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Grid computing utilizes the distributed heterogeneous resources in order to support complicated
computing problems. Grid can be classified into two types: computing grid and data grid. Job scheduling
in computing grid is a very important problem. To utilize grids efficiently, we need a good job scheduling
algorithm to assign jobs to resources in grids.

In the natural environment, the ants have a tremendous ability to team up to find an optimal path to

food resources. An ant algorithm simulates the behavior of ants. In this paper, we propose a Balanced
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Ant Colony Optimization (BACO) algorithm for job scheduling in the Grid environment. The main
contributions of our work are to balance the entire system load while trying to minimize the makespan
of a given set of jobs. Compared with the other job scheduling algorithms, BACO can outperform them
according to the experimental results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Current scientific problems are very complex and need huge
computing power and storage space. The past technologies such
as distributed or parallel computing are unsuitable for current
scientific problems with large amounts of data. Processing and
storing massive volumes of data may take a very long time.
Grid computing [1] is a new paradigm for solving those complex
problems. In grids, we need to consider the conditions such as
network status and resources status. If the network or resources
are unstable, jobs would be failed or the total computation time
would be very large. So we need an efficient job scheduling
algorithm for these problems in the grid environment.

The purpose of job scheduling is to balance the entire system
load while completing all the jobs at hand as soon as possible
according to the environment status. Because the environment
status may change frequently, traditional job scheduling algorithm
such as “First Come First Serve” (FCFS), “Shortest Job First”
(SJF), etc., may not be suitable for the dynamic environment in
grids.

In grids, users may face hundreds of thousands of computers
to utilize. It is impossible for anyone to manually assign jobs
to computing resources in grids. Therefore, grid job scheduling
is a very important issue in grid computing. For example, in
BOINC [2], an open-source software for volunteer computing and
grid computing, job scheduling is one of the most important
key factors for achieving Teraflops performance [3]. Because its
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importance, many job scheduling algorithms for grids [4-6] have
been proposed. Please refer to a survey [7], which also poses some
open issues.

A good schedule would adjust its scheduling strategy according
to the changing status of the entire environment and the types of
jobs. Therefore, a dynamic algorithm in job scheduling such as Ant
Colony Optimization (ACO) [8,9] is appropriate for grids.

ACO is a heuristic algorithm with efficient local search for
combinatorial problems. ACO imitates the behavior of real ant
colonies in nature to search for food and to connect to each other
by pheromone laid on paths traveled. Many researches use ACO to
solve NP-hard problems such as traveling salesman problem [10],
graph coloring problem [11], vehicle routing problem [12], and
so on.

This paper applies the ACO algorithm to job schedule problems
in Grid computing. We assume each job is an ant and the algorithm
sends the ants to search for resources. We also modify the global
and local pheromone update functions in ACO algorithm in order
to balance the load for each grid resource. Finally, we compare the
proposed BACO (Balanced ACO) algorithm with iACO (Improved
ACO) [13], FPLTF (Fastest Processor to Largest Task First) [14],
dynamic FPLTF [15], Sufferage [15], and random selection method
in the experiments. According to the experimental results, we can
find out that BACO is capable of achieving system load balance
better than other job scheduling algorithms.

The rest of the paper is organized as follows. Section 2
introduces the related work about many kinds of ACO algorithm
and job scheduling in grids. Section 3 details the proposed ACO
algorithm in job scheduling. Section 4 is the experimental results.
Finally, Section 5 concludes this paper.
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2. Related work
2.1. Ant algorithms

There are many different kinds of ACO algorithm, i.e., Ant
Colony System (ACS) [10], Max-Min Ant System (MMAS) [16],
Rank-based Ant System (RAS) [17], Fast Ant System (FANT) [18]
and Elitist Ant System (EAS) [19]. ACS uses the pseudo-random-
proportional rule to replace state transition rule for decreasing
computation time of selecting paths and update the pheromone
on the optimal path only. It is proved that it helps ants search the
optimal path.

MMAS is based on the basic ACO algorithm but limiting the
pheromone range to be greater than or equal to the low bound
value (Min) and smaller than or equal to the upper bound value
(Max). The low bound and upper bound are defined by the user.
According to the low bound and upper bound values, MMAS could
avoid ants to converge too soon in some ranges.

