
Tabu Search Techniques for Examination

Timetabling

Luca Di Gaspero1 and Andrea Schaerf 2

1 Dipartimento di Matematica e Informatica
Università di Udine

via delle Scienze 206, I-33100, Udine, Italy
email: digasper@dimi.uniud.it

2 Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica
Università di Udine

via delle Scienze 208, I-33100, Udine, Italy
email: schaerf@uniud.it

Abstract The Examination Timetabling problem regards the schedul-
ing for the exams of a set of university courses, avoiding the overlapping
of exams having students in common, fairly spreading the exams for the
students, and satisfying room capacity constraints.
We present a family of solution algorithms for a set of variants of the
Examination Timetabling problem. The algorithms are based on tabu
search, and they import several features from the research on the Graph

Colouring problem.
Our algorithms are tested on both public benchmarks and random in-
stances, and compared with previous results in the literature.

1 Introduction

The Examination Timetabling problem is a combinatorial problem that com-
monly arises in universities: One has to schedule a certain number of examina-
tions in a given number of time slots in such a way that no student is involved
in more than one exam at a time. The assignment of exams to days and to time
slots within the day is also subject to constraints on availabilities, fair spreading
of the student workload, and room capacities.

Different variants of the timetabling problem have been proposed in the lit-
erature, which differ from each other based on the type of constraints and objec-
tives involved (see [4,16] for recent surveys). Constraints involve room capacity
and teacher availability, whereas objectives mainly regard student workload.

In this paper, we present an ongoing research on the development a family
of solution algorithms for a set of variants of the Examination Timetabling

problem. Our algorithms are based on tabu search [10], and they make use of
several features imported from the literature on the Graph Colouring problem
[8, Prob. GT4, page 191].

The investigation of different versions of the problem allows us not only to
obtain a more flexible application but also to understand the general structure



of the problem family. As a consequence, we should be able to perform a more
robust parameter tuning mechanisms and to compare our results with most of
previous ones on different versions of the problem.

We perform preliminary experiments of the algorithms on the popular Toronto’s
benchmarks [6] and on the Nottigham’s instance, which are the only publicly
available ones at present.1 We compared our results with previous ones obtained
in [2,1,6] using different techniques on such instances. In addition, we experi-
mented with a set of randomly generated instances.

2 The Examination Timetabling problem

We introduce the Examination Timetabling problem in stages. In Section 2.1
we present the basic search problem. In Section 2.2 we consider further (hard)
constraints, and we describe various components of the objective function (soft
constraints). Finally, in Section 2.3 we describe other versions of the problem
not considered in this work.

2.1 Basic Search Problem

Given is a set of n exams E = {e1, . . . , en}, a set of q students S = {s1, . . . , sq},
and a set of p time slots (or periods) P = {1, . . . , p}.

Consecutive time slots lie one unit apart; however, the time distance between
periods is not homogenous due to lunch breaks and nights. This fact is taken
into account in second-order constraints as explained below.

There is a binary enrollment matrix Cn×q, which tells which exams the stu-
dent plan to attend; i.e., cij = 1 if and only if student sj wants to attend exam
ei.

The basic version of Examination Timetabling is the problem of assigning
examinations to time slots avoiding exam overlapping.

The assignment is represented by a binary matrix Yn×p such that yik = 1
if and only if exam ei is assigned to period k. The corresponding mathematical
formulation is the following.

find yik (i = 1..n; k = 1..p)

s.t.

p∑

k=1

yik = 1 (i = 1..q) (1)

q∑

h=1

yikyjkcihcjh ≤ 1 (k = 1..p; i, j = 1..n; i 6= j) (2)

yik = 0 or 1 (i = 1..n; k = 1..p) (3)

1 At the URLs ftp://ie.utoronto.ca/pub/carter/testprob and ftp://ftp.cs.

nott.ac.uk/ttp/Data, respectively.



Constraints 1 state that an exam must be taken in exactly one time slot.
Constraints 2 state that no student takes two exams scheduled at the same time
slot.

