
S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 95

International Journal of Computer Science & Applications 2007 Technomathematics Research Foundation
Vol. 4 Issue 3, pp 95-106

Multiprocessor Scheduling Using Hybrid Particle Swarm

Optimization with Dynamically Varying Inertia

S.N.Sivanandam1 P.Visalakshi2
 sns@mail.psgtech.ac.in visa_p@mail.psgtech.ac.in

A.Bhuvaneswari3
bhuvan888@yahoo.com

1 Professor and Head, Department of Computer Science and Engineering, PSG College of Technology,
Coimbatore, Tamilnadu, India – 641 004.

2 Senior Lecturer, Department of Computer Science and Engineering, PSG College of Technology,
Coimbatore, Tamilnadu, India – 641 004.

 3 PG Student, Department of Computer Science and Engineering, PSG College of Technology, Coimbatore,
 Tamilnadu, India – 641 004.

Abstract

The problem of task assignment in heterogeneous computing systems has been studied for many years with

many variations. We have developed a new hybrid approximation algorithm. The proposed hybrid heuristic model
involves Particle Swarm Optimization (PSO) Algorithm and Simulated Annealing (SA) algorithm. This PSO/SA
performs static allocation of tasks in a heterogeneous distributed computing system in a manner that is designed to
minimize the cost. Particle Swarm Optimization with dynamically reducing inertia is implemented which yields better
result than fixed inertia. The experimental results manifest that the proposed hybrid method is effective and efficient in
finding near optimal solutions.

Keywords: task assignment problem, distributed systems, hybrid strategy, particle swarm optimization,
simulated annealing.

1 Introduction

The problem of scheduling a set of dependent or independent tasks in a distributed computing system is a
well-studied area. In this paper, a static task allocation [1] in the heterogeneous computing system is
examined which provides a variety of architectural capabilities, orchestrated to perform on application
problems whose tasks have diverse execution requirements. Static allocation techniques can be applied to a
large set of real-world applications that are able to be formulated in a manner which allows for deterministic
execution. Some advantages of these techniques over dynamic ones, which determine the module assignment
during runtime, are that, static techniques have no run time overhead and they can be designed using very
complex algorithmic mechanisms which fully utilize the known properties of a given application. In this
paper, a very fast and easily implemented hybrid algorithm is presented based on particle swarm
optimization (PSO) [19] and simulated annealing (SA) algorithm. The proposed method assigns the tasks to
processors and avoids becoming trapped in local optimum and also leads to faster convergence towards the
targeted solution.

2 Related Work

Several research works have been carried out in Task Assignment Problem [TAP]. The traditional methods
such as branch and bound, divide and conquer, and dynamic programming give the global optimum, but are
often too time consuming or do not apply for solving typical real-world problems. The researchers [2,5,12]
had derived optimal task assignments to minimize the sum of task execution and communication costs with
the branch-and-bound method and evaluated the computational complexity of this method using simulation.
V.M.Lo [16] says that many of the heuristic algorithms use a graphical representation of the task-processor

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 96

system such that a Max Flow/Min Cut Algorithm can be utilized to find assignments of tasks to processors
which minimize total execution and communication costs [18] and concludes that a measure of degree to
which an algorithm achieves load balancing [3] can yield fairly unbalanced assignments. Traditional
methods used in optimization are deterministic, fast, and give exact answers but often tends to get stuck on
local optima. Also the time complexity from exponential to polynomial for traditional search algorithms on
NP-hard problems cannot be changed.

Consequently, another approach is needed when the traditional methods cannot be applied. The modern
heuristic approach helps in such situation. Modern heuristics are general purpose optimization algorithms.
Their efficiency or applicability is not tied to any specific problem-domain. Available heuristics include
Simulated Annealing algorithms [9], Genetic Algorithms [2,6] and Ant Colony algorithm [22]. Peng-Yeng
et.al [11] had proposed a hybrid strategy using Hill Climbing algorithm as a local search method along with
Particle Swarm Optimization. Hill Climbing heuristic has the problem of getting trapped in local optima.

The remainder of this Section formulates the TAP and discusses the existing methods for TAP. Section 3
defines the task assignment problem. Section 4 explains the Particle Swarm Optimization heuristic used in
this paper. Section 5 illustrates the proposed methods of this paper in detail. Section 6 discusses the results
obtained in this work. Finally Section 7 discusses the conclusions and directions for further research in this
area.

