
School of Computer Science and Information Technology
University of Nottingham

Jubilee Campus
NOTTINGHAM NG8 1BB, UK

Computer Science Technical Report No. NOTTCS-TR-2005-9

A Hybrid Heuristic Ordering and Variable Neighbourhood Search for the Nurse Rostering Problem

Edmund Burke, Timothy Curtois, Gerhard Post
 Rong Qu and Bart Veltman

First released: November 2005

© Copyright 2005 Edmund Burke, Timothy Curtois, Gerhard Post, Rong Qu and Bart Veltman

In an attempt to ensure good-quality printouts of our technical reports, from the supplied PDF files, we

process to PDF using Acrobat Distiller. We encourage our authors to use outline fonts coupled with

embedding of the used subset of all fonts (in either Truetype or Type 1 formats) except for the standard

Acrobat typeface families of Times, Helvetica (Arial), Courier and Symbol. In the case of papers prepared

using TEX or LATEX we endeavour to use subsetted Type 1 fonts, supplied by Y&Y Inc., for the

Computer Modern, Lucida Bright and Mathtime families, rather than the public-domain Computer Modern

bitmapped fonts. Note that the Y&Y font subsets are embedded under a site license issued by Y&Y Inc.

For further details of site licensing and purchase of these fonts visit http://www.yandy.com

A Hybrid Heuristic Ordering and Variable Neighbourhood Search for
the Nurse Rostering Problem

Edmund Burke1, Timothy Curtois1, Gerhard Post2, Rong Qu1, Bart Veltman2

1 School of Computer Science & I.T. University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham.
NG8 1BB. UK

2 ORTEC bv, Groningenweg 6-33, 2803 PV Gouda. Holland.

Abstract

This paper is concerned with the development of intelligent decision support methodologies
for nurse rostering problems in large modern hospital environments. We present an approach
which hybridises heuristic ordering with variable neighbourhood search. We show that the
search can be extended and the solution quality can be significantly improved by the careful
combination and repeated use of heuristic ordering, variable neighbourhood search and
backtracking. The amount of computational time that is allowed plays a significant role and
we analyse and discuss this. The algorithms are evaluated against a commercial Genetic
Algorithm on commercial data. We demonstrate that this methodology can significantly
outperform the commercial algorithm. This paper is one of the few in the scientific nurse
rostering literature which deal with commercial data and which compare against a
commercially implemented algorithms.

It is clear that the efficient rostering of healthcare personnel can lead to the more effective
utilisation of valuable resources. Healthcare institutions around the world are becoming
increasingly interested in the deployment of decision support technology to aid the personnel
scheduling process. A very general form of the nurse rostering problem could be described as
follows: Given a set of shifts and a set of nurses over a certain time period, assign each shift
to a nurse subject to a set of constraints. The constraints are usually defined by regulations,
working practices and the preferences of the nurses.

The problem of nurse rostering is relatively easily described but like most real world search
problems it is far from easy to automatically generate very high quality solutions. Indeed,
there have been many papers over the years from across operational research and artificial
intelligence that have tackled the problem in one form or another. A wide range of
approaches and techniques have been investigated and used. Ernst et al. (2004) identified 28
different categories of methods that have been used on personnel scheduling problems. These
include constraint logic programming, constructive heuristic, expert systems, genetic
algorithms, integer programming, set partitioning, simple local search and simulated
annealing. A recent review of automated nurse rostering approaches found that although there
has been a lot of research in the area, surprisingly few of the methods were tested on real
world data (Burke et al. 2004). The paper went on to conclude that even fewer have actually
been implemented in real hospital wards.

Of those techniques that have been applied on real-world problems metaheuristic methods
seem to dominate. One approach which has been applied in multiple real world hospitals is a
hybrid tabu search (Burke, De Causmaecker and Vanden-Berge, 1999). The tabu search is
integrated with techniques which are usually observed in manual scheduling approaches. The
algorithm has been incorporated into software that has been used to create nurse rosters in
over forty Belgian hospitals and copes with many shift types, work regulations and skill
categories. This work was hybridised with an evolutionary approach (Burke et al., 2001) to
produce a methodology which could generate higher quality solutions but at the cost of
increased computational time. Variable Neighbourhood Search (Mladenović and Hansen,
1997, 1999) has also been applied and tested on highly constrained real world nurse rostering
data (Burke et al. 2003). The authors found that VNS could be effectively used to escape
from the local optima found using single neighbourhood heuristics. They also commented
“After reaching a local optimum, we recommend the exploration of wider environments”.

