
S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 95

International Journal of Computer Science & Applications                  2007 Technomathematics Research Foundation 
Vol. 4 Issue 3, pp 95-106 

 
Multiprocessor Scheduling Using Hybrid Particle Swarm 

Optimization with Dynamically Varying Inertia 
 

S.N.Sivanandam1     P.Visalakshi2 
     sns@mail.psgtech.ac.in     visa_p@mail.psgtech.ac.in 

A.Bhuvaneswari3 
bhuvan888@yahoo.com 

1   Professor and Head, Department of Computer Science and Engineering, PSG College of Technology, 
Coimbatore, Tamilnadu, India – 641 004. 

2   Senior Lecturer, Department of Computer Science and Engineering, PSG College of Technology, 
Coimbatore, Tamilnadu, India – 641 004. 

 3   PG Student, Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, 
    Tamilnadu, India – 641 004. 

 
Abstract 

 
The problem of task assignment in heterogeneous computing systems has been studied for many years with 

many variations. We have developed a new hybrid approximation algorithm. The proposed hybrid heuristic model 
involves Particle Swarm Optimization (PSO) Algorithm and Simulated Annealing (SA) algorithm. This PSO/SA 
performs static allocation of tasks in a heterogeneous distributed computing system in a manner that is designed to 
minimize the cost. Particle Swarm Optimization with dynamically reducing inertia is implemented which yields better 
result than fixed inertia. The experimental results manifest that the proposed hybrid method is effective and efficient in 
finding near optimal solutions. 
 
Keywords: task assignment problem, distributed systems, hybrid strategy, particle swarm optimization, 
simulated annealing. 
 
1 Introduction 
 
The problem of scheduling a set of dependent or independent tasks in a distributed computing system is a 
well-studied area. In this paper, a static task allocation [1] in the heterogeneous computing system is 
examined which provides a variety of architectural capabilities, orchestrated to perform on application 
problems whose tasks have diverse execution requirements. Static allocation techniques can be applied to a 
large set of real-world applications that are able to be formulated in a manner which allows for deterministic 
execution. Some advantages of these techniques over dynamic ones, which determine the module assignment 
during runtime, are that, static techniques have no run time overhead and they can be designed using very 
complex algorithmic mechanisms which fully utilize the known properties of a given application. In this 
paper, a very fast and easily implemented hybrid algorithm is presented based on particle swarm 
optimization (PSO) [19] and simulated annealing (SA) algorithm.  The proposed method assigns the tasks to 
processors and avoids becoming trapped in local optimum and also leads to faster convergence towards the 
targeted solution. 

 
2 Related Work 
 
Several research works have been carried out in Task Assignment Problem [TAP]. The traditional methods 
such as branch and bound, divide and conquer, and dynamic programming give the global optimum, but are 
often too time consuming or do not apply for solving typical real-world problems. The researchers [2,5,12] 
had derived optimal task assignments to minimize the sum of task execution and communication costs with 
the branch-and-bound method and evaluated the computational complexity of this method using simulation. 
V.M.Lo [16] says that many of the heuristic algorithms use a graphical representation of the task-processor 
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system such that a Max Flow/Min Cut Algorithm can be utilized to find assignments of tasks to processors 
which minimize total execution and communication costs [18] and concludes that a measure of degree to 
which an algorithm achieves load balancing [3] can yield fairly unbalanced assignments. Traditional 
methods used in optimization are deterministic, fast, and give exact answers but often tends to get stuck on 
local optima. Also the time complexity from exponential to polynomial for traditional search algorithms on 
NP-hard problems cannot be changed.  

Consequently, another approach is needed when the traditional methods cannot be applied. The modern 
heuristic approach helps in such situation. Modern heuristics are general purpose optimization algorithms. 
Their efficiency or applicability is not tied to any specific problem-domain. Available heuristics include 
Simulated Annealing algorithms [9], Genetic Algorithms [2,6] and Ant Colony algorithm [22]. Peng-Yeng 
et.al [11] had proposed a hybrid strategy using Hill Climbing algorithm as a local search method along with 
Particle Swarm Optimization. Hill Climbing heuristic has the problem of getting trapped in local optima. 

The remainder of this Section formulates the TAP and discusses the existing methods for TAP. Section 3 
defines the task assignment problem. Section 4 explains the Particle Swarm Optimization heuristic used in 
this paper. Section 5 illustrates the proposed methods of this paper in detail. Section 6 discusses the results 
obtained in this work. Finally Section 7 discusses the conclusions and directions for further research in this 
area. 