3 Problem Definition

This paper considers the Task Assignment Problem with the following scenario. The system consists of a set
of heterogeneous processors (n) having different memory and processing resources, which implies that tasks
(r), executed on different processor encounters different execution cost. The communication links are
assumed to be identical, however communication cost between two tasks will be encountered when executed
on different processors. A task will make use of the resourc es from its execution processor [18].

The objective is to minimize the total execution and communication cost encountered by the task
assignment subject to the resource constraints. To achieve minimum cost for the TAP, the function is
formulated as,

Min)(
1

1

1 11 1

1)(jkikijikik

n

k

r

i

r

ij

r

i

n

k

xxcxeXQ ∑∑ ∑∑∑
=

−

= +== =

−+= (1)

,1
1

=∑
=

n

k

ikx ri ,...,2,1=∀ (2)

kiki Mxm
n

k

≤∑
=1

, nk ,...,2,1=∀ (3)

kiki Pxp
n

k

≤∑
=1

, nk ,...,2,1=∀ (4)

},1,0{∈ikx ki,∀ (5)
 xik is set to 1 if task i is assigned to processor k. n denotes the number of processors, r denotes the
number of tasks, e ik denotes the incurred execution cost if tasks i is executed on processor k. cij is the
incurred communication cost if tasks i and j are executed on different processors. mi and pi represents the
memory requirements and processing requirements of task i respectively. Mk and Pk are the memory and
processing capacity of processor k.

Q(X) is the objective function which combines the total execution cost and total communication cost
as specified in 1st and 2nd terms of equation (1). The first constraint mentioned in equation (2) says that each
task should be assigned to exactly one processor. Equation (3) and equation (4) are the 2nd and 3rd constraints
respectively and they assure that the resource demand should never exceed the resource capacity. The final
constraint as mentioned in equation (5) specifies that the xik is a binary decision variable .

4 Particle Swarm Optimization

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 97

PSO is a stochastic optimization technique [24] which operates on the principle of social behavior like bird
flocking or fish schooling [19,21]. In a PSO system, a swarm of individuals (called particles) fly through the
search space. Rui mendes[13] discusses the complete information about the Particle Swarm Optimization.
Each particle represents a candidate solution to the optimization problem. The position of a particle is
influenced by the best position visited by itself i.e. its own experience and the position of the best particle in
its neighborhood i.e. the experience of neighboring particles. When the neighborhood of a particle is the
entire swarm, the best position in the neighborhood is referred to as the global best position of the particle,
and the resulting algorithm is referred to as the gbest PSO. When smaller neighborhoods are used, the
algorithm is generally referred to as the lbest PSO. The performance of each particle is measured using a
fitness function that varies depending on the optimization problem [22].

Each particle in the swarm is represented by the following characteristics. xi is the current position
of the particle, vi is the current velocity of the particle and yi is the personal best position of the particle. The
personal best position of particle i is the best position visited by particle i so far. There are two versions for
keeping the neighbors’ best vector, namely lbest and gbest. In the local version, each particle keeps track of
the best vector lbest attained by its local topological neighborhood of particles. For the global version, the
best vector gbest is determined by any of the particles in the entire swarm. Hence, the gbest model is a
special case of the lbest model. During each PSO iteration, particle i adjusts its velocity vij and position
vector particleij through each dimension j by referring the random multipliers, either the personal best vector
(pbestij) and the swarm’s best vector (gbestj, if the global version is adopted). If global version is adopted, the
equations (6) and (7) are used.

ijijij

ijj2ijij1 ijij

v+particle=particle
)particle-trand2(gbesc+)particle-trand1(pbesc +v w= v ∗∗∗

 (6)

 (7)

If local version is adopted, then the following equations (8) and (9) are used:

ijijij

ijj2ijij1 ijij

v+particle=particle
)particle-trand2(lbesc+)particle-trand1(pbesc +v w= v ∗∗∗

 (8)

