we 
will be comparing our approach against a commercial genetic algorithm developed by 
ORTEC and in use in real hospital environments. The commercial genetic algorithm this 
hybrid variable neighbourhood search is evaluated against uses a similar heuristic ordering 
method to create its initial population of schedules.  



The aim of the heuristic ordering process is to sort all the shifts in order of the estimated 
difficulty of assigning them or how likely they are to cause high penalties (by using the 
criteria shown in Table 3). Using the weighted sum to identify them, the more troublesome 
shifts are then assigned earlier on in the schedule construction process.  

Once the shifts have been sorted in the order in which to try and assign them, they are in turn 
assigned to each nurse to calculate the penalty that would be incurred if the shift was assigned 
to that nurse. The shift is then assigned to the nurse that gains the least penalty in receiving 
that shift. 

The attributes of a shift that are examined when ranking the shifts in the order of possible 
difficulty to assign are described in Table 3. along with the functions used to assign its total 
weight for ranking.  

 
Shift Criteria Evaluation Function Weight 
Night Shift Weight 100 
Weekend Shift Weight 50 
Number of 
valid nurses 

(NumValidNurses / TotalNumNurses) * Weight 70 

Shift Date Weight * (Schedule.EndDate – Shift.BeginDate) 20 

Table 3: Shift evaluation criteria 

The first two criteria in Table 3. are obvious to examine as there are high penalties associated 
with night shift and weekend shift constraints. The third criterion used is to deduce how many 
nurses are able to fulfil this shift. If there are many nurses able to undertake it then it can be 
scheduled later but if there are very few then it is a good idea to assign it early on in the 
process. The shift date criteria is used to try and ensure that shifts in the early days in the 
scheduling period are assigned earlier on in the process. This is useful as these shifts are more 
likely to conflict with the previous schedule’s assignments. The shift date evaluation function 
is in units of days. 

2.2 Variable Neighbourhood Search 

When the initial schedule has been created using the heuristic ordering method described 
above, a simple Variable Neighbourhood Search is applied. This makes use of two 
neighbourhoods. Both of these neighbourhoods are commonly used by meta-heuristic 
approaches and have been described before, see, for example, (Burke et al. 2002). The two 
neighbourhoods are defined by the following moves or changes to a schedule: 

1. Assigning a shift to a different nurse. 
2. Swapping the nurses assigned to each of a pair of shifts. 

The first neighbourhood is a lot smaller than the second neighbourhood. However, it is 
observed that moves in the second neighbourhood can improve the quality of the schedule 
quite significantly. 

Our Variable Neighbourhood approach is basically a Variable Neighbourhood Descent. 
Initially it was implemented in a greediest or steepest descent manner. However, after some 



experimentation this was changed to a quickest descent algorithm as shown in the following 
pseudo-code. 

 
SET MoveMade to TRUE 
WHILE MoveMade is TRUE 
      SET MoveMade to FALSE 
      FOR each move in neighbourhood one  
          IF an improving move THEN 
              make this move 
              SET MoveMade to TRUE 
          END IF 
      END LOOP 
      IF  MoveMade IS TRUE THEN 
          go back to start of WHILE loop 
      END IF 
      FOR each move in neighbourhood two  
          IF an improving move THEN 
              make this move 
              SET MoveMade to TRUE 
          END IF 
      END LOOP 
  ENDWHILE 

Figure 3. Pseudo-code of VNS 

As can be seen from Figure 3 the smaller neighbourhood (neighbourhood 1) is repeatedly 
examined for an improving move and the move is executed if found. When there are no 
improving moves left in neighbourhood 1, then the much larger neighbourhood 2 is 
examined. If a move in neighbourhood 2 is used then neighbourhood 1 is examined again. 
This is repeated until there are no improving moves left in neighbourhood 1 and 2. 

Initially the Variable Neighbourhood Search was implemented in a greediest or steepest 
descent manner. That is, for each of the moves in the neighbourhood, identify the move or 
swap that would bring the most improvement and then perform that move or swap. The 
disadvantage in steepest descent is the extra time required to examine every move and swap, 
especially in a highly constrained problem like this in which there are many constraints to 
check and penalties to calculate on each move. This was especially noticeable in the second 
neighbourhood which is quite large. 

In an attempt to decrease the running time of the algorithm a quickest descent form of VNS 
was tested. That is, until no more improving moves are found, examine each move and swap 
and execute the move or swap if it decreases the schedule’s overall penalty at all. 