In the design of RAS, it sorts the ants by ant’s tour length in
ascending order after all ants completed their tours. It means that
the first ant finds the shortest path to complete the tour and the last
ant takes the longest tour. They give each ant a different density of
pheromone to update their path by the ascending order: the higher
the position of the ant, the more pheromone it could update; the
lower the position of the ant, the less pheromone it has. By the idea
of RAS, the shortest length gets more pheromone to attract more
ants to follow and the system could get the optimal solution very
soon.

FANT employs one ant at each iteration and uses the solution of
the ant to do a local search. FANT works without evaporation rule
and it updates pheromone after each iteration. In order to avoid the
sub-optimal solution, it applies a reset pheromone function.

EAS update more pheromone on the best-so-far tour found in
order to attract more ants to follow the best-so-far tour.

There are many studies about job scheduling using ACO
algorithm in grid environment such as [13]. It uses the basic
idea of ACO, but changes the pheromone update rule by adding
encouragement, punishment coefficient and load balancing factor.

In [20], Kwang Mong Sim et al. use multiple kinds of ant to
find multiple optimal paths for network routing. The idea can be
applied to find multiple available resources to balance resources
utilization in job scheduling. The key of the idea is each different
kinds of ant can only sense their own kind of pheromone so that
it can find many different paths including the shortest-path by
different kinds of ant. There are still some problems that if all
kinds of ant find the same path, it will be the same as using one
kind of ant. How to compare the performance for each kind of
ant creates another problem. Furthermore, one solution from this
algorithm may work efficiently in an environment, but it may work
inefficiently in another one.

In [21], ]. Heinonen et al. apply the hybrid ACO algorithm with
different visibility to job-shop scheduling problem. The hybrid
ACO algorithm consists of two ideas. One idea is the basic ACO
algorithm, and the other idea uses the post-processing algorithm
in the part of local search in ACO algorithm. When the ACO
algorithm finished, all ants complete its own tours. A tour can be
decomposed into blocks. The block for swap must contain more
than two operations. Then the post-processing algorithm uses the
swap operation on the blocks. If the swap refines the makespan,
the new path is accepted; otherwise the swap is invalid and the
swapped block reverts to previous status.

The ACO algorithm has also been applied to hard combinato-
rial optimization problems such as traveling salesman problem
(TSP) [10], flow shop problem [22], project presentation schedul-
ing[23], graph coloring problem [11], vehicle routing problem [12],
and nurse scheduling [24], and so on.

2.2. Job scheduling in grids

Job scheduling is well studied within the computer operating
systems [25]. Most of them can be applied to the grid environment
with suitable modifications. In the following we introduce several
methods for grids.

The FPLTF (Fastest Processor to Largest Task First) [14]
algorithm schedules tasks to resources according to the workload
of tasks in the grid system. The algorithm needs two main
parameters such as the CPU speed of resources and workload
of tasks. The scheduler sorts the tasks and resources by their
workload and CPU speed then assigns the largest task to the fastest
available resource. If there are many tasks with heavy workload, its
performance may be very bad. Dynamic FPLTF (DPLTF)[15] is based
on the static FPLTF, it gives the highest priority to the largest task.
DPLTF needs prediction information on processor speeds and task
workload.

The WQR (Work Queue with Replication) is based on the work
queue (WQ) algorithm [15]. The WQR sets a faster processor
with more tasks than a slower processor and it applies FCFS and
random transfer to assign resources. WQR replicates tasks in order
to transfer to available resources. The amount of replications is
defined by the user. When one of the replication tasks is finished,
the scheduler will cancel the remaining replication tasks. The
WQR’s shortcoming is that it takes too much time to execute and
transfer replication tasks to resource for execution.

Min-min [26] set the tasks which can be completed earliest
with the highest priority. The main idea of Min-min is that it
assigns tasks to resources which can execute tasks the fastest. Max-
min [26] set the tasks which has the maximum earliest completion
time with the highest priority. The main idea of Max-min is that it
overlaps the tasks with long running time with the tasks with short
running time.

For instance, if there is only one long task, Min-min will execute
short tasks in parallel and then execute long task. Max-min will
execute short tasks and long task in parallel.

The RR (Round Robin) algorithm focuses on the fairness
problem. RR uses the ring as its queue to store jobs. Each job in
queue has the same execution time and it will be executed in turn.
If a job can’t be completed during its turn, it will store back to the
queue waiting for the next turn. The advantage of RR algorithm is
that each job will be executed in turn and they don’t have to wait
for the previous one to complete. But if the load is heavy, RR will
take long time to complete all jobs.

