
Computers & Operations Research 34 (2007) 1777–1799
www.elsevier.com/locate/cor

A heuristic genetic algorithm for product portfolio planning
Jianxin (Roger) Jiao∗, Yiyang Zhang, Yi Wang

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue 50,
Singapore, 639798, Singapore

Available online 22 August 2005

Abstract

Product portfolio planning has been recognized as a critical decision facing all companies across industries. It
aims at the selection of a near-optimal mix of products and attribute levels to offer in the target market. It constitutes
a combinatorial optimization problem that is deemed to be NP-hard in nature. Conventional enumeration-based
optimization techniques become inhibitive given that the number of possible combinations may be enormous.
Genetic algorithms have been proven to excel in solving combinatorial optimization problems. This paper develops a
heuristic genetic algorithm for solving the product portfolio planning problem more effectively. A generic encoding
scheme is introduced to synchronize product portfolio generation and selection coherently. The fitness function
is established based on a shared surplus measure leveraging both the customer and engineering concerns. An
unbalanced index is proposed to model the elitism of product portfolio solutions.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Mass customization; Genetic algorithm; Product portfolio; Variety management; Customer decision making

1. Introduction

To compete in the marketplace, manufacturers have been seeking for expansion of their product lines
and differentiation of their product offerings with the intuitively appealing belief that large product variety
may stimulate sales and thus conduce to revenue [1]. Initially variety does improve sales as the offerings
become more attractive; but as the variety keeps increasing, the law of diminishing returns suggests that

∗ Corresponding author. Tel.: +65 67904143; fax: +65 67911859.
E-mail address: jiao@pmail.ntu.edu.sg (J. Jiao).

0305-0548/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2005.05.033

http://www.elsevier.com/locate/cor
mailto:jiao@pmail.ntu.edu.sg

1778 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

the benefits do not keep pace [2]. The consequence of variety explosion manifests itself through several
ramifications, including increasing costs due to an exponential growth of complexity, inhibiting benefits
from economy of scale, exacerbating inventory imbalances and warehouse suffocation, and jeopardizing
the efficiency of manufacturing processes and distribution systems, to name but a few [3]. Facing such a
variety dilemma, the company must optimize its external variety with respect to the internal complexity
resulting from product differentiation [4].

On the other hand, the practice of making wide variety of products available and letting customers
vote on the shelf seems not only to be wasteful or unaffordable, but also tends to constrain customers’
ultimate satisfaction, leading to so-called mass confusion [5]. Pine et al. [6] have reported the common
problem of companies giving customers more choices than they actually want or need. For example,
Toyota found that 20% of its product variety accounted for 80% of its sales and Nissan reportedly offered
87 different types of steering wheels. Therefore, rather than creating various products in accordance with
all anticipating customer needs, it becomes an important campaign for the manufacturer to offer the
“right” product variety to the target market.

Such decisions on near-optimal amount of product offerings adhere to the general wisdom as suggested
in the Boston Consulting Group’s notion of product portfolio strategy [7]. While representing the spectrum
of a company’s product offerings, the product portfolio must be carefully set up, planned and managed so
as to match those customer needs in the target market [8]. The product portfolio strategy has far-reaching
impact on the company’s business success to achieve financial goals in maximizing return and R&D
productivity, to maintain the competitive edge of the business by increasing sales and market share, to
allocate scare resources properly and efficiently, to forge the link between project selection and business
strategies, to better communicate priorities within the organization both vertically and horizontally, and
so on [9].

Product portfolio planning (PPP) has been classified as a combinatorial optimization problem, in
that each company strives for the optimality of its product offerings through various combinations of
products and attribute levels [10]. In practice, the PPP problem has been approached from two different
perspectives. The first one is to select a product portfolio from a finite set of candidate items [11]. The
second one is to construct a product portfolio directly from part-worths utility data [12]. If the number of
attributes and the number of attribute levels go large, or most combinations of attribute levels are to be
used for defining feasible products, it deems to be computationally infeasible to enumerate the utilities
of all candidate items [13].