It was interesting to discover that for this problem using these neighbourhoods the quickest 
descent method was not only faster than steepest descent but it was usually at least as good 
and sometimes better in comparison. This was an interesting observation. 

We will briefly explain why the available neighbourhoods are restricted to these two 
neighbourhoods. For example, in Burke et al, 2002 a VNS for a nurse rostering problem is 
introduced which uses a larger set of neighbourhoods. If these neighbourhoods are examined 
more closely, however, it can be observed that many of them are already included in our 
larger two. Merging many of these neighbourhoods and searching them exhaustively is now 
possible due to recent increases in hardware technology and computing power that we have 
witnessed over the past few years (although the paper was published in 2002, the experiments 



were performed on an IBM RS6000 PowerPC as the scheduling system had already been in 
development for some years previously). Secondly, some of the other neighbourhoods are 
used to add moves which diversify the search and are used regardless of the effect on the 
schedule’s penalty. So they are not appropriate for use in a VNS descent.  

2.3 Making the Schedule Feasible 

After the creation of the initial schedule described earlier, or the larger movements in the 
search space which are described later, the schedule is often still infeasible in that the shift 
cover may not yet have been fulfilled i.e. not all the required shifts have yet been assigned 
because there is no nurse to assign the shift to without violating a hard constraint. As hard 
constraints have no weighting and are not considered in the penalty function it is necessary to 
also keep track of the number of unassigned shifts or hard constraint violations for the current 
schedule. A schedule with less unassigned shifts than another schedule is considered to be 
better than the other, regardless of the difference in the penalty value. So if a move increases 
the penalty but decreases the number of unassigned shifts or hard constraints then it is 
accepted. Therefore during the VNS, if there are still unassigned shifts, then after a successful 
move or swap an attempt is made to see if it is now possible to assign any of the unassigned 
shifts without creating hard constraint violations. It is often the case that managing to assign 
an unassigned shift will increase the penalty significantly but a schedule with a high penalty 
and no hard constraint violations is preferable to any schedule with hard constraint violations.  

2.4 Schedule Disruption and Repair 

Generally, at the end of the VNS phase the schedule not only has a lower penalty than before 
but the schedule is also usually now feasible. 

After the VNS, a local optimum will have been reached from which it is impossible to escape 
simply by examining the two neighbourhoods described. To improve upon the current 
schedule it is now necessary to move to a different area of the search space from which it will 
hopefully be possible to find a schedule with a penalty lower than the best found so far (by 
using the VNS again.) 

The obvious way of making this ‘jump’ would be to use a tabu search or simulated annealing 
mechanism. However, preliminary experimentation revealed that it would be difficult to 
successfully hybridise one of these traditional meta-heuristics with this particular VNS and 
produce better schedules in reasonable computation times. 

The reason for this is due to the large size of the second neighbourhood which increases the 
computation time required for the VNS. For a tabu search or simulated annealing approach to 
be successfully combined with this VNS, it was estimated that a search time of days would be 
necessary whereas (from the nature of the problem) it was preferable to keep the search time 
to a magnitude of hours. Although a computation time of days would not be totally 
unacceptable, a shorter time is preferred because often the head nurse or planner may be 
presented with last minute requests or situations which may require a new schedule to be 
created and in this scenario a very long execution time is unhelpful.  

In an attempt to improve upon the schedules produced by the VNS in an acceptable 
computation time, an alternative method was developed. The idea is to heuristically select 
sections of the overall schedule which could possibly be improved and to then attempt to 



improve them. To do this the nurses are ranked in order of the penalties for their own 
personal schedule. A certain number of nurses with the highest personal penalties are selected 
and all the shifts assigned to these nurses are unassigned. For these instances in which there 
are 16 nurses, it was discovered (after a series of experiments) that a good number of nurses 
to unassign the shifts allocated to was 3.  

The unassigned shifts are then reassigned using the heuristic ordering method described 
earlier in section 2.1. VNS is then performed as before to see if a better schedule can be 
produced. 

The process of un-assigning the shifts of a certain number of the most highly penalised nurses 
of the current schedule, repairing the schedule using heuristic ordering and then performing 
VNS could be carried out indefinitely until a satisfactory schedule is found. However, it was 
discovered that after the destruction, repair and VNS phases of the algorithm were performed 
the current schedule was often relatively poor and any subsequent schedules found from this 
point on were also relatively poor and only occasionally would the current schedule’s penalty 
be reduced to an acceptable value again. The reason for this is believed to be due to the very 
high penalties associated with the night shifts for these particular instances. Once bad 
sequences of night shifts are introduced into the schedule, it is difficult to recover simply 
through the VNS with these neighbourhoods alone. Another weakness in this method is that, 
although better schedules were being found, it was too infrequently during the algorithm. It 
could be observed that although good schedules were being found they were often of all 
about the same penalty with no great improvements on the best penalty.  