Another investigation on real data explored a genetic algorithm approach (Aickelin and
Dowsland, 2000), which successfully exploits problem specific knowledge in tackling the
problem. Although the method is tailored for that particular problem instance, the underlying
concepts could be applied to other nurse rostering problems. In 1998, Dowsland was also able
to match the quality of schedules produced by an expert human scheduler using a highly
developed tabu search (Dowsland, 1998). The algorithm ‘oscillates’ between trying to
improve the cover and improving the preference costs. As well as using tabu lists, candidate
lists and diversification strategies the search also uses a large neighbourhood created by
looking for chains of overall improving swaps. Aickelin and Li (2004) have since
experimented with the application of bayesian optimisation and classifier systems to similar
nurse rostering problems. The results are close to those produced by an optimal integer
programming method and the authors concluded that with further effort and experimentation
the algorithms could well improve even more. Bellanti et al. tackled a problem with hard
constraints and objectives (or soft constraints) using various local search techniques (Bellanti

et el., 2004). The authors presented good results for a tabu search and iterated local search
which use neighbourhoods defined by changing the assignment of night shifts.

Another methodology that has been tested on complex real-world data from a UK hospital is
case-based reasoning (Beddoe, Petrovic and Vanden-Berghe, 2002). This approach avoids the
use of evaluation functions but instead aims to imitate how an expert human scheduler would
produce a good schedule. This is done by storing observed scheduling techniques and
retrieving and performing these moves or repairs whenever the situation is encountered again.
As an extension to their work the authors also suggest a method in which it could be
combined with a meta-heuristic approach. Another relatively recent approach is a
combination of constraint networks and knowledge-based rules (Meisels, Gudes and
Solotorevski, 1995). Their approach was implemented in a commercial software package and
has been successfully used in a number of hospitals.

Berrada, Ferland and Michelon (1996) developed a multi-objective mathematical
programming model to represent a real world problem containing both hard and soft
constraints in a Canadian hospital. The schedules produced met the standards required by the
head nurses. The authors also experimented with a tabu search and found that although it
required greater computational time it was useful in some circumstances. Valouxis and
Housos approach a nurse rostering problem using an approximate integer linear programming
model to produce initial solutions. The initial solutions are then further optimised using a
local search with a ‘2-opt’ neighbourhood and a tabu search (Valouxis and Housos, 2000).
Their method compared very favourably with a constrained programming approach. In 2004,
Bard and Purnomo (2005a) employ a combination of heuristic and integer programming
methods to solve nurse preference scheduling problems with up to one hundred nurses and
approximately thirteen hard and soft constraints. Individual nurse schedules are created by
modifying a base schedule using swaps. These columns are then used to form a set covering
type problem which when solved creates the overall schedule. Later they extended this work
to further improve the quality of schedules by incorporating the use of a downgrading option
(Bard and Purnomo 2005b).

By defining fuzzy constraints (i.e. constraints that may be partially satisfied and partially
violated) Meyer auf’m Hofe (2000) solves real world nurse rostering problems as constraint
optimisation rather than constraint satisfaction problems. Branch and bound and iterative
improvement are used to quickly produce good rosters. The approach was developed using
experience gained developing a software rostering system that is used in approximately 60
German hospitals (Meyer auf’m Hofe, 1997).

There are many more papers in the literature which are discussed in more detail in (Burke et
al, 2004) and (Ernst et al, 2003). It is clear that relatively few papers in the literature have
worked with real world data or been implemented in hospitals (Burke et al, 2004). One of the
main goals in this paper is to develop an effective and efficient search approach to improve
upon the genetic algorithm based approach that is currently employed within ORTEC’s
Harmony software. As such, the methodology has to be able to handle all the requirements
and constraints that are inherent in nurse rostering problems from the modern complex
environments that are represented by today’s hospitals.

This paper presents our investigation on combining a variable neighbourhood search with a
method of heuristically unassigning shifts and repairing schedules using heuristic ordering.
The next section describes the nurse rostering problem we were dealing with. Sections 2 and
3 detail the algorithm and results respectively. In section 4 we draw conclusions on the
success of this approach and possible future extensions.

1. Problem Description

The data for this problem was provided by ORTEC, an international consultancy company
who specialise in planning, optimisation and decision support solutions. They support
hospitals and other organisations all over the world with automated workforce management
solutions.

The schedules are planned in periods of one month. The ward consists of 16 nurses. 12 of the
nurses are full time and work 36 hours per week. One nurse works 32 hours per week and the
other 3 are also part time and work 20 hours per week. One of the full time nurses request no
late shifts (hard constraint), another requests an early or a day shift on January 7th (soft
constraint with weight 100). All the other constraints that need to be satisfied are presented in
sections 1.2 and 1.3. The data is very typical of their clients’ needs.

1.1 Shifts and Shift Demand

There are 4 different shift types in the problem. Table 1 shows the daily demand for these
shifts. Each of the shift types cover 9 hours including one hour of resting time. So the actual
working hour is 8 hours for each shift type.

Shift Start

time
End
Time

Mon Tue Wed Thu Fri Sat Sun

Day (D) 08:00 17:00 3 3 3 3 3 2 2
Early (E) 07:00 16:00 3 3 3 3 3 2 2
Late (L) 14:00 23:00 3 3 3 3 3 2 2
Night (N) 23:00 07:00 1 1 1 1 1 1 1

Table 1 : Shift types and weekly demand.