Priority scheduling algorithm gives each job a priority value and
uses it to dispatch jobs. The priority value of each job depends on
the job status such as the requirement of memory sizes, CPU time
and so on. The main problem of this algorithm is that it may cause
indefinite blocking or starvation if the requirement of a job is never
being satisfied.

The FCFS (First Come First Serve) algorithm is a simple job
scheduling algorithm. A job which makes the first requirement will
be executed first. The main problem of FCFS is its convoy effect [25].
If all jobs are waiting for a big job to finish, the convoy effect occurs.
The convoy effect may lead to longer average waiting time and
lower resource utilization.

3. The balanced ant colony optimization (BACO) algorithm

BACO inherits the basic ideas from ACO algorithm to decrease
the computation time of jobs executing in Taiwan UniGrid [27]
environment and it also considers about the loading of each
resource. BACO changes the pheromone density according to the
resources status by applying the local pheromone update and
the global pheromone update functions. The purpose is to try to
minimize the completion time for each job while balancing the
system load.
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Fig. 1. System architecture.

3.1. System architecture

The system architecture is shown in Fig. 1. There are four
main components: Portal, Information Server, Jobs Scheduler and
grid resources. The Portal provides an interface to users for job
execution. The Information Server collects resource information
by using the NWS (Network Weather Service) [23]. The NWS
demon reports system information back to Information Server
periodically. The Jobs Scheduler selects the most appropriate
resources to execute the request according to the proposed BACO
algorithm. Finally, the execution results would be sent back to the
user.

3.2. The proposed BACO algorithm

In order to map the ant system to the grid system, we explain
their relationships below:

A. An ant

An ant in the ant system is a job in the grid system.

B. Pheromone

Pheromone value on a path in the ant system is a weight for a
resource in the grid system. A resource with a larger weight value
means that the resource has a better computing power.

The scheduler collects data from Information Server and uses
the data to calculate a weight value of a resource.

The pheromone (weight) of each resource is stored in the
scheduler and the scheduler uses it as the parameters for BACO
algorithm. At last, the scheduler selects a resource by a scheduling
algorithm and it sends jobs to the selected resource by the APIs of
the Globus Toolkit [29].

Fig. 2 shows the mapping between the ant system and the grid
system.

The initial pheromone value of each resource for each job is
equal to the pheromone indicator. The pheromone indicator of
each resource for each job is calculated by adding the estimated
transmission time and execution time of a given job when assigned
to this resource. The estimated transmission time can be easily
determined by ﬁﬁdthi where M; is the size of a given job j and
bandwidth; is the bandwidth available between the scheduler and
the resource. However, the other parameter, the job execution
time, is hard to predict. Depending on the type of programs, many
methods [30-34] can be used to estimate the program execution
time. With that, the pheromone indicator is defined by:

Pheromone indicator:

]—1

M;

Pl = + U
Y| bandwidth;

CPU_speed; x (1 — load;)

where Pl is the pheromone indicator for job j assigned to resource
i, M; is the size of a given job j, T; is the CPU time needed of
job j, CPU _speed; (CPU speed), load; (current load) andbandwidth;
(bandwidth between the scheduler and the resource) are the status
of resource i. The load, bandwidth and CPU speed can be obtained
using the Network Weather Service (NWS) [28].

The pheromone indicator tells that when a job is assigned to a
resource, we consider the resource status, the size of jobs, and the
program execution time in order to select a suitable resource for
execution. The larger the value of Pl is, the more efficient it is for
resource i to execute this job j.

Assume there are m resources and n jobs. We have the PI matrix
as follows:

J2

Pl

1
Pl;;  Plyy

n

Im Pl Pl Pl

In each iteration, we select the largest entry from the matrix.
Please note if another job scheduling discipline is used before
BACO, then BACO selects among the available jobs produced by
the scheduling. Assuming Plj; is selected, then job j is assigned to
resource i for execution. After a job is assigned to a resource, we
apply (1) to the resource selected for each unassigned jobs in the
PI matrix. This is called the local (row) pheromone update.