Towards this end, this paper develops a heuristic genetic algorithm (HGA) for solving the PPP problem.
The objective of this research is to develop a practical solution method that can find near-optimal solutions
and assist marketing managers in product portfolio decision making. The proposed HGA constructs
a product portfolio directly from part-worths utilities estimated based on conjoint analysis [14]. The
proposed solution method does not refer to any specific type of products, and thus it can be applied to a
variety of product or service development problems.

The remainder of the paper proceeds as follows. In the next section, the background leading to this
research is reviewed and accordingly the key technical challenges are identified. Section 3 presents a
formal description and formulation of the PPP problem. An optimization framework and the structural
properties of the model are discussed in Section 4. The HGA design and solution procedures are introduced
in Section 5. An application of the proposed HGA to notebook computer portfolio planning is reported
in Section 6. Managerial implications and possible extensions of this research are discussed in Section 7
and the paper is concluded in Section 8.

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1779

2. PPP as a combinatorial optimization problem

PPP has its origins in the fields of optimal product design [15], product positioning [10] and product
line design [12]. All these problems constitute a type of combinatorial optimization problems due to
their purpose of achieving a near-optimal combination of discrete products and/or attribute levels [13]. In
general, combinatorial optimization problems are characterized by a finite number of feasible solutions.
Let E = {e1, e1, . . . , en} be a finite set, � a set of feasible solutions defined over E, and f : � → R an
objective function. A combinatorial optimization problem is to find a solution in � whose objective value
is minimum or maximum [16].

By intuition, finding the near-optimal solution for a finite combinatorial optimization problem could be
done by simple enumeration. In practice, however, this technique is often impossible because the number
of feasible solutions may be enormous. A number of methods and algorithms have been developed to
solve combinatorial optimization problems. Sait and Youssef [17] have divided them into two groups:
exact algorithms and approximation algorithms. Due to the enumerative nature, exact algorithms are
not easy to design with moderate computational effort as can be seen from the complexity theory [18].
A major trend in solving such hard problems is to utilize an effective heuristics search [19]. In recent
studies, some meta-heuristics such as multi-start local search [20], simulated annealing [21], tabu search
[22] and genetic algorithms [23] have been commonly adopted. Reeves [24] and Aarts and Lenstra [25]
have reported a thorough survey of these approaches to commonly defined combinatorial problems.

A dynamic-programming heuristic method has been developed by Kohli and Sukumar [12]. Nair et al.
[13] have developed a beam search heuristic method and performed a computational study of the beam
search method and the dynamic programming heuristic method. Based on an extensive comparative
computational study Alexouda [26] has found that the evolutionary algorithms are close to optimal and,
in most cases, the evolutionary algorithms obtain a better solution than that found by the beam search
method. However, genetic algorithms are in general incapable of fine-tuning for obtaining the global
optimum [20]. As a result, various modifications have been done by incorporating local search techniques
into the evolution process for particular problems [27,28].

3. Description of the PPP problem

Consider such a scenario that a large set of product attributes, A ≡ {ak|k = 1, . . . , K}, have been
identified (a few methods are available, for example, [29]), given that the firm has the capabilities (both
design and production) to produce all these attributes. Each attribute, ∀ak ∈ A, possesses a few levels,
may it be discrete or continuous, i.e., A∗

k ≡ {a∗
kl|l = 1, . . . , Lk}.

A set of potential product profiles, Z ≡ { ⇀zj |j =1, . . . , J }, are generated by choosing one of the levels
for certain attributes, subjective to satisfying certain configuration constraints [30]. That is, a product
assumes certain attribute levels that correspond to a subset of A. Each product, ∀ ⇀zj ∈ Z, is defined as a
vector of specific attribute levels, i.e., ⇀zj = [a∗

klj
]K , where any a∗

klj
= � indicates that product ⇀zj does

not contain attribute ak; and any a∗
klj

�= � represents an element of the set of attribute levels that can be

assumed by product ⇀zj , i.e., {a∗
klj

}K ∈ {A∗
1 × A∗

2 × · · · × A∗
K}.