1.2 Hard Constraints

The following rules must be met at all times otherwise the schedule is considered infeasible
and unacceptable.

• Cover needs to be fulfilled (i.e. no shifts must be left unassigned).
• For each day a nurse may start only one shift.
• Within a scheduling period a nurse is allowed to exceed the number of hours for

which they are available for their department by at most 4 hours.
• The maximum labour time per week is on average 36 hours over a period of 13

consecutive weeks if this period does not include work during night shifts.
• The maximum number of night shifts is 3 per period of 5 consecutive weeks.

• A nurse must receive at least 2 weekends off duty per 5 week period. A weekend off
duty lasts 60 hours including Saturday 00:00 to Monday 04:00.

• Following a series of at least 2 consecutive night shifts a 42 hours rest is required.
• During any period of 24 consecutive hours, at least 11 hours of rest is required. A

night shift has to be followed by at least 14 hours rest. An exception is that once in a
period of 21 days for 24 consecutive hours, the resting time may be reduced to 8
hours.

• The number of consecutive night shifts is at most 3.
• The number of consecutive shifts (workdays) is at most 6.

1.3 Soft Constraints

Ideally these requirements should be fulfilled. However, to obtain a schedule that meets all
the hard constraints it is often necessary to break some of the soft rules. A weight is assigned
to each soft constraint to reflect its importance (especially in comparison to other soft
constraints). A weighting is simply a number. The higher the number, the more strongly
desired the constraint or request is. The weights are set either by the head nurses or through
feedback from the nurses about what qualities they desire in their schedules. As a rough guide
the weights could be described as follows:

Weight 1000 : The constraint should not be violated unless absolutely necessary.

Weight 100 : The constraint is strongly desired.

Weight 10 : The constraint is preferred but not critical.

Weight 1 : Try and obey this constraint if possible but it is not essential.

1.4 Evaluation Function

The evaluation function is the sum of all the penalties incurred due to soft constraint
violations. The penalty for each soft constraint is calculated either linearly or quadratically
using the violation measurement factors listed in Table 2. also. The violation measurement
factor is basically the degree to which the constraint is violated or the excess of the violation.

A soft constraint with a linear penalty function is simply calculated as: The violation
measurement factor multiplied by the weight. For example, it is preferable to have at most
zero stand-alone or isolated shifts. This is a soft constraint with weight 1000. However, to
produce a feasible schedule (i.e. one in which all the hard constraints are fulfilled) it may be
necessary to allocate a nurse an isolated shift. This is one more than is preferred so a penalty
of 1000 is incurred. If the nurse had two isolated shifts they would have a penalty of 2000 (2
* 1000) .

A quadratic penalty function is calculated as: The violation measurement factor squared and
multiplied by the weight. For example, it is preferable that during a period of five weeks a
nurse performs no more than three night shifts. This is a soft constraint with a weight of
1000. However, it may be necessary to assign five night shifts in the five week period (i.e. 2
more than preferred), then the penalty for this soft constraint violation would be 4000 (22 *
1000).

Constraint Weight Penalty

Function
Violation
measurement factor

For the period of Friday 22:00 to Monday 0:00 a nurse
should have either no shifts or at least 2 shifts (‘Complete
Weekend’).

1000 Linear Number of non-complete
weekends

For any employees avoid stand-alone shifts. A stand alone
shift is an isolated working day i.e. a shift on a day which
is flanked by two days without shifts.

1000 Linear Number of isolated
shifts

For employees with availability of 30-48 hours per week,
the length of a series of night shifts should be within the
range 2-3. It could be before another series.

1000 Quadratic Difference between
length of series and
acceptable length
range. e.g. if 1 night
shift, factor = 1, if 2 or
3 night shifts, factor =
0, if 4 night shifts,
factor = 1, if 5 factor =
2 etc.

For employees with availability of 0-30 hours per week,
the length of a series of night shifts should be within the
range 2-3. It could be before another series.

1000 Quadratic Difference between
length of series and
acceptable length range

The rest after a series of day, early or late shift is a
minimum of 2 days.

100 Linear Factor is one if only
one day of rest
otherwise zero

For employees with availability of 30-48 hours per week,
within one week the number of shifts is within the range 4-
5.

10 Quadratic Difference between
length of series and
acceptable length range

For employees with availability of 0-30 hours per week,
within one week the number of shifts is within the range 2-
3.

10 Quadratic Difference between
length of series and
acceptable length range

For employees with availability of 30-48 hours per week,
the length of a series of shifts should be within the range of
4-6.

10 Quadratic Difference between
length of series and
acceptable length range

For employees with availability of 0-30 hours per week,
the length of a series of shifts should be within the range 2-
3.

10 Quadratic Difference between
length of series and
acceptable length range

For all employees the length of a series of early shifts
should be within the range 2-3. It could be within another
series.

10 Quadratic Difference between
length of series and
acceptable length range

For all employees the length of a series of late shifts
should be within the range of 2-3. It could be within
another series.