The global pheromone update is to recalculate the entire PI
matrix. It is performed when a job is completed. However, for
the resource that just completes executing this job, after applying
(1), the new value of pheromone in the row corresponding to the
resource will have to be multiplied (1— p;) further, where 1 > p; >
0. p; indicates the overhead incurred in resource i after completing
job j. When a local scheduler is also used in a resource, p; may be
used to indicate the decrease of new job priority after a job from
the same user is completed.

Global pheromone update reflects the changes of network
condition and resource status after a job is completed. It
incorporates the dynamic nature of the system into the scheduling
algorithm such that a better decision can be made at the next turn.

For n jobs and m resources, assigning the first job needs to
calculate the PI matrix of nm entries. For the second job, only
(n — 1)m entries remained in the PI matriX. Therefore, the total
number of matrix entries computed is m x > ;i = W
Therefore, BACO has good scalability even if n or m grows very
large.
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Fig. 2. Mapping between the ant system and the grid system.

Table 1
Initial status of each resource

r r r3
CPU speed (MHz) 3000 3200 2800
Load 25% 10% 30%
Bandwidth (Megabits/s) 11.69 25.20 15.95

3.3. Example of the proposed algorithm

Assume there are three jobs (ji, j» and j3) and three resources
(r1, 2 and r3) in the grid. Assume the initial status of each resource
is shown in Table 1 and the size of each job is 3 MB, 2 MB and
1 MB. The CPU cycles needed for each job are 3 M, 2 M, and 1
M respectively. The initial pheromone indicator of each entry is
shown in the following PI matrix.

Pl =3.88 Plj; =5.82 Plj; = 11.64
Pl = | Plyy = 8.33 Ply = 12.49 Pl; =24.99 | .
Plyy =528 Pl =7.91 Plj; = 15.83

At the beginning of job dispatch, the Job Scheduler selects the
maximum pheromone indicator in the PI matrix, which is Pl,3. So
1, is selected for the execution of j3. After assigning j; to rp, we will
update the second row of r, for all jobs by local update. Since j3 is
assigned, column 3 is no longer needed.

Assume the load of r; after the job assignment becomes 30% and
the new PI matrix is as follows:

Local update

PI,, =388 PI, =582

= Pl, =5.83 Pl, =8.14>

PI, =528 PI,=791

If r, finished j; before the Job Scheduler start to dispatch the
next job, we will update all entry of PI matrix (global update) in
order to get the newest pheromone for the next job submission.
Assume the newest status of each resource after the execution of
Jj1is shown in Table 2.

The p of r; and r, is zero because they have not been assigned
jobs for execution and assume the p of r; is 0.05. The new PI matrix
is as follows:

Pli; = 3.47 Pl = 5.21
Pl = | Py = 6.53 Ply, = 9.80

Pl3; = 4.61 Pl3; =6.91

Table 2
The newest status of each resource after execution of j3

5] T 3
CPU speed (MHz) 3000 3200 2800
Load 30% 20% 15%
Bandwidth (Megabits/s) 10.47 20.79 13.90
) 0 0.05 0

The remaining jobs are assigned similarly. When Job Scheduler
assigns a job to a resource, the row of selected resource will be
updated by the local pheromone function. After a resource finished
a job, all entries of the PI matrix will be updated by the global
pheromone update function.

4. Implementation and experimental results

4.1. Implementation environment

We have implemented our proposed algorithm in the Taiwan
UniGrid platform [27]. There are more than 20 campuses
participating in this project in Taiwan. The Taiwan UniGrid
provides computing resources with the aid of a middleware called
GT4 (Globus Toolkit of version 4) [29,35].

We select 25 computing nodes from the Taiwan UniGrid to
implement the experiments, as shown in Fig. 3. The sites include
Academia Sinica [36], National Center for High-Performance
Computing (NCHC) [37], Hsing Kuo University (HKU) [38] and
National Dong Hwa University (NDHU) [39].

The Portal, the Job Scheduler and the Information Server of the
system architecture in Fig. 1 are in the NDHU campus.

Fig. 4 shows the CPU speed of each resource retrieved from NWS
system. Machines from 1 to 4 are from NDHU, machines from 5
to 10 are from Academia Sinica, machines from 11 to 17 are from
NCHC and machines from 18 to 25 are from HKU. After checking,
the real CPU speed of each resource in Academia Sinica, NCHC and
HKU is the same as the one retrieved from NWS.