It is easy to recognise that this basic version of the Examination Timetabling

problem is a variant of the well-known NP-complete Graph Colouring prob-
lem. In particular, colours represent time slots, each node represents an exam,
and there is an (undirected) edge between two nodes i and j if at least one
student is enrolled in both exams ei and ej .

2.2 Additional Constraints and Objectives

Many different types of hard and soft constraints have been considered in the
literature on Examination Timetabling. The hard ones that we take into
account are the following.

Capacity: Based on the availability of rooms, we have a capacity array Lp,
which represents the number of available seats. For each time slot k, the
value lk is an upper bound of the total number of students that can be
examined at period k. The capacity constraints can be expressed as follows.

n∑

i=1

q∑

h=1

cihyik ≤ lk (k = 1..p) (4)

Notice that we do not take into account the number of rooms, but only
the total number of seats available in that period. This is reasonable under
the assumption that more than one exam can take place in the same room.
Alternative formulations that assign one exam per room are discussed in
Section 2.3.

Preassignments and Unavailabilities: An exam ei can have to be scheduled
necessarily in a given time slot k, or, conversely, have to be not scheduled
in such time slot. These constraints are added to the formulaton simply
imposing yik to be 1 or 0 respectively.

We now describe the soft constraints, which contribute, with different weights,
to the objective function to be minimized. For the sake on brevity, we do not
provide the mathematical formulation of the objective function.

Second-Order Conflicts: A student should not take two exams in consecutive
periods. To this aim, we include in the objective function a component that
counts the number of times a student has to take a pair of exams scheduled
at adjacent periods.
Many versions of this constraint type have been considered in the literature,
based on the actual time distance between periods.

I) Penalize conflicting exams equally.
II) Penalize overnight (last one of the evening and the first of the morning

after) adjacent periods less than all others [1].



III) Penalize less exams just before and just after lunch, do not penalize
overnight conflicts [7]

Higher-Order Conflicts: This constraint penalizes also the fact that a stu-
dent takes two exams in periods at distance three, four, or five. Specifically,
we assign a proximity cost pc(i) whenever a student has to attend two exams
scheduled within i time slots. The cost of each conflict is thus multiplied by
the number of students involved in both examinations. As in [6], the cost
function decreases from 16 to 1 as follows: pc(1) = 16, pc(2) = 8, pc(3) = 4,
pc(4) = 2, pc(5) = 1.

Preferences: Preferences can be given by teachers and student for schedul-
ing exams to given periods. This is the soft version of preassignments and
unavailability.

We have considered many versions of the problem based on which of the
above hard and soft constraint we select.

2.3 Other Variants of the Problem

In this section, we briefly discuss variants of the problem and different constraint
types not taken into account in this work.

Room assignment: Some authors (see, e.g., [5]) allow only one exam per room
in a given period. In this case, then exams must be assigned not only to
periods, but also to rooms. The assignment must be done based on the
number of students taking the exams and capacity of rooms.

Special rooms: Some other authors (see, e.g., [13]) consider also different types
of rooms, and exams that may only be held in certain types of rooms. In
addition, some exams may be split into two or more rooms, in case the
students do not fit in one single room.

Exams of variable lenght: Exams may have length that do not fit in one
single time slot. In this case consecutive ones must be assigned to them.

Minimize the length of the session: We have assumed that the session has
fixed length. However, we may also want to minimize the number of periods
required to accomplish all the exams. In that case, the number of periods p

becomes part of the objective function.
Other higher-order conflicts: Carter et al. [5] generalize the higher-order

constraints and consider a penalty for the fact that a student is forced to
take x exams in y consecutive periods.

3 Local Search

Local search is a family of general-purpose techniques for search and optimization
problems, which has gain popularity in the AI community after the seminal
papers by Selman et al. [17] and Minton et al. [14]. Local search techniques
are non-exhaustive in the sense that they do not guarantee to find a feasible
(or optimal) solution, but they search non-systematically until a specific stop
criterion is satisfied.



3.1 Introduction

Given an instance p of a problem P , we associate a search space S with it. Each
element s ∈ S corresponds to a potential solution of p, and is called a state of
p. Local search relies on a function N , depending on the structure of P , which
assigns to each s ∈ S its neighbourhood N(s) ⊆ S. Each state s′ ∈ N(s) is called
a neighbour of s.