 (9)
where c1 and c2 are the cognitive coefficients and rand1 and rand2 are random real numbers drawn from U
(0, 1). Thus, the particle flies through potential solutions toward pbesti and gbest in a navigated way while
still exploring new areas by the stochastic mechanism to escape from local optima. If c1 = c2, each particle
will be attracted to the average of pbest and gbest[1]. Since c1 expresses how much the particle trusts its own
past experience, it is called the cognitive parameter, and since c2 expresses how much it trusts the swarm, it
is called the social parameter. Most implementations use a setting with c1 roughly equal to c2[2]. The inertia
weight, w controls the momentum of the particle. The inertia weight can be dynamically varied by applying
an annealing scheme for the w-setting of the PSO, where w decreases from w = 0.9 to w = 0.4 over the
whole run. In general the inertia weight w is set according to the following equation (10).

iter
iter

www ×−=
max

minmax
max

w - (10)

A significant performance improvement is seen by varying the inertia.

4.1 Neighborhood Topology

The selection of the neighborhood plays a major role in reaching the optimal solution faster. The

various topological structures are illustrated in Fig. 1 The all topology represents a fully connected graph,
and, based on all the statistics, it is conjectured that information spreads quickly [13]. Sociologically, it could
represent a small and closed community where decisions are taken in consensus[19].

The ring topology represents a regular graph with a minimum number of edges between its nodes.
The graph statistics show that information travels slowly along the graph. This allows for different regions of
the search space to be explored at the same time, as information of successful regions takes a long time to
travel to the other side of the graph. It is called k best topology in general, (each node connected with k
nodes). It is a circle topology if k=2. The four clusters topology represents four cliques connected among

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 98

themselves by several gateways. Sociologically, it resembles four mostly isolated communities, where a few
individuals have an acquaintance outside their group.

The pyramid represents a three dimensional wire-frame pyramid. It has the lowest average distance
of all the graphs and the highest first and second degree neighbors. The square is a graph representing a
rectangular lattice that folds like a torus. This structure, is commonly used to represent neighborhoods in the
Evolutionary Computation and Cellular Automata communities, and is referred to as the von Neumann
neighborhood (Hypercube topology).

The wheel topology, in which the only connections are from one central particle to the others. Based
on the available topologies it can be concluded that the shorter the average topological distance between any
two particles is, the faster the convergence gets and less connected topologies do not seem to prevent
premature convergence [7].

Figure 1: Fully connected, Ring and Master-Slave Topology in PSO

It must be noted that the results only indicate (although with some certainty) that the best topology is gbest in
general.

5 Proposed Methodology

This section discusses Simple PSO and the proposed Hybrid PSO. In PSO, each particle corresponds to a
candidate solution of the underlying problem.
In the proposed method each particle represents
a feasible solution for task assignment using a
vector of r elements, and each element is an
integer value between 1 to n. Fig. 2 shows an
illustrative example where each row
represents the particles which correspond to a
task assignment that assigns five tasks to
three processors, and Particleparticle3,T4=P1 means that in particle 3 the Task 4 is assigned to Processor 1.

Figure 2: Representation of particles

In hybrid version, hybridization is done by performing simulated annealing at the end of an iteration
of simple PSO [17]. Generally the Task Assignment Problem is to assign the n tasks to m processors so that
the load is shared and also balanced. Here the proposed system considers n=20 and r=5 i.e. 20 tasks should
be shared among 5 processors. The system calculates the fitness value of each assignment and selects the
optimal assignment from the set of solutions. The system compares the memory and processing capacity of
the processor with the memory and processing requirements of the tasks respectively. If capacity is enough
then the task is assigned, else a penalty is added to the calculated fitness value.

5.1 Fitness Evaluation

The initial population is generated randomly and checked for the consistency [15]. Then each particle must
be assigned with the velocities obtained randomly and it lies in the interval [0, 1]. Each solution vector in the
solution space is evaluate d by calculating the fitness value for each vector. The objective value of Q(X) in

Particle Number T1 T2 T3 T4 T5
particle 1 P3 P2 P1 P2 P2
particle 2 P1 P2 P3 P1 P1
particle 3 P1 P3 P2 P1 P2
particle 4 P2 P1 P2 P3 P1
particle 5 P2 P2 P1 P3 P1

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 99

Equation (1) can be used to measure the quality of each solution vector. In modern heuristics the infeasible
solutions are also considered since they may provide a valuable clue to targeting optimal solution [20]. A
penalty function as shown in equation (11) is devised to estimate the infeasibility level of a solution. The
penalty function is only related to constraints (3) and (4), and it is given by

)()(
11

,0max,0max)(kikikiki PxpMxmXPenalty
r

i

r

i

−−= ∑+∑
==

. (11)

This penalty is added to the objective function whenever the resource requirement exceeds the
capacity. Hence the fitness function of the particle vector can finally be defined as in equation (12),

 1))()(()(−+= XPenaltyXQXFitness (12)
Hence, as the fitness value increases the total cost is minimized which is the objective of the

problem.

