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A Hybrid Swarm-Based Approach to
University Timetabling

Cheng Weng Fong, Hishammuddin Asmuni, and Barry McCollum

Abstract—This paper is concerned with the application of
an automated hybrid approach in addressing the university
timetabling problem. The approach described is based on the
nature-inspired artificial bee colony (ABC) algorithm. An ABC
algorithm is a biologically-inspired optimization approach, which
has been widely implemented in solving a range of optimiza-
tion problems in recent years such as job shop scheduling
and machine timetabling problems. Although the approach has
proven to be robust across a range of problems, it is acknowl-
edged within the literature that there currently exist a number of
inefficiencies regarding the exploration and exploitation abilities.
These inefficiencies can often lead to a slow convergence speed
within the search process. Hence, this paper introduces a variant
of the algorithm which utilizes a global best model inspired from
particle swarm optimization to enhance the global exploration
ability while hybridizing with the great deluge (GD) algorithm
in order to improve the local exploitation ability. Using this
approach, an effective balance between exploration and exploita-
tion is attained. In addition, a traditional local search approach
is incorporated within the GD algorithm with the aim of further
enhancing the performance of the overall hybrid method. To
evaluate the performance of the proposed approach, two diverse
university timetabling datasets are investigated, i.e., Carter’s
examination timetabling and Socha course timetabling datasets.
It should be noted that both problems have differing complexity
and different solution landscapes. Experimental results demon-
strate that the proposed method is capable of producing high
quality solutions across both these benchmark problems, show-
ing a good degree of generality in the approach. Moreover, the
proposed method produces best results on some instances as
compared with other approaches presented in the literature.

Index Terms—Artificial bee colony (ABC), evolutionary
algorithm, great deluge (GD) algorithm, metaheuristics, univer-
sity timetabling.

I. INTRODUCTION

THIS paper focuses on two areas within the complex
area of university timetabling, i.e., course and exam-

ination timetabling. On a global scale, timetabling within
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universities is an important administrative task involving
a combination of planning and management. In general, uni-
versity timetabling can be defined as assigning a set of events
or exams within a set of permitted timeslots and rooms while
satisfying a number of predefined constraints [1]. A clash-free
timetable, e.g., no student has to either sit two examinations or
attend two events associated with a course at the same time, is
known as a feasible timetable. Generally, two distinct types of
constraints, known as hard and soft, must be addressed when
generating a timetable solution. The satisfaction of hard con-
straints is mandatory in order to produce a feasible timetable
while the satisfaction of soft constraints should be maximized
as these directly relate to the overall quality of the resultant
solution. An example of a soft constraint is to allow students
to have as much time as possible between successive events.
An overview of university timetabling problems can be seen
in [1]–[4].

By referring to the comprehensive survey papers within
the area of educational timetabling [1]–[3], [5] it can be
seen that various approaches have been proposed and
applied in addressing university timetabling problems. Initial
research in this area involved implementing sequential
graph coloring [6], [7] heuristics in addressing the prob-
lem, but in comparison to more recent research, it can be
observed that the performance of those techniques were rela-
tively poor. More sophisticated search-based approaches were
introduced into this domain over these last two decades,
i.e., metaheuristic-based approaches. These approaches can
be divided into two types, i.e., single solution and
population-based approach. Examples of single solution-
based metaheuristic are simulated annealing [8]–[11], tabu
search [12]–[18], variable neighborhood search [19], large
neighborhood search [20], local search [21], and the great
deluge (GD) algorithm [22]–[32]. Population-based meta-
heuristics include genetic algorithm [33], [34], ant colony
algorithm [35]–[37], honey bee mating algorithm [38], har-
mony search [39], [40], and artificial bee colony (ABC)
algorithm [41], [42].

In recent years, hybridization of metaheuristic approaches
has proven to be effective in solving university timetabling
problems. According to the comprehensive survey on
timetabling problems, Qu et al. [3] concluded that: “there
are many research directions generated by considering the
hybridization of metaheuristic methods particularly between
population-based methods and other approaches.” In addition,
the efficiency of hybridizing population-based methods with
single solution-based methods has been highlighted in
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many recent research trends. Blum and Roli [43] summarized
that “population-based methods are better in identify-
ing promising areas in the search space, whereas tra-
jectory methods are better in exploring promising areas
in the search space. Thus, metaheuristic hybrids in some
way manage to combine the advantages of population-
based methods with the strength of trajectory methods.”
As an example, Eley [35] proposed two different versions
of ant algorithms (max-mix ant system for examination
timetabling (MMAS-ET) and ant colony algorithm for exam-
ination timetabling (ANTCOL-ET)) in solving examination
timetabling problems. Both approaches involved the hybridiza-
tion of an ant algorithm and a hill-climbing approach.
Experimental results demonstrated that ANTCOL-ET out-
performed MMAS-ET. This approach is better at exploring
the promising search regions and is able to escape from
local optima, but is poor in fine-tuning the final solution
search region. Turabieh and Abdullah [26] proposed a hybrid
fish swarm algorithm to address examination timetabling. In
this paper, the fish swarm algorithm was hybridized with
two local search approaches, i.e., steepest descent algorithm
and GD. In addition, the authors modified the algorithm to
exploit selected solutions (by using a roulette wheel selection
scheme) rather than using all solutions in the population. The
algorithm is effective in exploration, but weak in exploita-
tion. Pillay and Banzhaf [34] proposed a two-stage informed
genetic algorithm for the examination timetabling problem.
In the first phase of the approach, feasible solutions that sat-
isfy hard constraints are produced, whilst the second phase
tries to maximize the satisfaction of the soft constraints. The
experimental results show that the approach is good in explor-
ing the problem search region, but poor in exploitation. In
addition, the authors did not highlight the motive of using
a genetic algorithm in both initialization and improvement
phases, which has the tendency to significantly increase the
computational time.