To overcome these problems we introduced the following process. If after the VNS, the 
penalty of the current schedule is not less than the best schedule found so far, then the current 
schedule is reset to the best schedule and the shifts for a different set of nurses are unassigned 
and reassigned. The set of nurses selected to have their shifts reassigned is the set with the 
next lowest collective penalty to the set selected previously if no overall improvement was 
found before.  

2.5 Genetic Algorithm 

Harmony uses a genetic algorithm to produce schedules and rosters. This existing algorithm 
provides a benchmark upon which to compare the performance of the algorithm described 
here. 

The genetic algorithm of Harmony is designed to be robust and effective for a wide variety of 
nurse rostering problems. To achieve this, like our algorithm, it does not heavily rely on 
problem specific knowledge or use detailed knowledge of the problems’ structures. An 
algorithm designed for a specific problem which heavily exploits its particular structure is 
likely to be more effective but less useful when other problems are considered. The genetic 
algorithm has, however, already performed in a  more than satisfactory manner for a number 
of clients with varying requirements. 

The algorithm has a number of phases. Firstly the initial population of schedules is created 
using a similar heuristic ordering method to the one described in this paper but ensuring each 
individual (or schedule) is different enough to introduce sufficient diversity in the population. 
Successive generations are created using roulette wheel parent selection, two types of 
crossover and three types of mutation. The particular crossover and/or mutations used are 



determined statistically by measuring their success in previous use between generations. The 
genetic algorithm terminates when a minimum threshold of improvement between 
generations is reached.  After the GA phase a local search is performed to further optimise 
the best schedule found. 

 

3. Results 

To develop this algorithm the workforce management and planning software Harmony 
(Post and Veltman, 2004) developed by ORTEC was used. Employing Harmony provided a 
number of advantages from a research point of view. The software has a highly developed 
user interface with which a large number and wide variety of nurse rostering problems can be 
defined and created. All data structures and methods for manipulating the problem instances 
themselves already exist with many hours of work already performed in optimising their 
access and use. This meant we were able to concentrate on creating, testing and improving an 
efficient algorithm for a wide variety of nurse rostering problems. Obviously the software 
also provides a clear visual display of the schedules and with precise breakdowns of why 
each employee receives the penalty they have. It was also particularly useful to have an 
existing commercial strength algorithm for comparing our work against. 

Both algorithms were implemented using Delphi 5. The experiments were performed using a 
PC with a  Pentium 1700MHz processor and Windows 2000 operating system. 

3.2 Comparison of the Hybrid Variable Neighbourhood Approach with the Genetic 
Algorithm 

 
 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

GA   (60 mins) 775 1791 2030 612 2296 9466 781 4850 615 736 2126 625 

VNS (30 mins) 735 1950 2055 501 2285 9312 660 4975 761 665 2041 625 

VNS (60 mins) 735 1866 2010 457 2161 9291 481 4880 647 665 2030 520 

Table 4: Comparison of our Hybrid Approach and the Genetic Algorithm 

Table 4 presents the results obtained after applying the algorithms to each of the problem 
instances. The best results among the approaches are highlighted in bold. As can been seen 
from the results, our hybrid VNS algorithm finds better solutions than the existing 
commercial genetic algorithm for nine out of the twelve problem instances. For seven of the 
twelve months the VNS after 30 minutes also outperforms the GA after 60 minutes.  

It is interesting to see that although all the problem instances are quite similar, the penalties 
for each month are quite different (varying from 457-9466). These differences are due to the 
structure of the month itself. For example, if the period starts on a Sunday then many of the 
nurses will automatically gain an unavoidable penalty by not working a complete weekend as 
the previous scheduling period is empty. Due to the lack of scheduling history for each of 
these instances there is always an unavoidable penalty so a penalty of zero will not be found 
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Figure 5. Comparison of the algorithms’ progress for schedule January 2003 

 

Figure 5. shows the progress of the two algorithms in finding schedules for the month of 
January. The graph shows the penalty for the best schedule found so far for each algorithm 
after x minutes. For the genetic algorithm, a steady decrease in penalty can be seen over the 
sixty minutes as after each generation a new best schedule is often found as a result of the 
crossover and repair operations. A drop of over 1000 in penalty in under a couple of minutes 
is most likely due to one of the constraints with a weight of 1000 being satisfied as well as 
other small improvements being made. The relatively steep (as all the soft constraints with 
weight 1000 have now been satisfied) decrease in penalty in the last two minutes for the GA 
is due to the final local optimisation phase.  