 
3 Problem Definition 
 
This paper considers the Task Assignment Problem with the following scenario. The system consists of a set 
of heterogeneous processors (n) having different memory and processing resources, which implies that tasks 
(r), executed on different processor encounters different execution cost. The communication links are 
assumed to be identical, however communication cost between two tasks will be encountered when executed 
on different processors. A task will make use of the resourc es from its execution processor [18]. 

The objective is to minimize the total execution and communication cost encountered by the task 
assignment subject to the resource constraints. To achieve minimum cost for the TAP, the function is 
formulated as, 
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 xik is set to 1 if task i is assigned to processor k. n denotes the number of processors, r denotes the 
number of tasks,  e ik denotes the incurred  execution cost if tasks i is executed on processor k. cij is the 
incurred communication cost if tasks i and j  are executed on different processors. mi and pi represents the 
memory requirements and processing requirements of task i respectively. Mk and Pk are the memory and 
processing capacity of processor k. 

Q(X) is the objective function which combines the total execution cost and total communication cost 
as specified in 1st and 2nd terms of equation (1). The first constraint mentioned in equation (2) says that each 
task should be assigned to exactly one processor. Equation (3) and equation (4) are the 2nd and 3rd constraints 
respectively and they assure that the resource demand should never exceed the resource capacity. The final 
constraint as mentioned in equation (5) specifies that the xik is a  binary decision variable . 

 
4 Particle Swarm Optimization 
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PSO is a stochastic optimization technique [24] which operates on the principle of social behavior like bird 
flocking or fish schooling [19,21]. In a PSO system, a swarm of individuals (called particles) fly through the 
search space. Rui mendes[13] discusses the complete information about the Particle Swarm Optimization. 
Each particle represents a candidate solution to the optimization problem. The position of a particle is 
influenced by the best position visited by itself i.e. its own experience and the position of the best particle in 
its neighborhood i.e. the experience of neighboring particles. When the neighborhood of a particle is the 
entire swarm, the best position in the neighborhood is referred to as the global best position of the particle, 
and the resulting algorithm is referred to as the gbest PSO. When smaller neighborhoods are used, the 
algorithm is generally referred to as the lbest PSO. The performance of each particle is measured using a 
fitness function that varies depending on the optimization problem [22]. 

Each particle in the swarm is represented by the following characteristics. xi is the current position 
of the particle, vi is the current velocity of the particle and yi is the personal best position of the particle. The 
personal best position of particle i is the best position visited by particle i so far. There are two versions for 
keeping the neighbors’ best vector, namely lbest and gbest. In the local version, each particle keeps track of 
the best vector lbest attained by its local topological neighborhood of particles. For the global version, the 
best vector gbest is determined by any of the particles in the entire swarm. Hence, the gbest model is a 
special case of the lbest model. During each PSO iteration, particle i adjusts its velocity vij and position 
vector particleij through each dimension j by referring the random multipliers, either the personal best vector 
(pbestij) and the swarm’s best vector (gbestj, if the global version is adopted). If global version is adopted, the 
equations (6) and (7) are used. 

ijijij

ijj2ijij1 ijij

v+particle=particle
)particle-trand2(gbesc+)particle-trand1(pbesc +v w= v ∗∗∗

                         (6) 

                       (7) 

If local version is adopted, then the following equations (8) and (9) are  used: 
 

ijijij
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v+particle=particle
)particle-trand2(lbesc+)particle-trand1(pbesc +v w= v ∗∗∗

                         (8) 

                                     (9) 
where c1 and c2 are the cognitive coefficients and rand1 and rand2 are random real numbers drawn from U 
(0, 1). Thus, the particle flies through potential solutions toward pbesti and gbest in a navigated way while 
still exploring new areas by the stochastic mechanism to escape from local optima. If c1 = c2, each particle 
will be attracted to the average of pbest and gbest[1]. Since c1 expresses how much the particle trusts its  own 
past experience, it is called the cognitive parameter, and since c2 expresses how much it trusts the swarm, it 
is called the social parameter. Most implementations use a setting with c1 roughly equal to c2[2]. The inertia 
weight, w controls the momentum of the particle. The inertia weight can be dynamically varied by applying 
an annealing scheme for the w-setting of the PSO, where w decreases from w = 0.9 to w = 0.4 over the 
whole run. In general the inertia weight w is set according to the following equation (10).  
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w -         (10) 

A significant performance improvement is seen by varying the inertia. 
 
4.1 Neighborhood Topology 

 
The selection of the neighborhood plays a major role in reaching the optimal solution faster. The 

various topological structures are illustrated in Fig. 1 The all topology represents a fully connected graph, 
and, based on all the statistics, it is conjectured that information spreads quickly [13]. Sociologically, it could 
represent a small and closed community where decisions are taken in consensus[19]. 