Turabieh and Abdullah [44] proposed a tabu-based memetic
algorithm for the course timetabling problem. In this paper,
a tabu search was applied to enhance the quality of
a solution after the crossover and mutation operations
of the genetic algorithm. It was demonstrated that this
approach was good in exploration, but weak in exploita-
tion. Turabieh and Abdullah [27] presented a hybridization
of an electromagnetic-like approach with a GD algorithm
for the examination timetabling problem. The method, tested
on the Carter and the first track of ITC2007 [45] bench-
mark datasets, generated good quality results in both cases.
However, the authors did not discuss what happens when the
GD is unable to improve the quality of the solutions (local
optima). Abdullah et al. [46] proposed a hybrid evolutionary
algorithm for the course timetabling problem. The proposed
approach constituted hybridization between a memetic algo-
rithm and a randomized iterative improvement local search.
However, the authors eliminated the crossover process in the
memetic algorithm and therefore decreased the exploration
ability of the search process. Burke et al. [47] proposed
a hybridization of variable neighborhood search with a genetic
algorithm for the examination timetabling problem. In the

proposed approach, the chromosome is used to represent
a set of neighborhood structures rather than a timetable
solution. The neighborhood structures in the chromosome are
subsequently used to produce potential solutions. Experimental
results show that the approach is capable of producing
best known results on certain instances. Other hybridiza-
tion approaches that have been proposed in recent years
in tackling university timetabling problems can be found
in [15], [28]–[30], [33], [40], [44], and [47]–[55].

Motivated by the above, this paper proposes a hybrid ABC
algorithm for the university timetabling problem. The ABC,
developed by Karaboga [56] mimics the foraging behavior
of the honey bee. It should be noted that this differs from
the related honey bee algorithm which mimics the mating
behavior of bees. The ABC approach is classified as an evo-
lutionary algorithm and has been widely and successfully
applied in solving a range of optimization problems, includ-
ing timetabling problems [41], [42]. There are three types of
bees in ABC which are utilized within the search process,
i.e., employed, onlooker, and scout bees. The power of ABC
is the ability to exploit (by employing neighborhood moves
in employed and onlooker bees) and explore (by “scout bees”
randomly generating new solutions to replace inactive solu-
tions, i.e., solutions that have become stuck in local optima)
within the problem search region. Nevertheless, as is com-
mon with many metaheuristic approaches, there are still some
identified weaknesses regarding the exploration and exploita-
tion processes [57]–[59]. Both exploration and exploitation are
important abilities for any metaheuristic approach in search-
ing for optimal solutions in the problem search region. In
practice, these two abilities are very much in contradiction
to each other, therefore a balance is required in being able
to effectively search the solution space. To effectively solve
the optimization problem using metaheuristic approaches, it
has been acknowledged that both exploration and exploita-
tion abilities must therefore be well balanced [40]. In the
ABC algorithm, the scout bee randomly generates a new solu-
tion to replace an abandoned solution which has induced
slow convergence speed (poor exploitation). In addition, the
slow neighborhood search and greedy selection scheme that
is normally employed by both employed and onlooker bees in
accepting the newly generated candidate solutions is unable to
fine-tune (poor exploitation) within the search region of each
solution in the population. Greedy selection schemes accept
only those candidate solutions with better or equivalent qual-
ity than that of the current solution, which often causes the
search process to become trapped in local optima. In many
cases this issue results in poor quality resultant solutions [25].
Hence, the method proposed here is introduced with the aim
of attaining a balance between the exploration and exploitation
abilities of the basic ABC algorithm.

In this paper, a “global best” model inspired from parti-
cle swarm optimization (PSO) [60] is implemented within
the basic ABC algorithm. In PSO, the global best model
is used to encourage the search toward promising search
regions by sharing the information on the global best solution
found so far. Therefore, the global best model is imple-
mented in ABC to guide the search process, with the aim
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of directing the search toward promising regions within the
solution space. In terms of exploitation, an integration of
Nelder–Mead simplex search (NMSS) [61] within the GD
algorithm [62] (NMGD) is hybridized with the basic ABC
algorithm (named NMGD-ABC) with the aim of fine-tuning
the problem search region. This hybridized approach attempts
to improve the exploration and exploitation abilities of the
ABC algorithm to enhance the convergence speed and search
capabilities of the basic ABC.

In this paper, the basic ABC and proposed approach
are tested on two benchmark datasets, i.e., the Carter
un-capacitated examination timetabling dataset and the
Socha course timetabling dataset. The purpose of using these
two datasets is to demonstrate the degree of generality of the
proposed approach in solving two timetabling problems with
differing complexity. Experimental results illustrate that the
proposed approach is capable of producing good quality solu-
tions in comparison with the basic ABC algorithm and other
metaheuristic approaches described in the literature.

The remainder of this paper is organized as follows. First,
a description of the university timetabling problem is presented
in Section II. The various algorithmic components used within
the hybridization and general proposed algorithm are presented
in Sections III and IV, respectively. Experimental results are
discussed in Section V. And finally, the conclusion is given in
Section VI.

II. PROBLEM DESCRIPTION

University timetabling can be categorized into two main
problem areas: 1) course and 2) examination timetabling.
These two types of timetabling problems are similar to some
extent, but there exist some important differences. Both areas
contain entities which require timetabling within a set of
timeslots based on a number of hard and soft constraints.
An important difference between examination timetabling and
course timetabling concerns room allocation. Several exams
can be assigned to the same room within the same time slot,
whilst normally there is a one-to-one mapping of a course to
a room [63]. A second difference is the number of time slots
for course allocation in course timetabling are fixed (normally
representing a standard teaching week), whereas in exami-
nation timetabling, the exams will be assigned to a set of
permitted time slots whose number and structure vary across
different institutions (normally spanning several weeks) [63].
Thirdly, in practice, there are usually many more constraints
to consider within course timetabling in achieving a workable
solution.

In this paper, these two university timetabling problem areas
are investigated through the use of standard associated bench-
mark datasets (Carters un-capacitated examination datasets [7]
and the Socha university course timetabling datasets [37],
respectively). The performance of the proposed method is
tested using these two problems in order to demonstrate the
generality and robustness of the proposed method. The charac-
teristics of exam and course timetabling datasets are illustrated
in Tables I and II while the specification is presented in
Sections II-A and II-B, respectively.