A local search algorithm starts from an initial state s0, which can be ob-
tained with some other technique or generated randomly, and enters a loop that
navigates the search space, stepping from one state si to one of its neighbours
si+1. The neighbourhood is usually composed by the states that are obtained by
some local change (called move) from the current one.

Local search techniques differ from each other according to the strategy they
use both to select the move in each state and to stop the search. In all tech-
niques, the search is driven by a cost function f that estimates the quality of
the state. For optimization problems, f generally accounts for the number of
violated constraints and for the objective function of the problem.

The most common local search techniques are hill climbing, simulated an-

nealing, and tabu search (TS). We now describe in more details TS which is the
technique that we use in our application. However, a full description of TS is
out of the scope of this paper (see, e.g., [10]). We only present the formulation
of the technique which has been used in this work.

3.2 Tabu Search

At each state si, TS explores a subset V of the current neighbourhood N(si).
Among the elements in V , the one that gives the minimum value of the cost
function becomes the new current state si+1, independently of the fact whether
f(si+1) is less or greater than f(si).

Such a choice allows the algorithm to escape from local minima, but creates
the risk of cycling among a set of states. In order to prevent cycling, the so-called
tabu list is used, which determines the forbidden moves. This list stores the most
recently accepted moves. The inverses of the moves in the list are forbidden.

The simplest way to run the tabu list is as a queue of fixed size k. That is,
when a new move is added to the list, the oldest one is discarded. We employ
a more general mechanism which assigns to each move that enters the list a
random number of moves, between two values kmin and kmax (where kmin and
kmax are parameters of the method), that it should be kept in the tabu list.
When its tabu period is expired, a move is removed from the list. In this way
the size on the list is not fixed, but varies dynamically in the interval kmin–kmax.

There is also a mechanism, called aspiration, that overrides the tabu status:
If a move m leads to a state whose cost function value is better than the current
best, then its tabu status is dropped and the resulting state is acceptable as the
new current one.

The stop criterion is based on the so-called idle iterations : The search ter-
minates when it reaches a given number of iterations elapsed from the last im-
provement of the current best state.



3.3 Tandem Search

One of the attractive properties of the local search framework is that different
techniques can be combined and alternated to give rise to complex algorithms.

In particular, we explore what we call the tandem strategy, which is a sim-
ple mechanism for combining two different local search techniques and/or two
different neighbourhood relations. Given an initial state s0 and two basic local
search techniques t1 and t2, that we call runners, the tandem search alternates
a run of each ti, always starting from the best solution found by the other one.

The full process stops when it performs a round without an improvement by
any of the two runners, whereas the component runners stop according to their
specific criteria.

The effectiveness of tandem search has been stressed by several authors (see
[10]). In particular, when one of the two runners, say t2, is not used with the aim
of improving the cost function, but rather for diversifying the search region, this
idea falls under the name of iterated local search (see, e.g., [18]). In this case the
run with t2 is normally called the mutation operator or the kick move.

4 Tabu Search for Examination Timetabling

We propose a TS algorithm for Examination Timetabling, along the lines of
the TS algorithm for Graph Colouring proposed by Hertz and de Werra [11].

As already mentioned, Examination Timetabling is an extension of the
Graph Colouring problem. In order to represent the additional constraints,
we extend the graph with an edge-weight function that represents the number
of students involved in two conflicting examinations and a node-weight function
that indicates the number of students enrolled in each examination.

4.1 Search Space and Cost Function

As in [11], the search space is composed by all complete colourings of the graph,
including infeasible ones. The only constraints that we impose to be satisfied
in all states of the search space are the unavailabilities and preassignments.
This can be easily obtained generating initial solutions that satisfy them, and
forbidding moves that lead to states that violate them.