5.2 Simple PSO

As we had seen earlier in Section 2 the classical PSO is very simple. There are two versions for keeping the
neighbors’ best vector, namely lbest and gbest. The global neighborhood ‘gbest’ is the most intuitive
neighborhood. In the local neighborhood ‘lbest’, a particle is just connected to a fragmentary number of
processes [21]. The best particle is obtained from, the best particle in each fragment.

5.2.1 gbest PSO

In the global version, every particle has access to the fitness and best value so far of all other particles in the
swarm.

Generate the initial Swarm

Evaluate the initial Swarm using the fitness
function

Find the personal best of each particle and
the global best of the entire swarm

Update the particle velocity using global
best

Apply velocities to the particles positions

Evaluate new particles positions

Re-evaluate the original swarm

Find the new personal best and global best

Yes

Get the best individual from the last generation

Has maximum
iteration reached?

No

Generate the initial Swarm

Evaluate the initial Swarm using the fitness
function

Find the personal best of each particle and best
of the local bests of the entire swarm

Update the particle velocity using best of the
local bests

Apply velocities to the particles positions

Evaluate new particles positions

Re-evaluate the original swarm

Find the new personal best and local best

 No Has maximum
iteration reached?

Get the best individual from the last generation

Yes

Evaluate the initial Swarm using the fitness
function

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 100

Figure 3: Global best PSO Figure 4: Local best PSO
Each particle compares its fitness value with all other particles. This method implements the star

topology. It has exploitation of solution spaces but exploration is weak [8]. The implementation can be
depicted as a flow chart as shown in Fig. 3

5.2.2 lbest PSO

In the local version, each particle keeps track of the best vector lbest attained by its local topological
neighborhood of particles. Each particle compares with its neighbors decided based on the size of the
neighborhood. The groups exchange information about local optima. Here the exploitation of solution space
is weakened and exploration becomes stronger. The implementation can be depicted as a flow chart as
shown in Fig. 4

5.3 Hybrid PSO

Modern meta-heuristics manage to combine exploration and exploitation search. The exploration search
seeks for new regions, and once it finds a good region, the exploitation search kicks in.

 No

Generate the initial Swarm

Evaluate the initial Swarm using the
fitness function

Initialize the personal best of each particle
and the global best of the entire swarm

Update the particle velocity using personal
best or local best

Apply velocities to the particles positions

Evaluate new particles positions

Re-evaluate the original swarm and find the
new personal best and global best

Improve solution quality using simulated
annealing

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 101

Figure 5: Hybrid PSO

However, since the two strategies are usually inter-wound, the search may be conducted to other
regions before it reaches the local optima. As a result, many researchers suggest employing a hybrid strategy,
which embeds a local optimizer in between the iterations of the meta-heuristics [4,11].

The embedded simulated annealing heuristic proceeds as follows. Given a particle vector, its r
elements are sequentially examined for updating. The value of the examined element is replaced, in turn, by
each integer value from 1 to n, and retains the best one that attains the highest fitness value among them.
While an element is examined, the values of the remaining r -1 elements remain unchanged. A neighbor of
the new particle is selected. The fitness values for the new particle and its neighbor are found. They are
compared and the minimum value is selected. This minimum value is assigned to the personal best of this
particle. The heuristic is terminated if all the elements of the particle have been examined for updating and
all the particles are examined. The computation for the fitness value due to the element updating can be
maximized. Since a value change in one element affects the assignment of exactly one task, we can save the
fitness computation by only recalculating the system costs and constraint conditions related to the reassigned
task. The flow is shown in Fig. 5

6 Results and Discussion

This section describes the results of simulations conducted to gain insight into the performance of the PSO
algorithm implementation. Various versions of PSO algorithm like the simple PSO, the global PSO and
Hybrid PSO with Simulated Annealing were implemented in MATLAB 7.0.1 and run with E.Taillard’s
benchmark data. The experimental results clearly demonstrate the effectiveness of the Hybrid version of
PSO. The value of (r, n) is set to (20, 5). The values of the other parameters are generated randomly as
specified in [11]. The results of this experiment are obtained by varying the number of particles, number of
iterations and topology of neighborhood particles.