TABLE I
CARTER’S EXAMINATION TIMETABLING BENCHMARK DATASETS

TABLE II
SOCHA COURSE TIMETABLING BENCHMARK DATASETS

A. Examination Timetabling Problem

According to [3], examination timetabling problems can be
defined as assigning a set of exams within a number of given
timeslots while satisfying a set of predefined hard and soft
constraints. The model of examination timetabling studied in
this paper consists of:

N number of exams;
M number of students;
P set of predefined timeslots;
Conflict matrix c = (cij)N×N where each element in the

symmetrical matrix is the
number of students that sit for
both exams i and j, where i,
j ∈ 1, . . . , N;

ti timeslot scheduled to exam
i(i ∈ 1, . . . , N) within the set
of predefined timeslots (1 ≤
ti ≤ P).

The goal of this problem is to schedule all the exams
to the timeslots, subject to hard and soft constraints as
presented below.

1) Hard Constraint: Students are not required to attend
more than one exam at the same time.

2) Soft Constraint: There should be a large time gap
between two conflicting exams so that the students will
have sufficient time for revision for their enrolled exams.

The quality of a feasible timetable is assessed based on
the degree of soft constraint violation. For the datasets under
consideration (1) is used to calculate the penalty for two
consecutive exams enrolled for by a student. The assign-
ment of a penalty value is based on the time gap(s) between
two conflicting exams. For instance, if a student has two
consecutive exams, then the proximity value of 16 (25/21)



FONG et al.: HYBRID SWARM-BASED APPROACH TO UNIVERSITY TIMETABLING 873

will be calculated and counted. If a student has an empty
slot between two exams, then proximity value of 8 (25/22)
is counted. A proximity value is equal to 4 if the student has
exams with two empty time slots in between and so on as

Minimize
N−1∑

i=1

N∑

j=i+1

cij · prox
(
ti, tj

)/
M

where

prox
(
ti, tj

) =
{

25−|ti−tj| if 1 ≤ ∣∣ti − tj
∣∣ ≤ 5

0 otherwise.
(1)

B. Course Timetabling Problem

According to Socha et al. [37], university course timetabling
problems can be defined as allocating a set of courses to a set
of timeslots and rooms while satisfying a set of predefined
hard and soft constraints. The model of the dataset, including
the hard and soft constraints, is presented:

M number of students;
C number of courses;
T set of predefined timeslots (tn . . . T, where T = 45,

n = 1 . . . T);
R number of rooms (r . . . R, r = 1, 2, 3, . . . , R);
F set of room features.
The problem of course timetabling is to allocate all the

courses C, within the predefined number of timeslots T and
rooms R such that all the following hard constraints are
satisfied.

1) No student is required to attend two or more courses at
the same time.

2) A course must be allocated to a room that satisfies the
feature required for that course.

3) A course must be allocated to a room that can serve the
students attending that course.

4) Only one course can be allocated in a room at any
time slot.

Solutions that satisfy the hard constraints stated above are
known as feasible solutions and violation of the following soft
constraints should be minimized.

1) No student is required to attend only one course in a day.
2) No student is required to attend a course in the last time

slot for a day.
3) No student is required to attend more than two consec-

utive courses in a day.
The penalty cost is calculated based on the violation of each

soft constraint per student. Penalty cost = 1 for violation of
each constraint per student.

III. GENERAL IDEA OF BASIC ALGORITHMS

A. ABC Algorithm

This section describes the conventional ABC algorithm that
was proposed by Karaboga [56], which mimic the intelli-
gent behavior of honey bees. ABC is classified as a bee
swarm approach [56]. Generally, there are three types of bees
that cooperate together in searching for food, i.e., employed,
onlooker, and scout bees. Both onlooker and scout bees can
be thought as unemployed bees. The employed bees search

for food sources based on their memory and the information
gathered on food sources is shared with onlooker bees on
returning to the hive. Onlooker bees tend to choose the good
food sources based on the information advertised by employed
bees via a “waggle dance” and also further explore new food
sources around the selected food sources. Scout bees abandon
old food sources and explore new food sources. By mimicking
the foraging behaviors of a natural honey bee swarm, an ABC
algorithm has been developed by Karaboga [56] in address-
ing optimization problems. With this inherent search ability,
a large number of application areas have adopted an ABC
algorithmic approach in [41], [42], [59], and [64].

Swarm-based algorithms utilize agents which work in a col-
laborative manner in addressing problems. Therefore, each of
the artificial bees (employed, onlooker, and scout) in the ABC
algorithm represents an approach where agents communicate
and cooperate with one another in exploring food sources
(possible solution to optimization problems) by assessing the
quality of the nectar (cost or fitness value for optimiza-
tion problems). In addition, the ABC is categorized into two
groups. The first half of the colony consists of employed bees
and the second half comprises of the onlooker bees. Employed
bees that abandon food sources are turned into scout bees with
the purpose of discovering new food sources. Furthermore, the
number of employed bees and onlooker bees is equal to the
number of food sources (solutions) within a particular popu-
lation which means that all the bees are working on the food
sources in the population.

During the first step, an initial population (food source posi-
tions) is generated randomly from the search region. After
the initialization, the solutions of this population are subjected
to repeated cycles of search carried out by the three phases,
i.e., employed, onlooker, and scout bee. In the employed bee
phase, employed bees generate modifications on current solu-
tions based on neighborhood search and also evaluate the
nectar (fitness) of the new food source. If the amount of nectar
of the new source is better than the old source, it will memo-
rize the new source and disregard the old one. Otherwise the
bee will retain the old food source. This particular food source
acceptance scheme is known as greedy selection scheme.

After all employed bees have performed the search process,
they go back to the hive and share the food source information
with the onlookers in the “dance area.” The onlooker bee phase
is started when onlooker bees evaluate all the food sources
information advertised by employed bees and select the food
source based on the nectar amount. The food source selection
is based on the roulette wheel selection scheme (2).

In nature, onlooker bees tend to choose the food sources
advertised by employed bees that have a higher amount of
nectar. To mimic this phenomenon, a roulette wheel selection
scheme is used in the onlooker bee phase of the ABC where
good quality solutions will have a higher probability of being
selected by onlooker bees

pi = fiti∑N
j=1 fitj

. (2)

With reference to (2), pi and fiti are the probability value
and fitness value associated with food source i, respectively.
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Similar to the employed bee phase, the onlooker bee phase
generates a modification on the selected food source and mem-
orizes the new source based on a greedy selection scheme.
This process repeats until all onlookers complete the search
process.