10 Quadratic Difference between
length of series and
acceptable length range

An early shift after a day shift should be avoided. 5 Linear Number of early shifts
after days shifts

A night shift after an early shift should be avoided. 1 Linear Number of night shifts
after early shifts

Table 2 : Soft Constraints

As mentioned previously, a feasible schedule is a schedule that satisfies all the hard
constraints. A penalty for an infeasible schedule can still be calculated but in our system a
feasible schedule is always considered better than an infeasible schedule regardless of penalty
values. Comparing feasible and infeasible schedules can be problematic for some algorithms
such as a genetic algorithm as discussed by Aickelin and White. (2004). For our algorithm
though these difficulties did not arise as we were always able to eventually find feasible
solutions.

It is now possible to define the objective of the problem: To find a feasible schedule with the
lowest possible penalty caused by soft constraint violations. From the perspective of the head
nurse, of course, the actual penalty hides a lot of information about the solution but it is not
totally meaningless. By examining the penalty for each schedule it is possible to gain some
idea of the schedule quality. For example, if the penalty is less than 1000 then we know that
all the constraints with weight 1000 have been satisfied. However, the key to producing
satisfactory schedules is obviously setting the correct weights and ensuring that all the
required constraints are defined. Therefore it is essential that the end user either has a good
understanding of how to set the weights and define constraints or they have clearly described
their requirements to the software administrator.

2. The Hybrid Variable Neighbourhood Search Algorithm

The algorithm that we present in this paper is an iterative process in which variable
neighbourhood search is followed by a schedule disruption and repair strategy. The repairing
of the schedule is performed using a heuristic ordering technique. Back tracking is also
performed to further improve the quality of the schedules produced.

The overall process is illustrated by the pseudo-code in Figure 1.

Create Initial Schedule
REPEAT
 Variable Neighbourhood Search
 IF current penalty < best penalty THEN
 SET best schedule to current schedule
 SET best penalty to current penalty
 ELSE
 SET Current Schedule to Best Schedule (i.e. Backtrack one step)
 ENDIF
 Unassign shifts of a set of nurses
 Repair schedule (using heuristic ordering method)
UNTIL search terminated

Figure 1. Pseudo-code of the overall hybrid algorithm

2.1 Initialisation

A heuristic ordering is used to create the initial schedule. In the experimentation section, we
will be comparing our approach against a commercial genetic algorithm developed by
ORTEC and in use in real hospital environments. The commercial genetic algorithm this
hybrid variable neighbourhood search is evaluated against uses a similar heuristic ordering
method to create its initial population of schedules.

The aim of the heuristic ordering process is to sort all the shifts in order of the estimated
difficulty of assigning them or how likely they are to cause high penalties (by using the
criteria shown in Table 3). Using the weighted sum to identify them, the more troublesome
shifts are then assigned earlier on in the schedule construction process.

Once the shifts have been sorted in the order in which to try and assign them, they are in turn
assigned to each nurse to calculate the penalty that would be incurred if the shift was assigned
to that nurse. The shift is then assigned to the nurse that gains the least penalty in receiving
that shift.

The attributes of a shift that are examined when ranking the shifts in the order of possible
difficulty to assign are described in Table 3. along with the functions used to assign its total
weight for ranking.

Shift Criteria Evaluation Function Weight
Night Shift Weight 100
Weekend Shift Weight 50
Number of
valid nurses

(NumValidNurses / TotalNumNurses) * Weight 70

Shift Date Weight * (Schedule.EndDate – Shift.BeginDate) 20

Table 3: Shift evaluation criteria

The first two criteria in Table 3. are obvious to examine as there are high penalties associated
with night shift and weekend shift constraints. The third criterion used is to deduce how many
nurses are able to fulfil this shift. If there are many nurses able to undertake it then it can be
scheduled later but if there are very few then it is a good idea to assign it early on in the
process. The shift date criteria is used to try and ensure that shifts in the early days in the
scheduling period are assigned earlier on in the process. This is useful as these shifts are more
likely to conflict with the previous schedule’s assignments. The shift date evaluation function
is in units of days.

2.2 Variable Neighbourhood Search

When the initial schedule has been created using the heuristic ordering method described
above, a simple Variable Neighbourhood Search is applied. This makes use of two
neighbourhoods. Both of these neighbourhoods are commonly used by meta-heuristic
approaches and have been described before, see, for example, (Burke et al. 2002). The two
neighbourhoods are defined by the following moves or changes to a schedule:

1. Assigning a shift to a different nurse.
2. Swapping the nurses assigned to each of a pair of shifts.

The first neighbourhood is a lot smaller than the second neighbourhood. However, it is
observed that moves in the second neighbourhood can improve the quality of the schedule
quite significantly.

Our Variable Neighbourhood approach is basically a Variable Neighbourhood Descent.
Initially it was implemented in a greediest or steepest descent manner. However, after some

experimentation this was changed to a quickest descent algorithm as shown in the following
pseudo-code.