The ring topology represents a regular graph with a minimum number of edges between its nodes. 
The graph statistics show that information travels slowly along the graph. This allows for different regions of 
the search space to be explored at the same time, as information of successful regions takes a long time to 
travel to the other side of the graph. It is called k best topology in general, (each node connected with k 
nodes). It is a circle topology if k=2. The four clusters topology represents four cliques connected among 
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themselves by several gateways. Sociologically, it resembles four mostly isolated communities, where a few 
individuals have an acquaintance outside their group. 

The pyramid represents a three dimensional wire-frame pyramid. It has the lowest average distance 
of all the graphs and the highest first and second degree neighbors. The square is a graph representing a 
rectangular lattice that folds like a torus. This structure, is commonly used to represent neighborhoods in the 
Evolutionary Computation and Cellular Automata communities, and is referred to as the von Neumann 
neighborhood (Hypercube topology). 

The wheel topology, in which the only connections are from one central particle to the others. Based 
on the available topologies it can be concluded that the shorter the average topological distance between any 
two particles is, the faster the convergence gets and less connected topologies do not seem to prevent 
premature convergence [7].  

 
Figure 1: Fully connected, Ring and Master-Slave Topology in PSO 

It must be noted that the results only indicate (although with some certainty) that the best topology is gbest in 
general. 
 
5 Proposed Methodology 
 
This section discusses Simple PSO and the proposed Hybrid PSO. In PSO, each particle corresponds to a 
candidate solution of the underlying problem. 
In the proposed method each particle represents 
a feasible solution for task assignment using a 
vector of r elements, and each element is an 
integer value between 1 to n. Fig. 2 shows an 
illustrative example where each row 
represents the particles which correspond to a 
task assignment that assigns five tasks to 
three processors, and Particleparticle3,T4=P1 means that in particle 3 the Task 4 is assigned to Processor 1.     
 
 
 
 
 

      
 

 
Figure 2:   Representation of particles 

In hybrid version, hybridization is done by performing simulated annealing at the end of an iteration 
of simple PSO [17]. Generally the Task Assignment Problem is to assign the n tasks to m processors so that 
the load is shared and also balanced. Here the proposed system considers n=20 and r=5 i.e. 20 tasks should 
be shared among 5 processors. The system calculates the fitness value of each assignment and selects the 
optimal assignment from the set of solutions. The system compares the memory and processing capacity of 
the processor with the memory and processing requirements of the tasks respectively. If capacity is enough 
then the task is assigned, else a penalty is added to the calculated fitness value. 

 
5.1 Fitness Evaluation 
 
The initial population is generated randomly and checked for the consistency [15]. Then each particle must 
be assigned with the velocities obtained randomly and it lies in the interval [0, 1]. Each solution vector in the 
solution space is evaluate d by calculating the fitness value for each vector. The objective value of Q(X) in 

Particle Number T1 T2 T3 T4 T5 
particle 1 P3 P2 P1 P2 P2 
particle 2 P1 P2 P3 P1 P1 
particle 3 P1 P3 P2 P1 P2 
particle 4 P2 P1 P2 P3 P1 
particle 5 P2 P2 P1 P3 P1 



S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 99

Equation (1) can be used to measure the quality of each solution vector. In modern heuristics the infeasible 
solutions are also considered since they may provide a valuable clue to targeting optimal solution [20]. A 
penalty function as shown in equation (11) is devised to estimate the infeasibility level of a solution. The 
penalty function is only related to constraints (3) and (4), and it is given by  
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This penalty is added to the objective function whenever the resource requirement exceeds the 
capacity. Hence the fitness function of the particle vector can finally be defined as in equation (12), 

   1))()(()( −+= XPenaltyXQXFitness            (12) 
Hence, as the fitness value increases the total cost is minimized which is the objective of the 

problem. 
 
5.2 Simple PSO 
 
As we had seen earlier in Section 2 the classical PSO is very simple. There are two versions for keeping the 
neighbors’ best vector, namely lbest and gbest. The global neighborhood ‘gbest’ is the most intuitive 
neighborhood. In the local neighborhood ‘lbest’, a particle is just connected to a fragmentary number of 
processes [21]. The best particle is obtained from, the best particle in each fragment.  
 