In the scout bee phase, if the quality of a food source is
unable to be improved (inactive solution) in a predefined num-
ber of iterations, the corresponding employed bee will abandon
the current food source and turn into a scout. The scout will
explore for a new food source in the search region without
any information. After a new source is identified, the scout
will subsequently turn into an employed bee. It should be
noted that both employed and onlooker bees generate new food
sources by performing neighborhood search. Besides that, all
food sources are improved by employed bees while onlookers
only enhance selected food sources.

The ABC algorithm has been widely studied in relation
to address a variety of real-world optimization problems
such as flow shop scheduling [64] and university examination
timetabling [41], [42]. However, the performance and con-
vergence speed of the basic ABC are relatively poor. It is
proposed here that this is due to the weaknesses of each of
the phases within the basic ABC algorithm.

In the employed bee phase, the neighborhood search car-
ried out is relatively slow causing poor exploitation ability
and accordingly leads to the slow convergence of the search
process. Within the onlooker bee phase, onlooker bees face
the same problem since they are using the same neighbor-
hood search in exploiting food sources. In addition, the roulette
wheel selection scheme employed within the onlooker phase in
selecting food sources can cause imbalance between exploita-
tion and exploration within the search process. This is because
this scheme is highly concentrated in exploiting solutions
with higher fitness and solutions with poor fitness are less
likely to be exploited. This might mean missing promising
solutions.

In the scout bee phase, inactive food sources are iden-
tified and then possibly abandoned. Then, scout bees will
replace the abandoned food sources by producing new food
sources randomly. This can help the search process escape
from local optima and direct exploration toward an un-visited
search region. However, there is no guarantee that a promising
search region will be located. Hence, this further decreases
the exploitation ability and convergence speed of the ABC
algorithm.

B. GD Algorithm

The GD algorithm is a metaheuristic approach first intro-
duced by Dueck [62]. It is also known as a degraded ceiling
approach and works in a similar fashion to simulated anneal-
ing. One of the abilities of GD is to accept worse solutions in
order to escape from local optima during the search process.
This ability is controlled by a variable called level, where any
solution with quality value that is lower than the level will be
accepted. The value of level is initially assigned based on the
quality value of the initial solution used. Besides that, only
one parameter is required which is the estimated quality of

the desired solution. During execution, GD tries to improve
and search for solutions with equal or greater quality than the
estimated quality. In addition, the value of level degrades in
line with a decay rate (based on estimated quality) so that the
value of level is decreased until it reaches the same value as
the estimated quality. This means that the use of level not only
controls the acceptance of worse solutions, but is also used to
guide the search process toward search regions that provide
solutions equivalent to the original estimated quality. With
the promising performance of GD, it has been widely applied
within the timetabling research domain [22]–[27], [29], [30].
In this paper, a modification of GD is introduced and imple-
mented with the aim of improving the exploitation ability of
the ABC algorithm.

C. NMSS Method

The NMSS was proposed by Nelder and Mead [61] and is
a local search approach designed for unconstrained optimiza-
tion problems with N variables without the use of gradient
information. A simplex consists of N +1 vertices in N dimen-
sions. Different dimensions constitute different simplexes. For
example, 2-D vertices constitute a triangle simplex, while
it is a tetrahedron simplex in 3-D vertices. Four operations
are used within NMSS (to rescale the simplex with respect
to the current local behavior function). These are reflection,
expansion, contraction [external contraction (EC) or inter-
nal contraction], and shrinkage. Note that a center point is
needed for these operations. With these operations, the simplex
can improve itself and eventually get nearer to the optimum.
Improving itself means that improving the quality of solu-
tions (the vertices that constitute the simplex) in searching
for the local optimal solution. In the end, the vertex with
the lowest cost value will be returned as the local optimal
solution found. The details of the basic four operations for
NMSS can be found in [61] and application of this method has
been successfully hybridized with other methods in solving
the inverse analysis problem [65] and university timetabling
problems [26], [29]. In this paper, the purpose of hybridized
NMSS into GD is to intelligently calculate the estimated
quality for GD. It should be noted that, as described above,
estimating quality is required prior to execution. Within the lit-
erature, NMSS has been applied in calculating the estimated
quality for GD, but there remains some weaknesses where the
calculated estimated quality might be a negative value based
on the formula proposed in [26] and [29].

In this paper, the classic NMSS algorithm is modified for
the purpose of assisting GD in calculating estimated quality
so that GD searches toward promising regions in the prob-
lem search region. Triangle simplex is used in this paper and
three operations are considered, which are EC, expansion (E),
and reflection (R) operators. The operations for the modified
NMSS are outlined as follows.

1) Identify three vertices xb, xs, and xw from the cur-
rent population, which correspond to the vertices that
have best, second worst, and worst objective cost val-
ues ( fb, fs, and fw), respectively [65]. Through the use
of xb, xs, and xw, the centroid of simplex (Ccent) is
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Fig. 1. NMSS operators in 2-D simplex. (a) EC. (b) Reflection (R).
(c) Expansion (E). (d) Combination of EC, R, and E.

calculated using (3). Initialize three coefficients, which
are reflection coefficient α, expansion coefficient γ , and
contraction coefficient β

Ccent = f (xb) + f (xs) + f (xw)

3
. (3)

2) EC

EC = [Ccent − (β × Ccent)]. (4)

3) Reflection (R), where (R < EC)

R = [EC − (α × Ccent)]. (5)

4) Expansion (E), where (E < R)

E = [
R − (γ × Ccent)

]
. (6)

The values of EC, R, and E are calculated based on (4)–(6),
respectively. Since there are a number of solutions with dif-
ferent qualities in a population, all these values will be used
as estimated qualities with the aim of assisting GD in bet-
ter exploiting the search regions of different solutions. The
triangle simplex used in this paper is illustrated in Fig. 1.
The difference between the proposed NMSS in this paper
with NMSS that have been applied to exam and course
timetabling [26], [29] are listed below.

1) First, the equations for calculating EC, R, and E are dif-
ferent. Instead of selecting two adjacent solutions from
the selected solutions in [26] and [29], the proposed
NMSS uses best, second worst, and worst solutions in
the population to calculate EC, R, and E.

2) Second, the values of EC, R, and E are used as estimated
qualities for GD to improve all solutions in the popula-
tion in this paper, but these values are only applied on
a selected solution in [26] and [29] at each iteration.