SET MoveMade to TRUE
WHILE MoveMade is TRUE
 SET MoveMade to FALSE
 FOR each move in neighbourhood one
 IF an improving move THEN
 make this move
 SET MoveMade to TRUE
 END IF
 END LOOP
 IF MoveMade IS TRUE THEN
 go back to start of WHILE loop
 END IF
 FOR each move in neighbourhood two
 IF an improving move THEN
 make this move
 SET MoveMade to TRUE
 END IF
 END LOOP
 ENDWHILE

Figure 3. Pseudo-code of VNS

As can be seen from Figure 3 the smaller neighbourhood (neighbourhood 1) is repeatedly
examined for an improving move and the move is executed if found. When there are no
improving moves left in neighbourhood 1, then the much larger neighbourhood 2 is
examined. If a move in neighbourhood 2 is used then neighbourhood 1 is examined again.
This is repeated until there are no improving moves left in neighbourhood 1 and 2.

Initially the Variable Neighbourhood Search was implemented in a greediest or steepest
descent manner. That is, for each of the moves in the neighbourhood, identify the move or
swap that would bring the most improvement and then perform that move or swap. The
disadvantage in steepest descent is the extra time required to examine every move and swap,
especially in a highly constrained problem like this in which there are many constraints to
check and penalties to calculate on each move. This was especially noticeable in the second
neighbourhood which is quite large.

In an attempt to decrease the running time of the algorithm a quickest descent form of VNS
was tested. That is, until no more improving moves are found, examine each move and swap
and execute the move or swap if it decreases the schedule’s overall penalty at all.

It was interesting to discover that for this problem using these neighbourhoods the quickest
descent method was not only faster than steepest descent but it was usually at least as good
and sometimes better in comparison. This was an interesting observation.

We will briefly explain why the available neighbourhoods are restricted to these two
neighbourhoods. For example, in Burke et al, 2002 a VNS for a nurse rostering problem is
introduced which uses a larger set of neighbourhoods. If these neighbourhoods are examined
more closely, however, it can be observed that many of them are already included in our
larger two. Merging many of these neighbourhoods and searching them exhaustively is now
possible due to recent increases in hardware technology and computing power that we have
witnessed over the past few years (although the paper was published in 2002, the experiments

were performed on an IBM RS6000 PowerPC as the scheduling system had already been in
development for some years previously). Secondly, some of the other neighbourhoods are
used to add moves which diversify the search and are used regardless of the effect on the
schedule’s penalty. So they are not appropriate for use in a VNS descent.

2.3 Making the Schedule Feasible

After the creation of the initial schedule described earlier, or the larger movements in the
search space which are described later, the schedule is often still infeasible in that the shift
cover may not yet have been fulfilled i.e. not all the required shifts have yet been assigned
because there is no nurse to assign the shift to without violating a hard constraint. As hard
constraints have no weighting and are not considered in the penalty function it is necessary to
also keep track of the number of unassigned shifts or hard constraint violations for the current
schedule. A schedule with less unassigned shifts than another schedule is considered to be
better than the other, regardless of the difference in the penalty value. So if a move increases
the penalty but decreases the number of unassigned shifts or hard constraints then it is
accepted. Therefore during the VNS, if there are still unassigned shifts, then after a successful
move or swap an attempt is made to see if it is now possible to assign any of the unassigned
shifts without creating hard constraint violations. It is often the case that managing to assign
an unassigned shift will increase the penalty significantly but a schedule with a high penalty
and no hard constraint violations is preferable to any schedule with hard constraint violations.

2.4 Schedule Disruption and Repair

Generally, at the end of the VNS phase the schedule not only has a lower penalty than before
but the schedule is also usually now feasible.

After the VNS, a local optimum will have been reached from which it is impossible to escape
simply by examining the two neighbourhoods described. To improve upon the current
schedule it is now necessary to move to a different area of the search space from which it will
hopefully be possible to find a schedule with a penalty lower than the best found so far (by
using the VNS again.)

The obvious way of making this ‘jump’ would be to use a tabu search or simulated annealing
mechanism. However, preliminary experimentation revealed that it would be difficult to
successfully hybridise one of these traditional meta-heuristics with this particular VNS and
produce better schedules in reasonable computation times.

The reason for this is due to the large size of the second neighbourhood which increases the
computation time required for the VNS. For a tabu search or simulated annealing approach to
be successfully combined with this VNS, it was estimated that a search time of days would be
necessary whereas (from the nature of the problem) it was preferable to keep the search time
to a magnitude of hours. Although a computation time of days would not be totally
unacceptable, a shorter time is preferred because often the head nurse or planner may be
presented with last minute requests or situations which may require a new schedule to be
created and in this scenario a very long execution time is unhelpful.