5.2.1 gbest PSO 

 
In the global version, every particle has access to the fitness and best value so far of all other particles in the 
swarm.  
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Figure 3: Global best PSO     Figure 4: Local best PSO 
Each particle compares its fitness value with all other particles. This method implements the star 

topology. It has exploitation of solution spaces but exploration is weak [8]. The implementation can be 
depicted as a flow chart as shown in Fig. 3  
 
5.2.2 lbest PSO 
 
In the local version, each particle keeps track of the best vector lbest attained by its local topological 
neighborhood of particles. Each particle compares with its neighbors decided based on the size of the 
neighborhood. The groups exchange information about local optima. Here the exploitation of solution space 
is weakened and exploration becomes stronger. The implementation can be depicted as a flow chart as 
shown in Fig. 4 
 
5.3 Hybrid PSO 
 
Modern meta-heuristics manage to combine exploration and exploitation search. The exploration search 
seeks for new regions, and once it finds a good region, the exploitation search kicks in.  
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Generate the initial Swarm 

Evaluate the initial Swarm using the 
fitness function 

Initialize the personal best of each particle 
and the global best of the entire swarm 

Update the particle velocity using personal 
best or local best 

Apply velocities to the particles positions  

Evaluate new particles positions  

Re-evaluate the original swarm and find the 
new personal best and global best 

 

Improve solution quality using simulated 
annealing 
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Figure 5: Hybrid PSO 

However, since the two strategies are usually inter-wound, the search may be conducted to other 
regions before it reaches the local optima. As a result, many researchers suggest employing a hybrid strategy, 
which embeds a local optimizer in between the iterations of the meta-heuristics [4,11].  

The embedded simulated annealing heuristic proceeds as follows. Given a particle vector, its r 
elements are sequentially examined for updating. The value of the examined element is replaced, in turn, by 
each integer value from 1 to n, and retains the best one that attains the highest fitness value among them. 
While an element is examined, the values of the remaining r -1 elements remain unchanged. A neighbor of 
the new particle is selected. The fitness values for the new particle and its neighbor are found. They are 
compared and the minimum value is selected. This minimum value is assigned to the personal best of this 
particle. The heuristic is terminated if all the elements of the particle have been examined for updating and 
all the particles are examined. The computation for the fitness value due to the element updating can be 
maximized. Since a value change in one element affects the assignment of exactly one task, we can save the 
fitness computation by only recalculating the system costs and constraint conditions related to the reassigned 
task. The flow is shown in Fig. 5 
 
6 Results and Discussion 
 
This section describes the results of simulations conducted to gain insight into the performance of the PSO 
algorithm implementation. Various versions of PSO algorithm like the simple PSO, the global PSO and 
Hybrid PSO with Simulated Annealing were implemented in MATLAB 7.0.1 and run with E.Taillard’s 
benchmark data. The experimental results clearly demonstrate the effectiveness of the Hybrid version of 
PSO. The value of (r, n) is set to (20, 5). The values of the other parameters are generated randomly as 
specified in [11]. The results of this experiment are obtained by varying the number of particles, number of 
iterations and topology of neighborhood particles. 

 
 6.1 Cost Evaluation 
 
The task incurs the execution cost and communication cost when executed on different machines. Our 
objective is to minimize this total cost. This paper discusses the evaluation of cost in various versions of PSO 
in three methods. The three methods are Cost Vs Number of iterations, Cost Vs Population Size and Fixed 
inertia Vs Varying inertia. For each version the number of iterations was increased upto 100 and the results 
were recorded.  

 
6.1.1 Cost Evaluation in Global Best PSO 
 
In the first method the cost is compared with an increase in the number of iterations. The cost obtained 
initially was 1011. As illustrated in Fig. 6, the cost reduces as we increase the number of iterations and Gbest 
PSO converges to the minimum cost of 857 at the 28th iteration and remains the same till the last iteration. 
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                                     Figure 6: Global best PSO with varying number of iterations 
 

In the second method the cost obtained is compared with an increase in the population size. The cost 
initially was 883. As illustrated in Fig. 7, the cost reduces as we increase the population size and Gbest PSO 
converges to the minimum cost of 783 for  the population size of 500 and remains the same albeit the 
increase in the population size.  
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Figure 7: Decreasing Cost in Gbest PSO with varying population size 

 
In the third method, a comparison of global PSO in terms of fixed inertia and varying inertia is 

considered. The global PSO with fixed inertia starts with a cost of 870 and reduces to only 857. But in global 
PSO with varying inertia, the initial cost is 883 and it reduces to 783 for a population size of 500 and is 
depicted in Fig. 8 
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Figure  8: Comparison of global PSO for fixed and varying inertia  

 
 Since the global best topology compares each particle with every other particle, the convergence is 
faster. When the population size is increased the cost is further minimized because the exploration is high. 
Since the dynamically varying inertia is implemented a balance between global and local exploration is 
achieved thus requiring less iteration on an average to find the optimal solution compared to fixed inertia. 
 