A product portfolio, �, is a set consisting of a few selected product profiles, i.e., � ≡ { ⇀zj |j =
1, . . . , j†} ⊆ Z, ∃J † ∈ {1, . . . , J }, denotes the number of products contained in the product portfolio.

1780 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Every product is associated with certain engineering costs, denoted as {Cj }J . The manufacturer must
make decisions to select what products to offer as well as their respective prices, {pj }J .

There are multiple market segments, S ≡ {si |i = 1, . . . , I }, each containing homogeneous customers,
with a size, Qi . Various customer preferences on diverse products are represented by respective utilities,
{Uij }I ·J . Product demands or market shares, {Pij }I ·J , are described by the probabilities of customers’
choosing products, denoted as customer or segment-product pairs, {(si, ⇀zj)}I ·J ∈ S × Z.

4. Mathematical model of product portfolio planning

This research addresses the PPP problem with the goal of maximizing an expected surplus from both
the customer and engineering perspectives [31]. The price has been commonly treated as a separate
attribute that can be chosen from a limited number of values for each product [13,32]. Adding price as
one more attribute, the attribute set becomes A ≡ {ak}K+1, where aK+1 represents the price possessing a
few levels, i.e., A∗

K+1 ≡ {a∗
(K+1)l|l = 1, . . . , LK+1}. Then, a PPP problem can be formulated as a mixed

integer program, as below,

Maximize E[V] =
I∑

i=1

J∑
j=1

Uij

Cj

PijQiyj , (1a)

Subject to
Lk∑
l=1

xjkl = 1, ∀j ∈ {1, . . . , J }, ∀k ∈ {1, . . . , K + 1}, (1b)

k+1∑
k=1

Lk∑
l=1

|xjkl − xj ′kl| > 0, ∀j, j ′ ∈ {1, . . . , J }, j �= j ′, (1c)

J∑
j=1

yj �J †, ∀J † ∈ {1 . . . , J }, (1d)

xjkl, yj ∈ {0, 1}, ∀j ∈ {1, . . . , J }, ∀k ∈ {1, . . . , K + 1},
∀l ∈ {1, . . . , Lk}, (1e)

where E[·] denotes the expected value of the shared surplus, V , which is defined as the utility per cost,
modified by the probabilistic choice model, {Pij }I ·J , and the market size, {Qi}I ; Cj indicates the cost of
offering product ⇀zj ; Uij refers to the composite utility of segment si for product ⇀zj constructed from
part-worth utilities of individual attribute levels, {A∗

k}K+1; and yj is a binary variable such that yj = 1 if
the manufacturer decides to offer product ⇀zj and yj = 0 otherwise.

In the above mathematical program, there are two types of decision variables involved, i.e., xjkl and
yj , representing two layers of decision-making in portfolio planning, respectively. The first layer is
the selection of attribute and their levels for different products (i.e., product generation); the second
one is to decide which products to offer (i.e., product selection). Both types of decisions depend on a
simultaneous satisfaction of the target segments. The manufacturer’s decisions about what (i.e., layer I

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1781

decision-making) and which (i.e., layer II decision-making) products to offer to the target segments are
implied in various instances of {xjkl|∀j, k, l} and {yj |∀j}, respectively.As a result, a near-optimal product

portfolio, �† ≡ { ⇀z
†
j |j = 1, . . . , J †} is yielded as a combination of selected products corresponding to

{yj |∀j}, where each selected product , ⇀z
†
j , comprises a few selected attributes and the associated levels

corresponding to {xjkl|∀j, k, l}.
Following the part-worth model, the utility of the ith segment for the j th product, Uij , is assumed to

be a linear function of the part-worth preferences of the attribute levels of product ⇀zj , i.e.,