In an attempt to improve upon the schedules produced by the VNS in an acceptable
computation time, an alternative method was developed. The idea is to heuristically select
sections of the overall schedule which could possibly be improved and to then attempt to

improve them. To do this the nurses are ranked in order of the penalties for their own
personal schedule. A certain number of nurses with the highest personal penalties are selected
and all the shifts assigned to these nurses are unassigned. For these instances in which there
are 16 nurses, it was discovered (after a series of experiments) that a good number of nurses
to unassign the shifts allocated to was 3.

The unassigned shifts are then reassigned using the heuristic ordering method described
earlier in section 2.1. VNS is then performed as before to see if a better schedule can be
produced.

The process of un-assigning the shifts of a certain number of the most highly penalised nurses
of the current schedule, repairing the schedule using heuristic ordering and then performing
VNS could be carried out indefinitely until a satisfactory schedule is found. However, it was
discovered that after the destruction, repair and VNS phases of the algorithm were performed
the current schedule was often relatively poor and any subsequent schedules found from this
point on were also relatively poor and only occasionally would the current schedule’s penalty
be reduced to an acceptable value again. The reason for this is believed to be due to the very
high penalties associated with the night shifts for these particular instances. Once bad
sequences of night shifts are introduced into the schedule, it is difficult to recover simply
through the VNS with these neighbourhoods alone. Another weakness in this method is that,
although better schedules were being found, it was too infrequently during the algorithm. It
could be observed that although good schedules were being found they were often of all
about the same penalty with no great improvements on the best penalty.

To overcome these problems we introduced the following process. If after the VNS, the
penalty of the current schedule is not less than the best schedule found so far, then the current
schedule is reset to the best schedule and the shifts for a different set of nurses are unassigned
and reassigned. The set of nurses selected to have their shifts reassigned is the set with the
next lowest collective penalty to the set selected previously if no overall improvement was
found before.

2.5 Genetic Algorithm

Harmony uses a genetic algorithm to produce schedules and rosters. This existing algorithm
provides a benchmark upon which to compare the performance of the algorithm described
here.

The genetic algorithm of Harmony is designed to be robust and effective for a wide variety of
nurse rostering problems. To achieve this, like our algorithm, it does not heavily rely on
problem specific knowledge or use detailed knowledge of the problems’ structures. An
algorithm designed for a specific problem which heavily exploits its particular structure is
likely to be more effective but less useful when other problems are considered. The genetic
algorithm has, however, already performed in a more than satisfactory manner for a number
of clients with varying requirements.

The algorithm has a number of phases. Firstly the initial population of schedules is created
using a similar heuristic ordering method to the one described in this paper but ensuring each
individual (or schedule) is different enough to introduce sufficient diversity in the population.
Successive generations are created using roulette wheel parent selection, two types of
crossover and three types of mutation. The particular crossover and/or mutations used are

determined statistically by measuring their success in previous use between generations. The
genetic algorithm terminates when a minimum threshold of improvement between
generations is reached. After the GA phase a local search is performed to further optimise
the best schedule found.

3. Results

To develop this algorithm the workforce management and planning software Harmony
(Post and Veltman, 2004) developed by ORTEC was used. Employing Harmony provided a
number of advantages from a research point of view. The software has a highly developed
user interface with which a large number and wide variety of nurse rostering problems can be
defined and created. All data structures and methods for manipulating the problem instances
themselves already exist with many hours of work already performed in optimising their
access and use. This meant we were able to concentrate on creating, testing and improving an
efficient algorithm for a wide variety of nurse rostering problems. Obviously the software
also provides a clear visual display of the schedules and with precise breakdowns of why
each employee receives the penalty they have. It was also particularly useful to have an
existing commercial strength algorithm for comparing our work against.

Both algorithms were implemented using Delphi 5. The experiments were performed using a
PC with a Pentium 1700MHz processor and Windows 2000 operating system.

3.2 Comparison of the Hybrid Variable Neighbourhood Approach with the Genetic
Algorithm

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

GA (60 mins) 775 1791 2030 612 2296 9466 781 4850 615 736 2126 625

VNS (30 mins) 735 1950 2055 501 2285 9312 660 4975 761 665 2041 625

VNS (60 mins) 735 1866 2010 457 2161 9291 481 4880 647 665 2030 520

Table 4: Comparison of our Hybrid Approach and the Genetic Algorithm

Table 4 presents the results obtained after applying the algorithms to each of the problem
instances. The best results among the approaches are highlighted in bold. As can been seen
from the results, our hybrid VNS algorithm finds better solutions than the existing
commercial genetic algorithm for nine out of the twelve problem instances. For seven of the
twelve months the VNS after 30 minutes also outperforms the GA after 60 minutes.