3) Third, the calculated values of EC, R, and E in this paper
always have a positive value. In previous studies, it is
evident that negative values may arise [26], [29] though
the authors did not articulate what will happen if these
are used to estimate qualities for the GD.

IV. NMGD-ABC ALGORITHM

It is important to emphasize that both exploration and
exploitation abilities are important elements for evolutionary
algorithms. In order to maximize the performance, both abil-
ities should be well balanced. In this paper, an NMGD-ABC
algorithm is proposed with the aim of improving the

Fig. 2. Framework for NMGD-ABC.

performance (exploration and exploitation) of the basic ABC
algorithm. To enhance exploration ability, the employed bee
phase utilizes the global best model from PSO to direct explo-
ration toward a promising search region. The explored regions
are then exploited within the onlooker phase using a local
search (an integration of NMSS within GD, NMGD) as pro-
posed in this paper. Besides that, the selection scheme used in
the basic ABC algorithm has also been eliminated to enhance
the search process.

The framework of the proposed method can be seen in Fig. 2
and consists of two phases, i.e., the initialization and improve-
ment phases. The improvement phase is further divided into
three sub-phases which are employed bee, onlooker, and scout
bee phases. A detailed presentation of the proposed approach
is outlined below.

A. Initialization Phase

In lines 4–7 (refer to Fig. 2), the number of bees in the pop-
ulation is initialized, penalty values for all solutions are calcu-
lated, and the best solution in the population is identified. In
constructing the initial solutions in the population, a hybridiza-
tion of graph coloring heuristics is used where saturation
degree, largest degree first, and largest enrolment heuristics
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Fig. 3. Haploid crossover for examination timetabling.

are considered simultaneously. Details on the implementation
of this hybridization can be seen in [66]. In this solution
construction phase, satisfaction of the hard constraint is con-
sidered solely. In lines 8 and 9, two user-defined parameters
are initialized: 1) number of iterations for NMGD-ABC and
2) parameter limit, which corresponds to the maximum number
of iterations for a solution that stays inactive.

B. Improvement Phase

In the improvement phase (lines 13–35), all bees (employed,
onlooker, and scout) cooperate in exploring and exploiting the
problem search region. Details of each function of the bees
are as below.

1) Employed Bee Phase: The function (neighborhood
search) utilized within the employed bee phase in the basic
ABC has been changed based on the global best model
inspired from PSO approach (Fig. 2, lines 15–20). By using
this model, employed bees will explore for food sources
that are located around the best solution region. Reasons for
changing this basic employed bee function are as follows.

a) To overcome the slow convergence speed induced by the
use of random exploration in the scout bee phase.

b) To increase the search efficiency since the best solution
often carries better information as compared with others
and search regions around it might be promising.

In order to exploit the global best model, haploid
crossover [67] is used. The merit of haploid crossover is that
the offspring generated contains information from the best
solution, improving the search efficiency in exploring promis-
ing regions near to the best solution position. To perform
the haploid crossover, two conditions must hold in order to
preserve feasibility of the timetable solutions.

a) There should not exist conflicts between the moved and
scheduled events.

b) An event can only be moved if the corresponding time
slot and room are free and the room equipped with the
features required for that event (for course timetabling
since the room occupancy is considered during timetable
construction).

Fig. 3 demonstrates the process of crossover in generating
a new solution S1’ by combining S1 and best solution (BS),
i.e., taking all exams of a selected timeslot from S1 and
combining with another selected timeslot from BS. First, two
random timeslots are selected which are t1 of BS and t4 of
S1. Then, all the exams (i.e., e5, e13, e15, and e16) in time
slot t4 are moved from S1 to timeslot t1 in BS. During this
process, any exam conflicting with already scheduled exams

Fig. 4. Haploid crossover for course timetabling.

in BS or exams that are already scheduled (i.e., e15) in the
new time slot will not be moved. Then, a repair process is
applied in order to maintain feasibility of the solution where
duplicated exams in the new solution are removed (i.e., e5 in
time slot t3 and e13 and e16 in time slot t4).

For course timetabling, the crossover operation is presented
as in Fig. 4. As before, the shaded time slot represents the
selected time slot for time slot exchange process. For example,
t3 and t2 are selected from T1 and BS, respectively. Then,
the entire moveable courses from t3 (c14) in this example
are move into t2 which will then produce an offspring, T1’.
The course c21 cannot move to t2 because it conflicts with
course c12. For course c4, it cannot be moved since there is
no free room (occupied by course c25 in BS). As with the
examination timetabling example, a repair process is needed
to maintain the feasibility of the generated offspring. In this
example (refer to T1’), course c14 is scheduled twice in differ-
ent time slots (t2 and t3) and rooms (r2 and r3). Hence, the old
time slot (t3) and room (r3) for course c14 will be removed
to avoid course duplication. For both timetabling problems,
the crossover process is controlled by a crossover point which
is the number of time slots for the crossover process. For
instance, a crossover point of 1 is used in the examples demon-
strated in Figs. 3 and 4, in which only one time slot is selected
for the crossover process.

Therefore, by implementing the global best model within
the employed bee phase, information relating to the best solu-
tion found so far can be incorporated within the new solutions
generated in the scout bee phase. This can direct the search
process toward promising areas that are near to the best solu-
tion position and improve the convergence speed. In addition,
this can also provide a good environment for onlooker bees
later in the searching process for better quality solutions to be
found around the promising search regions.

2) Onlooker Bee Phase: With reference to Fig. 2, line 23
represents the beginning of the onlooker bee phase. In this
phase, onlookers exploit the search regions using the described
NMGD algorithm and the selection mechanism used within the
basic ABC algorithm is eliminated. Hence, all food sources
will be improved by onlookers. Details of NMGD are shown
in Fig. 5 and a description of NMGD is demonstrated in
Section IV.

Two neighborhood structures are used in NMGD to generate
tentative solutions, which are as follows.

Nb 1: Randomly selects and moves an exam/course
into a feasible time slot (and room for course
timetabling).
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Nb 2: Randomly selects two exams/courses and swap
their time slots (and rooms for course timetabling).
Feasibility of the solution is preserved at the
same time.