For the Hybrid VNS it can be seen that within four minutes (after a couple of iterations of the 
algorithm) the best schedule already has a penalty close to that produced finally by the GA at 
the end of the sixty minutes. Between the fourth and sixtieth minute an additional better 
schedule is found as a result of the schedule disruption, repair and VNS. From observing the 
algorithm when applied to the other scheduling periods, within the first sixty minutes there 
are usually three or four improvements in the best local optimum found between the fourth 
and sixtieth minute. 

For each month, to ensure that the inputs are the same for both algorithms, the previous 
schedules are all emptied of assignments. Having an empty previous scheduling period 
already introduces penalties in the current scheduling period which cannot be removed by 
any possible shift assignments. The problem instances are similar in structure as the 
differences are due to the number of days in the month and the weekdays the month starts and 
finishes on. 



3.2 Experimentation with longer computation times 

The hybrid VNS algorithm  is more likely to find a better solution the more time it is given. 
As can be seen, for eleven of the twelve months, the best schedule found after 60 minutes is 
better than the best schedule found after 30 minutes. However, in most hospitals, schedules 
can be produced a long time in advance of when they are required. This observation 
motivated our experiments with granting the algorithm more computation time than just one 
hour.  

The hybrid VNS was granted 12 hours of computation time for the scheduling period January 
2003. For this scheduling period, the best schedule ever found by an extended run of the 
genetic algorithm (for a period of about 24 hours) had a penalty of 681. The best schedule 
previously known for this period (which was produced manually) had a penalty of 587. After 
12 hours the hybrid VNS had found a schedule with penalty 541. It is important to note that 
our approach is producing the best known solution (produced either automatically or 
manually) on this real world problem instance. Moreover, it is producing it within a period 
(overnight) which is quite appropriate for this kind of problem. The results are summarised in 
Table 4. As can be seen, if more computation time is given the schedule can be significantly 
improved. Moreover, in the context of this particular problem, it is quite appropriate to run 
the algorithm overnight (say 12 hours). 

 
Algorithm Penalty  
Hybrid VNS after 30 minutes 736 
Hybrid VNS after 60 minutes 706 
Best ever G.A. (24 hours) 681 
Previous best known (made by manual improvements) 587 
Hybrid VNS after 12 hours 541 

Table 4: Experimentation with longer computation times 
 

4. Conclusions 

The hybrid VNS algorithm described has been shown to be a relatively straightforward but 
highly effective approach for this problem and is a viable and more effective alternative to 
the existing genetic algorithm for the commercial workforce management and planning 
software HARMONY. The VNS algorithm has been shown to regularly find superior 
schedules when compared against the genetic algorithm that is currently in use, and to have 
found best known schedules up to now for some of the scheduling periods (by running the 
algorithm for 12 hours). The VNS algorithm represents a significant improvement over a 
commercially successful methodology. 

The shift un-assignment and repair using heuristic ordering method has been shown to be a 
efficient and effective method of exploring the search space and when it is combined with the 
VNS, schedules of high quality can be found. It was also discovered that back-tracking was 
very useful in finding better solutions more quickly by reducing the exploration of paths 
which only led to poor quality solutions. 



Even though the results produced by this algorithm are good there are areas in which it could 
possibly be improved and need exploring, especially if it were being designed to be run over 
a longer time period than one hour. For example, after the VNS, when selecting the area of 
the schedule to un-assign shifts from, a simple method is used: Un-assign the shifts belonging 
to a fixed number of nurses with the highest personal schedules. This is an obvious heuristic 
and has been shown to work well. However, it is possible that there is a more effective 
method of selecting which and how many shifts to un-assign and reassign using the heuristic 
ordering. Also, eventually, the algorithm described here would run to completion. The time 
taken to do this would depend upon the machine executing it and the dimensions of the 
problem instance. It is possible to extend the search further if it were decided to give the 
search more time. For example, during the search the other schedules found could be saved 
and ranked. Then, once all the un-assignment, repair and back-track to best schedule found 
moves have been made, the algorithm could be restarted but back-tracking to the second best 
known schedule if necessary and if that does not find a better schedule try the third best and 
so on. This may prove to work as the un-assignment, repair, VNS sequence may be able to 
find an even better schedule if started from a different point in the search space, to just the 
best known schedule. 
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