 6.1 Cost Evaluation

The task incurs the execution cost and communication cost when executed on different machines. Our
objective is to minimize this total cost. This paper discusses the evaluation of cost in various versions of PSO
in three methods. The three methods are Cost Vs Number of iterations, Cost Vs Population Size and Fixed
inertia Vs Varying inertia. For each version the number of iterations was increased upto 100 and the results
were recorded.

6.1.1 Cost Evaluation in Global Best PSO

In the first method the cost is compared with an increase in the number of iterations. The cost obtained
initially was 1011. As illustrated in Fig. 6, the cost reduces as we increase the number of iterations and Gbest
PSO converges to the minimum cost of 857 at the 28th iteration and remains the same till the last iteration.

Cost

750

800

850

900

950

1000

1050

1 11 30 45 60 75 90

Number of Iterations

C
o

st Cost

Has maximum iteration
reached?

Get the best individual from the last
Yes

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 102

 Figure 6: Global best PSO with varying number of iterations

In the second method the cost obtained is compared with an increase in the population size. The cost
initially was 883. As illustrated in Fig. 7, the cost reduces as we increase the population size and Gbest PSO
converges to the minimum cost of 783 for the population size of 500 and remains the same albeit the
increase in the population size.

720

740

760

780

800

820

840

860

880

900

100 200 300 400 500

Population size

co
st Cost

Figure 7: Decreasing Cost in Gbest PSO with varying population size

In the third method, a comparison of global PSO in terms of fixed inertia and varying inertia is

considered. The global PSO with fixed inertia starts with a cost of 870 and reduces to only 857. But in global
PSO with varying inertia, the initial cost is 883 and it reduces to 783 for a population size of 500 and is
depicted in Fig. 8

720

740

760

780

800

820

840

860

880

900

100 200 300 400 500

Population size

Varying w

Fixed w

Figure 8: Comparison of global PSO for fixed and varying inertia

 Since the global best topology compares each particle with every other particle, the convergence is
faster. When the population size is increased the cost is further minimized because the exploration is high.
Since the dynamically varying inertia is implemented a balance between global and local exploration is
achieved thus requiring less iteration on an average to find the optimal solution compared to fixed inertia.

6.1.2 Cost Evaluation in Local Best PSO

In the first method the cost is compared with an increase in the number of iterations. Fig. 9 depicts the cost
obtained initially as 1035. The cost reduces as we increase the number of iterations and Lbest PSO converges

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 103

to the minimum cost of 857 at the 100th iteration only. This is because it gets the information only from its
neighbors .

Figure 9: Local best PSO with varying number of iterations

In the second method the cost obtained is compared with an increase in the population size. Fig. 10

depicts the cost obtained initially as 914. The cost reduces as we increase the population size and Lbest PSO
converges to the minimum cost of 818 for the population size of 500. The increase in cost is because of the
each particle getting the information only from its neighbors.

760

780

800

820

840

860

880

900

920

940

100 200 300 400 500

Population size

co
st Cost

Figure 10: Decreasing Cost in Lbest PSO with varying population size

In the third method, a comparison of local PSO with fixed inertia and varying inertia is considered.

The local PSO with fixed inertia starts with a cost of 857 and remains constant. But in local PSO with
varying inertia, the initial cost is 914 and it reduces to 818 for a population size of 500 which is depicted in
Fig. 11.

760

780

800

820

840

860

880

900

920

940

100 200 300 400 500

Population size

Varying w

Fixed w

Figure 11: Comparison of local PSO for fixed and varying inertia

Local Best PSO

0
200

400

600

800

1000

1200

1 12 13 14 26 37 80 89 100

Number of iterations

Cost
Cost

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 104

Since the local best topology compares each particle with its immediate neighborhood, the
convergence is slower compared to global best. When the population size is increased the cost is further
minimized because the exploration is high. Since the dynamically varying inertia is implemented a balance
between global and local exploration is achieved thus requiring less iteration on an average to find the
optimal solution compared to fixed inertia.