As discussed earlier, the reasons for using the NMGD are
as follows.

a) To overcome the imbalanced exploitation and weak
neighborhood search by locally exploring entire solu-
tions in the population in order to intensify the search
for local minimum solutions.

b) To eliminate reliance on the use of the selection scheme
(roulette wheel selection) in basic ABC where the selec-
tion scheme tends to focus more on exploiting the fittest
solution.

c) To improve the convergence speed of the search process.
3) Scout Bee Phase: In the scout bee phase (lines 26–34),

inactive solutions are discarded and new solutions generated
randomly to replace the abandoned solutions (lines 28 and 29).
An inactive solution is determined based on the predetermined
number of iterations (parameter limit) in which the quality of
a solution cannot be improved.

C. NMGD Algorithm

As discussed in Section I, the NMGD algorithm is a hybrid
local search (GD with NMSS) that is introduced with the aim
of improving the exploitation ability of basic ABC. It is imple-
mented within the onlooker bee phase to further explore the
promising search regions identified in the employed bee phase.
During the exploitation process, NMGD will improve the qual-
ity of each solution based on a set of estimated qualities calcu-
lated using NMSS. After the estimated qualities are calculated,
NMGD will select the estimated quality with respect to the
quality of the current solution and the exploitation process will
begin. If the quality of the solution reaches the estimated qual-
ity before the termination criterion is met, another estimated
quality will be selected from the set of estimated qualities and
the exploitation process continues. Otherwise NMGD tries to
improve the quality of the solution with respect to the selected
estimated quality. This exploitation process is repeated until
all the solutions are improved and a new set of estimated
qualities will be calculated in the next cycle of the process.
There are two advantages to use multiple estimated qualities
within NMGD. First, it helps NMGD exploit multiple search
regions of a single solution. Second, it also enables NMGD
to exploit solutions with different qualities in the population.
This is very important because when only using one estimated
quality as with the basic GD, it is not possible to fine-tune
solutions with different search regions in a population.

Therefore, the main purpose of hybridizing the NMSS
method is to intelligently calculate the estimated quality value
of the GD (pseudo code of NMGD can be seen at Fig. 5).
Prior to the execution of GD, NMSS is used to compute the
values of estimated quality (EC, R, and E) and the decay
rates for the entire solutions in the population. After the
values of EC, R, and E are calculated, three more regions
are formed and divided equally between the EC–R and R–E
(lines 4–8). The regions between EC–R are known as EC1,
EC2, and EC3 whereas the regions between R–E are known

Fig. 5. Hybridization of NMSS with GD (NMGD).

as R1, R2, and R3. These ranges of values are used as
the estimated qualities and also to calculate the decay rates
(lines 18–20) in GD when enhancing the quality of solutions
in the population (lines 23–44).

An example (taken from execution on car92 Carter
dataset) is shown in Fig. 6 where three solutions (xb, xs,
and xw correspond to the best, second worst, and worst
solutions) are selected to calculate the estimated qualities
for GD (EC, R, and E). Table III demonstrates how NMGD
selects the estimated quality based on the penalty value
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Fig. 6. Example of calculating estimated qualities for GD using best,
second worst, and worst solutions.

TABLE III
ESTIMATED QUALITY DETERMINATION FOR NMGD

Fig. 7. Ranges of estimated qualities for GD.

of a solution. After the ranges of estimated qualities are
calculated (refer to Fig. 6), these values are used in GD with
the aim of enhancing the quality of the solution. For instance,
during the first GD iteration, the sol1 possesses a penalty value
of 5.45828 (objective function of the problem in this paper),
thus the estimated quality of the new solution (refer to esti-
mated quality of EC3 in Fig. 7) is 5.38949 (i.e., value that is
nearest and smaller than current penalty value). The GD will
attempt to enhance the quality of the solution to the value
of EC3. On reaching the 1000th iteration, the penalty value
of sol1 has been reduced to 5.16537, therefore the estimated
quality of the solution will be changed to 5.09418 (estimated
quality of R3). After the whole population is enhanced by GD,
the values of EC, R, and E will be recalculated based on the
best, second worst, and worst solutions in the current popu-
lation. With reference to lines 46–48, if a solution is unable
to be improved by GD, the value of bee limit counter for the
solution will be increased by 1.

V. COMPUTATIONAL EXPERIMENT

Experiments on the proposed method in addressing the uni-
versity timetabling have been conducted. The datasets used
were described in Section II and the proposed method was
coded using C++. Table IV illustrates the parameters used in
the proposed method which were established after some pre-
liminary experiments. Even though all these parameter values
cannot be regarded as optimal values, they represent general
settings for ABC and NMGD-ABC to perform well over the
two benchmarks. The experiments are carried out with a pop-
ulation size of 50, the number of iterations for both the basic
ABC and the proposed approach is set to 10 000, and the num-
ber of iterations for NMGD is set to 2000. Note that the limit

TABLE IV
PARAMETER SETTING FOR NMGD-ABC

used in scout bee phase was 4 (no improvement gained after
four attempts within the onlooker bee phase). From a pre-
liminary experimentation, it was observed that the bigger the
value of reflection coefficient α, expansion coefficient γ , and
contraction coefficient β, the bigger the gaps between the esti-
mated qualities (EC, R, and E). This leads to worse quality
solutions being obtained as compared with the use of smaller
values for α, γ , and β. Therefore, with the use of small values
of the three coefficients, the range of EC, R, and E is small.
This has induced a smaller decay rate (a smaller decay rate
slows the rate at which level is decreased) and enabled GD
to easily accept new solutions exhibiting better quality (better
exploitation in the search region of each solution).

Furthermore, the preliminary experiments show that increas-
ing the number of crossover points increases the exploita-
tion toward the best solution search region, and accordingly
decreases the diversity of the population, inducing premature
convergence of the search process. The decreasing of diversity
in the population can also lead to the search process cyclically
exploring the same search region. In contrast, if the number
of crossover points is too small, the search within the best
solution region will decrease and exhibit random exploration
characteristics.