6.1.2 Cost Evaluation in Local Best PSO 
 
In the first method the cost is compared with an increase in the number of iterations. Fig. 9 depicts  the cost 
obtained initially as 1035. The cost reduces as we increase the number of iterations and Lbest PSO converges 
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to the minimum cost of 857 at the 100th iteration only. This is because it gets the information only from its 
neighbors . 
 

 
Figure 9: Local best PSO with varying number of iterations 

 
In the second method the cost obtained is compared with an increase in the population size. Fig. 10 

depicts the cost obtained initially as 914. The cost reduces as we increase the population size and Lbest PSO 
converges to the minimum cost of 818 for the population size of 500. The increase in cost is because of the 
each particle getting the information only from its neighbors. 
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Figure 10: Decreasing Cost in Lbest PSO with varying population size 

 
In the third method, a comparison of local PSO with fixed inertia and varying inertia is considered. 

The local PSO with fixed inertia starts with a cost of 857 and remains constant. But in local PSO with 
varying inertia, the initial cost is 914 and it reduces to 818 for a population size of 500 which is depicted in 
Fig. 11. 
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Figure 11: Comparison of local PSO for fixed and varying inertia 
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Since the local best topology compares each particle with its immediate neighborhood, the 
convergence is slower compared to global best. When the population size is increased the cost is further 
minimized because the exploration is high. Since the dynamically varying inertia is implemented a balance 
between global and local exploration is achieved thus requiring less iteration on an average to find the 
optimal solution compared to fixed inertia. 

 
6.1.3 Cost Evaluation in Hybrid PSO 
 
In the first method the cost is compared with an increase in the number of iterations. In this method the cost 
obtained initially was 940 as shown in Fig. 12. The cost reduces as we increase the number of iterations and 
Hybrid PSO converges to the minimum cost of 857 at the 21st iteration and remains the same till the last 
iteration. The faster convergence is due to the hybridization with simulated annealing.  
 

 
Figure  12: Hybrid PSO with varying number of iterations 

 
In the second method the cost obtained is compared with an increase in the population size. In this 

method the cost obtained initially was 885 as shown in Fig. 13. The cost reduces as we increase the 
population size and Hybrid PSO converges to the minimum cost of 783 for a population size of 500 and 
remains the same for any increase in the population size. The faster convergence is due to the hybridization 
with simulated annealing.  
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Figure 13: Hybrid PSO with varying population size 

 
In the third method, a comparison of Hybrid PSO with fixed inertia and varying inertia is considered. 

The Hybrid PSO with fixed inertia starts with a cost of 857 and re mains constant. But in Hybrid PSO with 
varying inertia, the initial cost is 885 and it reduces to 783 for a population size of 500 which is depicted in 
Fig. 14. 
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Hybrid n=20 r=5
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Figure 14: Comparison of Hybrid PSO for fixed and varying inertia 

 
Since the hybrid PSO involves simulated annealing at the end of an iteration the search is refined 

only towards the feasible solution which leads to faster convergence compared to other methods. When the 
population size is increased the cost is further minimized because the exploration is high. Since the 
dynamically varying inertia is implemented a balance between global and local exploration is achieved thus 
requiring less iteration on an average to find the optimal solution compared to fixed inertia. 
 
6.2 Time Taken For Convergence 
 
Next this paper considers the time taken for the convergence of the particles. The hybrid version of PSO 
converges faster than all other versions. This is checked for varying population.  
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Figure  15: Time Taken for convergence 

 
As the population increases the global and local best versions takes longer time for the convergence. But 
hybrid PSO performs better than the local and global PSO because the search in the negative direction is 
prevented. This can be inferred from Fig. 15 
 
7 Conclusion 
 
In many problem domains, the assignment of the tasks of an application to a set of distributed processors 
such that the incurred cost is minimized and the system throughput is maximized. Several versions of the 
task assignment problem (TAP) have been formally defined but, unfortunately, most of them are NP-
complete. In this paper, we have proposed a particle swarm optimization/simulated annealing (PSO/SA) 
algorithm which finds a near-optimal task assignment with reasonable time. The Hybrid PSO performs better 
than the local PSO and the Global PSO. We are currently conducting our research for using PSO to solve 
another version of the TAP with dependent tasks and the problem objective is to minimize the cost for 
accomplishing the task execution in a dynamic environment. 
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