It is interesting to see that although all the problem instances are quite similar, the penalties
for each month are quite different (varying from 457-9466). These differences are due to the
structure of the month itself. For example, if the period starts on a Sunday then many of the
nurses will automatically gain an unavoidable penalty by not working a complete weekend as
the previous scheduling period is empty. Due to the lack of scheduling history for each of
these instances there is always an unavoidable penalty so a penalty of zero will not be found

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Time (mins)

P
en

al
ty

GA

Hybrid VNS

Figure 5. Comparison of the algorithms’ progress for schedule January 2003

Figure 5. shows the progress of the two algorithms in finding schedules for the month of
January. The graph shows the penalty for the best schedule found so far for each algorithm
after x minutes. For the genetic algorithm, a steady decrease in penalty can be seen over the
sixty minutes as after each generation a new best schedule is often found as a result of the
crossover and repair operations. A drop of over 1000 in penalty in under a couple of minutes
is most likely due to one of the constraints with a weight of 1000 being satisfied as well as
other small improvements being made. The relatively steep (as all the soft constraints with
weight 1000 have now been satisfied) decrease in penalty in the last two minutes for the GA
is due to the final local optimisation phase.

For the Hybrid VNS it can be seen that within four minutes (after a couple of iterations of the
algorithm) the best schedule already has a penalty close to that produced finally by the GA at
the end of the sixty minutes. Between the fourth and sixtieth minute an additional better
schedule is found as a result of the schedule disruption, repair and VNS. From observing the
algorithm when applied to the other scheduling periods, within the first sixty minutes there
are usually three or four improvements in the best local optimum found between the fourth
and sixtieth minute.

For each month, to ensure that the inputs are the same for both algorithms, the previous
schedules are all emptied of assignments. Having an empty previous scheduling period
already introduces penalties in the current scheduling period which cannot be removed by
any possible shift assignments. The problem instances are similar in structure as the
differences are due to the number of days in the month and the weekdays the month starts and
finishes on.

3.2 Experimentation with longer computation times

The hybrid VNS algorithm is more likely to find a better solution the more time it is given.
As can be seen, for eleven of the twelve months, the best schedule found after 60 minutes is
better than the best schedule found after 30 minutes. However, in most hospitals, schedules
can be produced a long time in advance of when they are required. This observation
motivated our experiments with granting the algorithm more computation time than just one
hour.

The hybrid VNS was granted 12 hours of computation time for the scheduling period January
2003. For this scheduling period, the best schedule ever found by an extended run of the
genetic algorithm (for a period of about 24 hours) had a penalty of 681. The best schedule
previously known for this period (which was produced manually) had a penalty of 587. After
12 hours the hybrid VNS had found a schedule with penalty 541. It is important to note that
our approach is producing the best known solution (produced either automatically or
manually) on this real world problem instance. Moreover, it is producing it within a period
(overnight) which is quite appropriate for this kind of problem. The results are summarised in
Table 4. As can be seen, if more computation time is given the schedule can be significantly
improved. Moreover, in the context of this particular problem, it is quite appropriate to run
the algorithm overnight (say 12 hours).

Algorithm Penalty
Hybrid VNS after 30 minutes 736
Hybrid VNS after 60 minutes 706
Best ever G.A. (24 hours) 681
Previous best known (made by manual improvements) 587
Hybrid VNS after 12 hours 541

Table 4: Experimentation with longer computation times

4. Conclusions

The hybrid VNS algorithm described has been shown to be a relatively straightforward but
highly effective approach for this problem and is a viable and more effective alternative to
the existing genetic algorithm for the commercial workforce management and planning
software HARMONY. The VNS algorithm has been shown to regularly find superior
schedules when compared against the genetic algorithm that is currently in use, and to have
found best known schedules up to now for some of the scheduling periods (by running the
algorithm for 12 hours). The VNS algorithm represents a significant improvement over a
commercially successful methodology.

The shift un-assignment and repair using heuristic ordering method has been shown to be a
efficient and effective method of exploring the search space and when it is combined with the
VNS, schedules of high quality can be found. It was also discovered that back-tracking was
very useful in finding better solutions more quickly by reducing the exploration of paths
which only led to poor quality solutions.

Even though the results produced by this algorithm are good there are areas in which it could
possibly be improved and need exploring, especially if it were being designed to be run over
a longer time period than one hour. For example, after the VNS, when selecting the area of
the schedule to un-assign shifts from, a simple method is used: Un-assign the shifts belonging
to a fixed number of nurses with the highest personal schedules. This is an obvious heuristic
and has been shown to work well. However, it is possible that there is a more effective
method of selecting which and how many shifts to un-assign and reassign using the heuristic
ordering. Also, eventually, the algorithm described here would run to completion. The time
taken to do this would depend upon the machine executing it and the dimensions of the
problem instance. It is possible to extend the search further if it were decided to give the
search more time. For example, during the search the other schedules found could be saved
and ranked. Then, once all the un-assignment, repair and back-track to best schedule found
moves have been made, the algorithm could be restarted but back-tracking to the second best
known schedule if necessary and if that does not find a better schedule try the third best and
so on. This may prove to work as the un-assignment, repair, VNS sequence may be able to
find an even better schedule if started from a different point in the search space, to just the
best known schedule.

Acknowledgements

This work was supported by EPSRC grant GR/S31150/01. We would also like to thank the
anonymous referees for their helpful comments and suggestions.