The cost function that guides the search is a hierarchical one, in the sense
that it is linear combination of hard and soft constraints, with the weight for
hard constraints larger than the sum of all weights of the soft ones. For many
problems, though, this simple strategy of assigning fixed weights to the hard and
the soft components doesn’t work well. Therefore, during the search the weight
w of each component (either hard or soft) is let to vary according to the so-called
shifting penalty mechanism (see, e.g., [9]):

– If for K consecutive iterations all constraints of that component are satisfied,
then w is divided by a factor γ randomly chosen between 1.5 and 2.



– If for H consecutive iterations all constraints of that component are satisfied,
then the corresponding weight is multiplied by a random factor in the same
range.

– Otherwise, the weight is left unchanged.

The values H and K are parameters of the algorithm (and their values are
usually between 2 and 20).

This mechanism changes continuously the shape of the cost function in an
adaptive way, thus causing TS to visit solutions that have a different structure
than the previously visited ones.

4.2 Neighbourhood Relation

In our definition, two states are neighbours if they differ for the colouring of a
single node. Therefore, a move corresponds to changing the colour of one node,
and it is identified by a triple (〈node〉, 〈old colour〉, 〈new colour〉). Regarding the
notion of inverse of a move, we experimented with various definitions, and the
one that has given the best results is the one that considers inverse of 〈u, c1, c2〉
any move of the form 〈u, , 〉. That is, the colour of the node cannot be changed
again to any new one.

In order to identify the most promising moves at each iteration, we maintain
the so-called violations list VL, which contains the nodes that are involved in at
least one violation (either hard or soft). A second (shorter) list HVL containts
only the nodes that are involved in violations of hard constraints. In different
stages of the search (as explained in Section 4.4), nodes are selected either from
VL or from HVL. Nodes not in the lists are never analysed.

For the selection of the move among the nodes in the list (either VL or HVL),
we experimented with two different strategies:

Exhaustive: Examine systematically all nodes.
Sampling: Examine a sample of candidate nodes selected based on a dynamic

random-variate probability distribution biased on the nodes with higher in-
fluence in the cost function.

In both cases, the selection of the new colour for the selected node u is
exhaustive, and the new colour is assigned in such a way that leads to a smallest
value of the cost function, arbitrarily tie breaking.

More complex kinds of neighbourhood relations (see [15] for a review) are
currently under investigation.

4.3 Initial Solution Selection

Many authors (see, e.g., [11,12]) suggest for Graph Colouring to start local
search from an initial solution obtained with an ad hoc algorithm, rather than
from a random state. We experimentally observe that indeed giving a good
initial state saves significant computational time, which can be useful exploited
for a more complete exploration of the search space. Therefore, we use a greedy
algorithm that builds k independent sets (feasible colour classes) and assigns all
the remaining nodes randomly.



4.4 Search Techniques

We implemented two main TS-based algorithms. The first one is a simple TS
that uses the sampling selection rule based on the full violations list VL. No
shifting penalty mechanism is used in this case. This algorithm proved to be
reasonably fast.

Our second algorithm is a tandem one that alternates two TS runners. Both
runners use the shifting penalty mechanism and they make an exhaustive ex-
ploration of the neighbourhood. The first runner selects the nodes from the
violations list VL, whereas the second one uses an adaptive combination of VL

and HVL. In details, it selects form HVL when there are some hard violations,
and resorts to VL in any iteration in which HVL is empty.

Intuitively, the first runner searches for any kind of improvement, whereas
the second one focusses of hard constraints, taking into account only the moves
that affect them. The latter, however, once it has found a feasible, automatically
expands the neighbourhood to include also moves that deal with soft constraints.

For both runners, we use the exhaustive exploration of the violation list
because it “blends” well with the shifting penalty mechanism. In fact, in presence
of a continuous change of the cost function, the use of a more accurate selection
of the best move is experimentally proven to be more effective.

The tandem algorithm is currently ten times slower than the simple TS one.

5 Experimental results

Our algorithms have been coded in C++ using the GNU g++ compiler version
2.8.1. The tests reported in the following sections were conducted on a Sun Ultra
Enterprise 450 Server running Solaris 2.6.