In each resource, besides standard Linux scheduling algo-
rithm [40], there is no local site scheduler such as portable batch
scheduler [41] or load sharing facility [42]. If there were, CPU time
measurement library call has to be embedded in the program to
have the actual execution time.
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4.2. Implementation

This study focuses on the makespan and system load balance.
Jobs in our experiments are to compute the product of matrices
with different sizes.

When a client delivers a request, the system works as follows:

A. Aclient uses the client-interface to send a request that contains
the total number of jobs, the size of matrix and the job
scheduling algorithm to the Portal.

B. The Jobs Scheduler receives the message from the Portal and
uses it as parameters for the BACO algorithm. The BACO
algorithm starts to calculate the relevant parameters. At the
same time, the Information Server would also provide the
resource information to the Jobs Scheduler.

C. The BACO algorithm selects a resource for submitting the
request (job) by finding the largest entry in the PI matrix among
the available jobs to be executed. Then a local pheromone
update is performed.

Table 3

Parameters of iACO

Parameter Value
o 0.5

B 0.5

P 0.99
Ce (encouragement coefficient) 0.003
Cp (punishment coefficient) 0.002
C (coefficient of the load balancing factor) 0.4
Ke 750
Kp 250
K 500

D. When a resource finishes a job, a global pheromone update is
performed and the resource will send the final results back to
the Portal. On receiving the execution results, the Portal would
send it back to the client to be displayed on the client user
interface.

E. Repeat Step A to Step D until all jobs are completed.

The scheduling algorithms to be compared in the experiment
include an improved ant algorithm in [13] (we call it iACO), the
BACO, FPLTF [14], Dynamic FPLTF [15], Sufferage [15], and the
random selection algorithm (random). The parameters of iACO
algorithm are the same in [13] and the values of Ke (the coefficient
of encourage factor), Kp (the coefficient of punishment factor) and
K (the coefficient that is relevant to computation workload and
communication quantity of the job) are shown in Table 3.

4.3. Experimental results

Two problems are simulated. The first is matrix multiplication.
The second is linear programming using the GNU GLPK (GNU
Linear Programming Kit) [43]. We simulate 1000 jobs which is the
same as in [13]. For matrix multiplication, the size of the matrix
is 500 x 500, 1000 x 1000, or 2000 x 2000. The size of each
job depends on its matrix size. Take matrix size of 500 x 500
for example, we send 500 x 500 real numbers to the resource
for execution and its job size is 500 x 500 x 4 bytes (976.5625
KB). For program execution time, since a straightforward matrix
multiplication algorithm has a time complexity of 0(n%), we use
2n® (n additions plus n multiplications to obtain an entry) as the
execution time estimate.

For linear programming, the size of the constraint is 200 x 200
(200 variables in 200 inequalities), 500 x 500, or 1000 x 1000.
For a 200 x 200 problem, the program size is about (200 x
200 + 200) x 4 bytes. However, the programming execution
time is hard to predict. From the time complexity of ellipsoid
method [44], we use 200n* as the execution time estimate for the
GLPK linear programming program. The coefficient 200 stands for
its complexity compared to a simple O(n#) algorithm.

4.3.1. Results of same matrix size multiplication and same size linear
programming

We compare the number of job assignment on each resource,
average execution time of jobs and the standard deviation of load
of each method in the following experiments. The matrix sizes are
all the same and include three cases: 500 x 500, 1000 x 1000, and
2000 x 2000. The linear programming sizes are also the same and
contain three cases: 200 x 200, 500 x 500, 1000 x 1000.

Fig. 5 shows that the average execution time per job for matrix
multiplication and Fig. 6 shows the linear programming case. BACO
take less time to execute in each size of jobs than other methods
because BACO let the resources which have good computing power
and light load execute more jobs. That is the reason why BACO
takes less time to execute jobs in each case in average.
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Fig. 5. Average execution time per job for matrix multiplication.
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Fig. 6. Average execution time per job for linear programming.
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(same size matrix multiplication)
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Fig. 7. Standard deviation of load for matrix multiplication.

Next we sample the load of each resource 10 times during the
job execution and compare the standard deviation of load of each
method independently. The standard deviation is given by:

forall i

(% — %),

where ¢ is the standard deviation with the same unit as load (%), N
is the number of resources, x; is the load of resource i, and X is the
average load of all resources.

If the standard deviation value of a method is small, it means
that the difference of each load is small. The small standard
deviation tells that the load of the entire system is balanced. The
lower value the standard deviation has, the more load balanced the
system is.