6.1.3 Cost Evaluation in Hybrid PSO

In the first method the cost is compared with an increase in the number of iterations. In this method the cost
obtained initially was 940 as shown in Fig. 12. The cost reduces as we increase the number of iterations and
Hybrid PSO converges to the minimum cost of 857 at the 21st iteration and remains the same till the last
iteration. The faster convergence is due to the hybridization with simulated annealing.

Figure 12: Hybrid PSO with varying number of iterations

In the second method the cost obtained is compared with an increase in the population size. In this

method the cost obtained initially was 885 as shown in Fig. 13. The cost reduces as we increase the
population size and Hybrid PSO converges to the minimum cost of 783 for a population size of 500 and
remains the same for any increase in the population size. The faster convergence is due to the hybridization
with simulated annealing.

720

740

760

780

800

820

840

860

880

900

100 200 300 400 500

Population size

co
st Cost

Figure 13: Hybrid PSO with varying population size

In the third method, a comparison of Hybrid PSO with fixed inertia and varying inertia is considered.

The Hybrid PSO with fixed inertia starts with a cost of 857 and re mains constant. But in Hybrid PSO with
varying inertia, the initial cost is 885 and it reduces to 783 for a population size of 500 which is depicted in
Fig. 14.

Hybrid PSO

800

820

840

860

880
900

920

940
960

1 5 21 30 4
0

50 60 70 80 90 100

Number of iterations

cost
Cost

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 105

Hybrid n=20 r=5

720

740

760

780

800

820

840

860

880

900

100 200 300 400 500

Population size

Co
st Varying w

Fixed w

Figure 14: Comparison of Hybrid PSO for fixed and varying inertia

Since the hybrid PSO involves simulated annealing at the end of an iteration the search is refined

only towards the feasible solution which leads to faster convergence compared to other methods. When the
population size is increased the cost is further minimized because the exploration is high. Since the
dynamically varying inertia is implemented a balance between global and local exploration is achieved thus
requiring less iteration on an average to find the optimal solution compared to fixed inertia.

6.2 Time Taken For Convergence

Next this paper considers the time taken for the convergence of the particles. The hybrid version of PSO
converges faster than all other versions. This is checked for varying population.

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500

Population Size

Ti
m

e T
ak

en
(in

 se
co

nd
s)

Global Best

Local Best

Hybrid

Figure 15: Time Taken for convergence

As the population increases the global and local best versions takes longer time for the convergence. But
hybrid PSO performs better than the local and global PSO because the search in the negative direction is
prevented. This can be inferred from Fig. 15

7 Conclusion

In many problem domains, the assignment of the tasks of an application to a set of distributed processors
such that the incurred cost is minimized and the system throughput is maximized. Several versions of the
task assignment problem (TAP) have been formally defined but, unfortunately, most of them are NP-
complete. In this paper, we have proposed a particle swarm optimization/simulated annealing (PSO/SA)
algorithm which finds a near-optimal task assignment with reasonable time. The Hybrid PSO performs better
than the local PSO and the Global PSO. We are currently conducting our research for using PSO to solve
another version of the TAP with dependent tasks and the problem objective is to minimize the cost for
accomplishing the task execution in a dynamic environment.

S.N.Sivanandam , P.Visalakshi, and A.Bhuvaneswari 106

References
[1] Abdelmageed Elsadek.A, Earl Wells.B, A Heuristic model for task allocation in heterogeneous

distributed computing systems, The International Journal of Computers and Their Applications, Vol. 6,
No. 1, 1999.

[2] Annie S. Wu, Shiyun Jin, Kuo-Chi Lin and Guy Schiavone, Incremental Genetic Algorithm Approach to
Multiprocessor Scheduling, IEEE Transactions on Parallel and Distributed Systems, 2004.

[3] Batainah.S and AI-Ibrahim.M, Load management in loosely coupled multiprocessor systems, Journal of
Dynamics and Control, Vol.8, No.1, pp. 107-116, 1998.