References

U. Aickelin, K. A. Dowsland (2000). “Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem.” Journal of Scheduling, Volume 3, Number 3, pages
139-153.

U. Aickelin and K. Dowsland (2003). “An Indirect Genetic Algorithm for a Nurse Scheduling
Problem.” Computers and Operations Research, volume 31, pages 761-778.

U. Aickelin, J. Li (2004). “The Application of Bayesian Optimization and Classifier Systems
In Nurse Scheduling.” Proceedings of the 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII), Lecture Notes in Computer Science 3242, pages 581-590,
Springer, Birmingham, UK.

U. Aickelin, P. White (2004). “Building better nurse scheduling algorithms.” Annals of
Operations Research, Volume 128, pages 159-177.

J. F. Bard, H. W. Purnomo (2005). “Preference scheduling for nurses using column
generation.” European Journal of Operational Research, Volume 164, pages 510-534.

J. F. Bard, H. W. Purnomo (2005). “A column generation-based approach to solve the
preference scheduling problem for nurses with downgrading.” Socio-Economic Planning
Sciences, Volume 39, pages 193-213.

G. R. Beddoe, S. Petrovic, G. Vanden Berghe (2002). “Storing and Adapting Repair
Experiences in Employee Rostering.” E.K. Burke, P. De Causmaecker (Eds.), Selected
Papers of the 4th International. Conference on Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 2740 pages 148-165.

F. Bellanti, G. Carello, F. Della Croce, R. Tadei (2004). “A greedy-based neighborhood
search approach to a nurse rostering problem.” European Journal of Operational Research,
Volume 153, pages 28-40.

I. Berrada, J. Ferland, P. Michelon (1996). “A Multi-Objective Approach to Nurse
Scheduling with both Hard and Soft Constraints.” Socio-Economic Planning Science,
Volume 30, Number 3, pages 183-193.

E. K. Burke, P. De Causmaecker, G. Vanden Berghe, H. Van Landeghem (2004). “The State
of the Art of Nurse Rostering.” Journal of Scheduling, Volume 7 Issue 6, pages 441-499.

E. K. Burke, P. De Causmaecker, S. Petrovic G. Vanden Berghe (2003). “Variable
neighborhood search for nurse rostering problems.” METAHEURISTICS: Computer
Decision-Making (edited by Mauricio G. C. Resende and Jorge Pinho de Sousa), Chapter 7,
pages 153-172, Kluwer 2003 (Combinatorial Optimization Book Series).

E. K. Burke, P. Cowling, P. De Causmaecker, G. Vanden Berghe (2001). “A Memetic
Approach to the Nurse Rostering Problem.” Applied Intelligence, Volume 15, Number 3,
pages 199-214.

E. K. Burke, P. De Causmaecker, G. Vanden Berghe (1999). “A Hybrid Tabu Search
Algorithm for the Nurse Rostering Problem.” Simulated Evolution and learning, 1998,
Lecture Notes in Artificial Intelligence, Volume 1585, pages 187-194.

K. A. Dowsland (1998). “Nurse scheduling with tabu search and strategic
oscillation.”European Journal of Operational Research, Volume 106, pages 393-407.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens and D. Sier (2004). “Annotated
Bibliography of Personnel Scheduling and Rostering.” Annals of Operations Research,
Volume 127, pages 21-144.

P. Hansen, N. Mladenović (1999). “An introduction to variable neighborhood search.” S.
Voss et al. (Eds.): Advances and Trends in Local Search Paradigms for Optimization. Kluwer
Academic Publishers, Boston, MA, pages 433–458.

A. Meisels, E. Gudes, G. Solotorevski (1995). “Employee Timetabling, Constraint Networks
and Knowledge-Based Rules: A Mixed Approach.” E.K. Burke, P. Ross (Eds.): Practice and
Theory of Automated Timetabling, First International Conference Edinburgh, Springer
Lecture Notes in Computer Science, pages 93-105.

H. Meyer auf’m Hofe (1997). “ConPlan/SIEDAplan: Personnel Assignment as a Problem of
Hierarchical Constraint Satisfaction.” Proceedings of the Third International Conference on
the Practical Application of Constraint Technology, (Practical Application Expo, London),
pages 257-271.

H. Meyer auf’m Hofe (2000). “Solving Rostering Tasks as Constraint Optimization”, E.K.
Burke, W. Erben (Eds.): Practice and Theory of Automated Timetabling, Third International
Conference, Konstanz, Springer, pages 191-212.

N. Mladenović, P. Hansen (1997). “Variable Neighborhood Search.” Computers &
Operations Research. Volume 24, pages 1097–1100.

G. Post, B. Veltman (2004). “Harmonious Personnel Scheduling.” Proceedings of the 5th
International Conference on the Practice and Automated Timetabling (PATAT 2004), pages
557-559.

C. Valouxis, E. Housos (2000). “Hybrid optimization techniques for the workshift and rest
assignment of nursing personnel.” Artificial Intelligence in Medicine Volume 20, pages 155-
175.