A. Experiments on Carter’s Un-Capacitated University
Examination Benchmark Dataset

The application of NMGD-ABC on university examina-
tion benchmark dataset (Table I) has been carried out and
is subsequently described. Experimental results for 30 runs
on both algorithms with different random seeds are pre-
sented and comparison is made with best known results in
the literature on 11 instances, as shown in Table V. The com-
putational times are varied and depend on the size of each
instance. For basic ABC, the computational times took 1–3 h,
whereas, NMGD-ABC required 2–10 h (see Table VI). This
computational time is acceptable for university timetabling
problems because the timetables are usually generated several
months before the actual timetable is used [4], [47]. As shown
in Table V, the results obtained by NMGD-ABC are better
than the basic ABC (best results are highlighted in bold font).
Besides that, NMGD-ABC is able to obtain three of the
best known results (equal with [38] on uta92 instance) in the
literature.

In a second experiment, the results generated by
NMGD-ABC are compared with results obtained by single,
population-based, and hybrid approaches in the literature



FONG et al.: HYBRID SWARM-BASED APPROACH TO UNIVERSITY TIMETABLING 879

TABLE V
RESULT COMPARISON WITH BEST KNOWN RESULTS

TABLE VI
COMPUTATIONAL TIME FOR CARTER DATASET

and are shown in Table VII (best results are highlighted in
bold font). The selected approaches under comparison are as
follows.

1) H1: Sabar et al. [38]: Honey bee mating optimization
algorithm.

2) H2: Turabieh and Abdullah [27]: Hybridization of
electromagnetic-like mechanism with GD.

3) H3: Burke et al. [47]: Hybridization of variable neigh-
borhood search with genetic algorithm.

4) H4: Abdullah et al. [20]: Large neighborhood search
with local search.

5) H5: Caramia et al. [21]: Novel iterated local search
algorithm.

6) H6: Pillay and Banzhaf [34]: Informed genetic
algorithm.

7) H7: Burke and Newall [22]: Adaptive ordering initial-
ization with GD algorithm.

8) H8: Qu and Burke [54]: Graph-based hyper-heuristic.
9) H9: Merlot et al. [52]: Hybridization of constraint

programming, simulated annealing, and hill climbing.
From Table VII, it can be seen that the NMGD-ABC is

capable of generating competitive results as compared with the
approaches reported in the literature. In addition, NMGD-ABC

TABLE VII
RESULT COMPARISON WITH OTHER METHODS IN THE LITERATURE FOR

CARTER’S EXAMINATION TIMETABLING DATASET

Fig. 8. Convergence graph for car91.

outperforms other methods on car92 and tre92 instances
and obtains the same result on uta92 with H1 [38]. Also,
NMGD-ABC obtains the second best result on yor83 and the
third best results on car91, ear83, sta83, and ute92 against
other methods. In light of the above, it can be seen that
NMGD-ABC is capable of generating competitive results
when compared against other proposed approaches in the
literature.

Figs. 8 and 9 illustrate the convergence graphs for instances
car91 and sta83, respectively. The y-axis represents the penalty
cost value while the x-axis represents the number of iterations.
Each point on the graph indicates the current best penalty value
obtained during the search process. From both Figs. 8 and 9,
there is a steep descent curve at the beginning of the search
process which indicates that there is a large improvement in
terms of solution quality (penalty cost value). Nevertheless,
the improvement rate decreases as the number of iterations
increases and eventually the search converges, showing no
further improvement.
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Fig. 9. Convergence graph for sta83.

Fig. 10. Box plots for Carter’s un-capacitated dataset.

Fig. 10 shows the box plots that represent the distribution of
the best, first quartile, average, third quartile, and worst solu-
tion qualities generated from NMGD-ABC for the Carter’s un-
capacitated dataset. From Fig. 10, it can be observed that there
is a close gap between the best, average, and worst solution
qualities, illustrating the robustness of the proposed method
(except for car92, ear83, ute92, sta83, and yor83 instances
where the differences between best and worst cost values are
between 1 and 2.29). It is thought that the use of the global best
model might lead to cycling, i.e., the search process repeatedly
explores the same solution search regions. An example can
be seen from Fig. 9 where there is no improvement between
iterations 3854–4956 and iterations 6483–10 000. Hence, the
search process is unable to prevent cycling and gets trapped
in a less promising search region and accordingly causes the
difference between the best and worst cost values (for car92,
ear83, ute92, sta83, and yor83 instances) to be slightly higher
as compared with other instances.

B. Experiments on Socha Course Timetabling
Benchmark Dataset

The characteristics of the Socha course timetabling dataset
can be seen in Table II. The benchmark consists of 11 instances
which have been categorized into five small, five medium,
and one large problem instances. Thirty runs were carried out

TABLE VIII
RESULT COMPARISON FOR BASIC ABC AND NMGD-ABC

WITH BEST KNOWN RESULTS

TABLE IX
COMPUTATIONAL TIME FOR SOCHA DATASET

for each of the instances for NMGD-ABC and the parameter
setting used is shown in Table IV. Table VIII represents the
results (best and average penalty values) for the basic ABC
and NMGD-ABC algorithms and shows comparison with the
best known results in the literature. The computational time
for each instance is dependent on the size of the instance.
For the basic ABC, the computational time for each instance
ranges from 15 min to 2 h. For NMGD-ABC, the time taken to
complete each search is between 1 and 6 h (refer to Table IX).

From Table VIII, it is clear that NMGD-ABC outper-
forms the basic ABC algorithm. Even though the best results
for small instances are the same (zero penalty cost) for
NMGD-ABC, it is relatively more stable as compared with
basic ABC where the best and average results for small
instances are the same. Importantly, NMGD-ABC is able to
generate best results for medium 2 and large instances when
compared against the best known results in the literature.

Table X illustrates the result comparison between
NMGD-ABC with single solution-based, population-based,
and hybridization approaches in the literature. Selected meth-
ods in comparison are as follows.

1) M1: Turabieh and Abdullah [44]: A tabu-based memetic
approach.

2) M2: Abdullah and Turabieh [33]: Hybridization of
genetic algorithm and local search.

3) M3: Abdullah et al. [46]: A hybrid evolutionary
algorithm.
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TABLE X
RESULT COMPARISON WITH OTHER METHODS IN THE LITERATURE

FOR SOCHA COURSE TIMETABLING DATASET

Fig. 11. Convergence graph for instance medium 4.

4) M4: Landa-Silva and Obit [32]: A nonlinear GD
algorithm.