[4] Chen Ai-ling, YANG Gen-ke, Wu Zhi-ming, Hybrid discrete particle swarm optimization algorithm for
capacitated vehicle routing problem, Journal of Zhejiang University, Vol.7, No.4, pp.607-614, 2006

[5] Dar-Tzen Peng, Kang G. Shin, Tarek F. Abdelzaher, Assignment and Scheduling Communicating
Periodic Tasks in Distributed Real-Time Systems, IEEE Transactions on Software Engineering, Vol. 23,
No. 12, 1997.

[6] Edwin S . H . Hou, Ninvan Ansari, and Hong Ren, A genetic algorithm for multiprocessor scheduling,
IEEE Transactions On Parallel And Distributed Systems, Vol. 5, No. 2, 1994.

[7] Fatih Tasgetiren.M & Yun-Chia Liang, A Binary Particle Swarm Optimization Algorithm for Lot Sizing
Problem, Journal of Economic and Social Research, Vol.5 No.2, pp. 1-20.

[8] Maurice Clerc and James Kennedy, The Particle Swarm—Explosion, Stability, and Convergence in a
Multidimensional Complex Space, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1,
2002.

[9] Osman, I.H., Metastrategy simulated annealing and tabu search algorithms for the vehicle routing
problem, Annals of Operations Research , Vol.41, No.4, pp.421-451, 1993

[10] Parsopoulos.K.E, Vrahatis.M.N, Recent approaches to global optimization problems through particle
swarm optimization, Natural Computing Vol.1, pp. 235 – 306, 2002

[11] Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te Wang, A hybrid particle swarm optimization
algorithm for optimal task assignment in distributed systems, Computer Standards & Interfaces ,
Vol.28, pp. 441-450, 2006

[12] Ruey-Maw Chen, Yueh-Min Huang, Multiprocessor Task Assignment with Fuzzy Hopfield Neural
Network Clustering Techniques, Journal of Neural Computing and Applications, Vol.10, No.1, 2001.

[13] Rui Mendes, James Kennedy and José Neves, The Fully Informed Particle Swarm: Simpler, Maybe
Better, IEEE Transactions of Evolutionary Computation, Vol. 1, No. 1, January 2005.

[14] Schutte.J.F, Reinbolt.J.A, Fregly.B.J, HaftkaR.T. and George.A.D, Parallel global optimization with the
particle swarm algorithm, International Journal for Numerical Methods in Engineering, Vol 6,
pp.2296–2315, 2004

[15] Tzu-Chiang Chiang , Po-Yin Chang, and Yueh-Min Huang, Multi-Processor Tasks with Resource and
Timing Constraints Using Particle Swarm Optimization, IJCSNS International Journal of Computer
Science and Network Security , Vol.6 No.4, 2006.

[16] Virginia Mary Lo, Heuristic algorithms for task assignment in distributed systems, IEEE Transactions
on Computers, Vol. 37, No. 11, pp. 1384– 1397, 1998.

[17] Yskandar Hamam , Khalil S. Hindi, Assignment of program modules to processors: A simulated
annealing approach, European Journal of Operational Research 122 509-513 2000

[18] Ioan Cristian Trelea, The particle swarm optimization algorithm: convergence analysis and parameter
selection, Information Processing Letters, Vol. 85, pp. 317–325, 2003.

[19] James Kennedy, Russell Eberhart, Particle Swarm Optimization, Proc. IEEE Int'l. Conference on
Neural Networks, Vol.4, pp.1942-1948.

[20] Shi.Y, and Eberhart.R, Parameter Selection in Particle Swarm Optimization, Evolutionary Programming
VII, Proceedings of Evolutionary Programming, pp. 591-600, 1998

[21] Kennedy.J and Russell C. Eberhart, Swarm Intelligence, pp 337-342, Morgan-Kaufmann, 2001.
[22] Graham Ritchie, Static Multi-processor scheduling with Ant Colony Optimization and Local search,

Master of Science thesis , University of Edinburgh, 2003.
[23] Van Den Bergh.F, Engelbrecht.A.P., A study of particle swarm optimization particle trajectories,

Information Sciences, PP. 937–97, 2006.
[24] Yuhui Shi, Particle Swarm Optimization, IEEE Neural Network Society, 2004