Figs. 7 and 8 show the standard deviation of load of each
method. BACO has the smallest value. It means that the difference
of resource load is small and the resources are load balanced.

Standard Deviation of Load
(same size LP problems)

35 EBaco

Hisco

b FPLTF

%

[ DFPLTF
i Sufferage

i Random

200x200 500x500 1000x1000

Linear Programming Size
Fig. 8. Standard deviation of load for linear programming.

Makespan for Mixed Matrix Sizes

Milliseconds

BACO iACO

FPLTF DFPLTF Sufferage Random

Fig. 9. Makespan of each method with mixed sizes for matrix multiplication.

4.3.2. Results of mixed sizes

The purpose of simulating the mixed size is that there may be
many different jobs in the grid and we want to know how the BACO
algorithm performs in such dynamic situation.

We choose 1000 jobs for execution and set the number of each
size to one third of the total number of jobs. So the number of
jobs is 333, 333, and 334, respectively for each size whether in
matrix multiplication or in linear programming. We compare the
makespan (total execution time) and the standard deviation of load
in each method.

Figs. 9 and 10 show the makespan of each method with mixed
sizes. We can find out that BACO uses less time to complete all
jobs. In the case of mixed jobs, the pheromone update functions
of BACO still work well. For iACO, it applies the encouragement
and punishment methods. It changes each pheromone by variables
defined by users and it ignores the real status of resources. If the
resources with bad computing power never fail to execute jobs,
they will always be encouraged and get more pheromone. Then
iACO will assign more jobs to the bad resources which have higher
pheromone and this will increase the total execution time of the
given jobs. That is the reason why iACO has larger makespan than
BACO.

Figs. 11 and 12 show the standard deviation of load in each
method. In the case of mixed jobs, BACO still has the smallest
standard deviation of load. Its resource selection depends on the
resources status and the size of jobs; it means that BACO considers
about the real status of resources. By the results, it does balance the
load of the entire system.

By the experimental results, we can easily find out the BACO
can achieve good system load balance in any situation and take less
time to execute jobs. It means that BACO can handle different size
jobs or same size jobs in grid and also keeps the system load more
balanced and have better performances.

iACO may have bad performances because the prediction of
status of resources in the pheromone update methods may be
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Fig. 10. Makespan of each method with mixed sizes for linear programming.
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Fig. 11. Standard deviation of load of each method with mixed size for matrix
multiplication.
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Fig. 12. Standard deviation of load of each method with mixed size for linear
programming.

wrong. The prediction means that it uses user-defined variables
to encourage or punish resources after the assignment of jobs
or the completion of jobs. It may not work sometimes when the
pheromone values do not match the real status of resources. So
BACO can work better than iACO.

DFPLTF and Sufferage have similar performances and are also
comparable to that of BACO. However, they do not consider the
bandwidth issue and assume the data is readily available in the
resources, which is sometimes not true.

FPLTF may have bad performance if the number of hard tasks is
too many and it always assigns jobs to the fastest resources which
may already have a heavy load. It will cause the system load to be
unbalanced and take much time for job executions.

Random has the true random performance. It does not consider
about the status of resources and the size of jobs and assign jobs to
resources randomly.

5. Conclusions and future work

In this paper, we propose a BACO algorithm to choose suitable
resources to execute jobs according to resources status and the

size of given job in the Grid environment. The local and global
pheromone update functions do balance the system load.

Local pheromone update function updates the status of the
selected resource after jobs assignment. Global pheromone update
function updates the status of each resource for all jobs after
the completion of a job. It offers the Job Scheduler the newest
information of all resource for the next jobs assignment. The
experimental result shows that BACO is capable of balance the
entire system load.

In future, we will study whether there are any other situations
which we do not take into account on our definitions of the
pheromone indicator or the pheromone update functions. We
will also try to apply BACO algorithm to various grid computing
applications. For example, instead of independent jobs, assume
now we are scheduling workflows. That is, there are precedence
relations among jobs. Then BACO has to be modified to include
a synchronization scheme among resources. When a job is to be
assigned to a resource for execution, we must be certain that all its
precedent jobs running on other resources have been completed.

Finally, this paper focuses on the computing grid. We may rede-
fine the pheromone indicator and pheromone update formulations
for the data grid to consider the replica strategy to select or predict
which resources have more storage or are suitable for file replica-
tions by their newest status in future.
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