5) M5: Abdullah et al. [53]: GD and tabu search.
6) M6: Burke et al. [55]: A graph-based hyper-heuristic.
7) M7: Abdullah et al. [19]: Variable neighborhood search.
8) M8: Sabar et al. [38]: Honey bee mating optimization

algorithm.
9) M9: Turabieh et al. [28]: A hybridization of

electromagnetic-like mechanism with GD.
Referring to Table X, it can be seen that NMGD-ABC

shares the same best results in all small instances with the
best known results in the literature and also outperforms other
approaches for medium 2 and large instances. Besides that,
NMGD-ABC is able to obtain feasible solutions for all prob-
lem instances. A result denoted as “-” indicates that there is
no feasible solution obtained for that particular instance.

Fig. 11 represents the convergence graph for instance
medium 4. The y-axis represents the penalty cost value while
x-axis represents the number of iterations. The trend of the

Fig. 12. Box plots for Socha course datasets.

Fig. 13. Convergence graph for NMGD-ABC and basic ABC for instance
medium 5.

graph for the best cost value at each iteration is almost the
same as Figs. 8 and 9 where there is a large improvement
(curve with a steep slope) at the beginning of the search with
the cost value decreasing gradually until no improvement is
shown by the end of the search process. It is clearly evident
that NMGD-ABC manages to perform well on different prob-
lems (exam and course) which have different complexity and
solution search regions.

Fig. 12 demonstrates the box plots for all instances of the
Socha datasets. For small instances, the gaps between the best,
averages, first and third quartiles, and worst cost values are
zero. It can be observed that there is a relatively small gap
between best and average cost values for medium and large
instances. However, there are slightly bigger gaps between the
best and the worst cost values for medium 02, 03, and large
instances (31, 55, and 112, respectively). Again, it is believed
that in some cases, the use of the global best model might
lead the search to cycle in exploring the same problem search
region.

Fig. 13 (similarly to Figs. 8, 9, and 11, but with minor dif-
ferences) represents the convergence graph for NMGD-ABC
and basic ABC for instance medium 5. From Fig. 13, it can be
observed that the slope of the curve for NMGD-ABC is rela-
tively steep as compared with basic ABC which illustrates that
there is great improvement in the quality of the solutions at
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TABLE XI
STATISTICAL ANALYSIS FOR BASIC ABC AND NMGD-ABC

ON CARTER’S UN-CAPACITATED EXAMINATION

TIMETABLING PROBLEM

the beginning of the search process. In addition, NMGD-ABC
converges faster as compared with basic ABC and the quality
of solutions found by NMGD-ABC is better than those found
by the basic ABC across the search process.

From the analysis above, it can be seen that the proposed
approach NMGD-ABC is able to produce high-quality solu-
tions for both exam and course timetabling problems. It is
believed that the use of global best model inspired from
PSO in the employed bee phase leads the search process
toward promising areas within the search region (global explo-
ration ability). In addition, the hybridization of NMSS with
GD (NMGD) means the onlooker bee phase is able to intelli-
gently tune the estimated qualities during the execution of GD
(local exploitation ability). Hence, NMGD is able to locally
explore solution search regions that are near to the global best
solution in order to seek better quality solutions. Note that the
estimated quality for the standard GD is a predefined constant.

Tables XI and XII present an experimental comparison
between the basic ABC and NMGD-ABC algorithms. A t-test
has been carried out with a one-tail test to show that the
performance (in terms of penalty value) of NMGD-ABC is
better than the basic ABC at a level of confidence of 0.05.
The null hypothesis (H0) is defined as there is no difference
between the performances of both approaches. For the alterna-
tive hypothesis (H1), it has been defined as the performance of
NMGD-ABC is better than that of the basic ABC. By referring
to Tables XI and XII, there is significant evidence to support
the claim on H1 (H0 is rejected) due to all the values of p-value
are smaller than 0.05 (highlighted in bold font) which indicates
there is a significant difference across all instances for both
benchmarks. Hence, it can be concluded that the performance
of NMGD-ABC is better than the basic ABC in solving both
timetabling problems.

In general, NMGD-ABC performs well on both examina-
tion and course timetabling benchmark datasets, producing
better and competitive results as compared with the existing
approaches published in the literature. Even though the pro-
posed approach requires long running times to complete the
search process, it is clear that the final solutions obtained are
much better than the solutions generated by basic ABC. It is
noteworthy that in order to get better quality solutions, longer
computational times are required. It should also be noted that

TABLE XII
STATISTICAL ANALYSIS FOR BASIC ABC AND NMGD-ABC

ON SOCHA COURSE TIMETABLING PROBLEM

it is often the case that computation time is not reported
within the literature, rendering a full comparison based on time
impossible. The fact that the approach is able to produce qual-
ity solutions for all instances of the examination and course
timetabling benchmark datasets is testimony to the robustness
of NMGD-ABC.

VI. CONCLUSION

In this paper, a hybrid NMGD-ABC has been proposed
to tackle university exam and course timetabling problems.
With the use of PSO global best model within the employed
bee phase, all the solutions generated in the scout bee phase
incorporate global best information, thus the search process is
guided toward the most promising search region. NMGD (GD
with intelligent estimated quality calculation using NMSS) is
applied to locally explore and fine-tune promising solutions
within the onlooker bee phase. In short, the proposed method
is capable of improving both the exploration and exploitation
abilities and the convergence speed of the basic ABC. It has
been shown that this hybrid approach significantly improves
the effectiveness of the basic ABC.

The basic ABC and proposed method (NMGD-ABC) were
applied on two benchmark problems, which are Carter’s
un-capacitated examination timetabling datasets and the
Socha course timetabling datasets. Datasets from two differ-
ent areas of educational timetabling are deliberately chosen to
illustrate the generality of the approach. Experimental results
demonstrate that NMGD-ABC outperforms the basic ABC in
producing good quality solutions. This is because NMGD-
ABC is able to globally explore and locally exploit the solution
search region using a PSO inspired global best model and
NMGD, respectively. In addition, a statistical analysis is also
carried out to prove that the performance of NMGD-ABC
is significantly better than the basic ABC. The exploration
ability of NMGD-ABC can be further improved by incor-
porating better exploration mechanisms and is the subject of
future work.
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