5.1 Benchmarks and Experimental Setting

Up to now, the real-world data sets available to the timetabling community are
the twelve Toronto instances and the single Nottingham instance. We exper-
imented with most of them and with random instances. Unavailabilities, pre-
assignments, and preferences are considered only in the random instances. All
other components are present in the benchmarks, too.

For the first fast solver, the tabu list length is set to 5–10. For the tandem
solver, the first runner uses a long tabu list of length 20–40, whereas the second
uses a short one of length 5–10. The number of idle iterations is set so that the
duration of the runs is between 10 and 200 secs for the fast solver and between
100 and 2000 secs for the latter.

For the sake of brevity, we present only the results on the benchmark in-
stances, and we compare them with previous ones. Our results are preliminary,
in the sense that a fine grain parameter tuning phase is still in progress.

Carter et al. [6] present some results about the application of a variety of
constructive algorithms for all the Toronto instances. They consider second order
conflicts (version I) and higher-order conflicts, but no capacity constraints.



The objective function is normalized based on the total number of students.
This way they obtain a measure of the number of violations “per student”, which
allows them to compare results for instances of different size.

TS results Carter’s algorithms results
Data set exams time slots

best cost time avg cost avg time min—max cost min—max time

EAR-F-83 190 24 47.0 34.8 s 49.4 40.8 s 36.4—46.5 6.0—242.2 s

HEC-S-92 81 18 13.8 11.1 s 15.4 13.4 s 10.8—15.9 6.5—22.8 s

KFU-S-93 461 20 18.3 80.6 s 19.7 57.2 s 14.0—20.8 120.2—208.9 s

LSE-F-91 381 18 14.7 32.5 s 16.2 29.0 s 10.5—13.1 48.0—233.5 s

STA-F-83 139 13 158.3 8.9 s 159.8 10.1 s 161.5—165.7 5.7—6.1 s

TRE-S-92 261 23 10.2 170.1 s 10.8 137.4 s 9.6—11.0 74.1—150.6 s

UTA-S-92 638 35 4.7 929.8 s 5.0 1351.0 s 3.5—4.5 664.3—1287.8 s

UTE-S-92 184 10 28.8 10.2 s 30.6 6.9 s 25.8—38.3 4.7—9.1 s

YOR-F-83 180 21 42.8 53.0 s 46.2 32.0 s 41.7—49.9 174.5—428.0 s

Table 1. Comparison with results of Carter et al. [6]

Table 1 (next page) summarizes the performances of our first algorithm with
respect to Carter’s results. The table shows that our results are comparable with
Carter’s ones in many cases, even though we perform better than all constructive
techniques only in one case. The tandem solver hasn’t given better results at this
stage.

5.2 Comparison with Burke, Newall and Weare

Burke et al. [2] consider the problem with capacity constraints and second-order
conflicts (version I), and they solve it using using a memetic algorithm (MA1).

tandem solver Burke et al.
Data set n p

best avg. MA1

CAR-F-92 543 40 424 443 331

CAR-S-91 543 51 88 98 81

KFU-S-93 461 20 512 597 974

TRE-S-92 261 35 4 5 3

NOTT 800 26 11 13 53

NOTT 800 23 123 134 269

UTA-S-93 638 38 554 625 772

Table 2. Comparison with results of Burke et al. [2]

Table 2 shows the comparison of our tandem solver with Burke et al. [2]. The
table shows that our results are superior in many cases.

The results of Burke et al. [2] are refined by Burke and Newall [1] who
consider the problem with capacity constraints and second-order conflicts, but
in this case with version II. They present results about a subset of the Toronto
instances and on the Nottingham one.



tandem solver Burke and Newall
Data set exams time slots

best avg. MA2 MA2+D Con

CAR-F-92 543 36 3048 3377 12167 1765 2915

KFU-S-93 461 21 2135 2825 3883 1608 2700

NOTT 800 23 751 810 1168 736 918

PUR-S-93 2419 30 123935 126046 219371 65461 97521

Table 3. Comparison with results of Burke and Newall [1]

They propose a new memetic algorithm and a constructive one (Con) for com-
parison. The memetic algorithm uses a multistage procedure that decomposes
the instances in smaller ones and combines the partial assignments. We call MA2

the version with only a coarse grain decomposition and MA2+D the one with a
strong use of decomposition (into groups of 50-100 exams). The decomposition
is performed by an heuristic method proposed by Carter [3].

Table 3 (next page) shows the comparison of the results with our tandem
solver. Our solver works better than the pure memetic algorithm and the con-
structive one. Only the approach based on the decomposition performs better.

The decomposition technique, however, are usually quite sensible to the prob-
lem instance. In addition, they are independent of the technique used, and they
could be exploited in our TS algorithms as well.

6 Conclusions and future work

We have implemented different TS-based algorithms for the Examination Timetabling

problem, and we have compared them with the existing literature on the prob-
lem.

Our results are not satisfactory in all instances, but we plan to improve our
algorithms in several ways:

– engineer the algorithms and optimize the code;
– perform an extensive parameter tuning session for all instances;
– use decomposition techniques as Burke and Newall for large instances.

Nevertheless, we consider these preliminary results quite encouraging, and in
our opinion they provide a good basis for future improvements.

Furthermore, as a longer term goal, we plan to extend our application in the
following ways:

– Implement and possibly interleave other local search techniques, different
from TS.

– Implement more complex neighbourhoods relations. In fact, many relations
have been proposed inside the Graph Colouring community, which could
be profitably adapted for our problem.

Finally, we are going to consider futher versions of the problems, as briefly
discussed in Section 2.3.



References

1. E. Burke and J. Newall. A multi-stage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation, 3(1):63–74, 1999.

2. E. Burke, J. Newall, and R. Weare. A memetic algorithm for university exam
timetabling. In Proc. of the 1st Int. Conf. on the Practice and Theory of Automated
Timetabling, pages 241–250, 1995.

3. M. W. Carter. A decomposition algorithm for pratical timetabilng problems. Work-
ing Paper 83-06, Industrial Engineering, University of Toronto, April 1983.

4. M. W. Carter and G. Laporte. Recent developments in pratical examination
timetabling. In Proc. of the 1st Int. Conf. on the Practice and Theory of Au-
tomated Timetabling, pages 3–21, 1996.

5. M. W. Carter, G. Laporte, and J. W. Chinneck. A general examination scheduling
system. Interfaces, 24(3):109–120, 1994.

6. M. W. Carter, G. Laporte, and S. Y. Lee. Examination timetabling: Algorithmic
strategies and applications. Journal of the Operational Research Society, 74:373–
383, 1996.

7. D. Corne, H.-L. Fang, and C. Mellish. Solving the modular exam scheduling prob-
lem with genetic algorithms. Technical Report 622, Department of Artificial Intel-
ligence, University of Edinburgh, 1993.

8. M. R. Garey and D. S. Johnson. Computers and Intractability—A guide to NP-
completeness. W.H. Freeman and Company, San Francisco, 1979.

9. M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle
routing problem. Management Science, 40(10):1276–1290, 1994.

10. Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publishers, 1997.
11. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Com-

puting, 39:345–351, 1987.
12. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization

by simulated annealing: an experimental evaluation; part II, graph coloring and
number partitioning. Operations Research, 39(3):378–406, 1991.

13. G. Laporte and S. Desroches. Examination timetabling by computer. Computers
and Operational Research, 11(4):351–360, 1984.

14. Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solving
large-scale constraint satisfaction and scheduling problems using a heuristic repair
method. In Proc. of the 8th Nat. Conf. on Artificial Intelligence (AAAI-90), pages
17–24. AAAI Press/MIT Press, 1990.

15. Craig Morgenstern and Harry Shapiro. Coloration neighborhood structures for
general graph coloring. In First Annual ACM–SIAM Symposium on Discrete Al-
gorithms, pages 226–235, 1990.

16. Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review,
13(2):87–127, 1999.

17. Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard
satisfiability problems. In Proc. of the 10th Nat. Conf. on Artificial Intelligence
(AAAI-92), pages 440–446, 1992.

18. Thomas Stützle. Iterated local search for the quadratic assignment problem. Tech-
nical Report AIDA-99-03, FG Intellektik, TU Darmstadt, 1998.