Uij =
K∑

k=1

Lk∑
l=1

(wjkuiklxjkl + �j) + �ij , (2)

where uikl is the part-worth utility of segment si for the lth level of attribute ak (i.e., a∗
kl) individually;

wjk is the utility weights among attributes, {ak}K , contained in product ⇀zj ; �j is a constant associated
with the derivation of a composite utility from part-worth utilities with respect to product ⇀zj ; �ij is an
error term for each segment-product pair; and xjkl is a binary variable such that xjkl = 1 if the lth level
of attribute ak is contained in product ⇀zj and xjkl = 0 otherwise. The choice probability, Pij , that a
customer or a segment, ∃si ∈ S, chooses a product, ∃ ⇀zj ∈ Z, with N competing products, is defined
under the conditional multinomial logit choice rule [33].

Jiao and Tseng [34] have proposed to model the cost consequences of providing variety based on varying
impacts on process capabilities. To circumvent the difficulties inherent in estimating the accurate cost
figures, this research adopts a pragmatic costing approach based on standard time estimation developed
by Jiao and Tseng [35]. Then, the expected cycle time can be used as a performance indicator of variations
in process capabilities [34]. Hence, the cost function, Cj , corresponding to product ⇀zj , can be formulated
based on the respective one-side specification limit process capability index.

To select the best product portfolio with nearly the same shared surplus, a selection rule is adopted
to identify the most balanced product portfolio. According to Li and Azarm [36], a balanced prod-
uct portfolio means that all products contribute evenly or nearly evenly to the shared surplus; other-
wise an unbalanced product portfolio. In general, a balanced product portfolio is more preferable, as it
tends to perform more stable when there exist unexpected changes in the market. An unbalanced prod-
uct portfolio, to the contrary, may suffer significantly when market changes diminish the performance
of one or two dominating products in the portfolio. To quantify the extent of a balanced distribution
of products’ individual contributions to the entire product portfolio, an unbalance index is defined as
the following:

� =

√√√√√
J †∑

j=1

(
E[Vj]
E[V] − 1

M

)2

, (3)

where M is the total number of products in a portfolio, E[Vj] is the expected shared surplus of prod-
uct ⇀zj , and E[V] is the expected shared surplus of all products, { ⇀zj }J † . In an absolutely balanced
portfolio, the shared surplus of portfolio is evenly distributed among all products, i.e., E[Vj]/E[V] →
1/M , thus � → 0. Therefore, the lower the value of the unbalance index is, the more balanced is the

1782 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

distribution of shared surplus (fitness) among the products, and thus the more desirable is the portfolio
chromosome.

5. A heuristic GA for PPP

As the number of attributes and levels associated with a product increases, so does the number of
combinations of products for portfolios. A product with nine attributes of three levels each may produce
39 = 19, 683 possible variants. A product portfolio consisting of maximal three such products may
yield (39)3 + (39)2 + (39)1 = 7.62598 × 1012 possible combinations. Complete enumeration to obtain
optimal product selections in portfolio planning becomes numerically prohibitive [37]. The conjoint-
based search for an optimal product portfolio always results in combinatorial optimization problems
because typically discrete attributes are used in conjoint analysis [10]. Nearly all of these problems are
known to be mathematically intractable or NP-hard, and thus mainly heuristic solution procedures have
been proposed for the various problem types [13].

Comparing with traditional calculus-based or approximation optimization techniques, genetic algo-
rithms (GA) have been proven to excel in solving combinatorial optimization problems [38]. The GA
approach adopts a probabilistic search technique based on the principle of natural selection by survival
of the fittest and merely uses objective function information, and thus is easily adjustable to different
objectives with little algorithmic modification [23]. An important feature of GA is that it allows product
profiles to be constructed directly from attribute level part-worths data [12]. This is particularly preferable
to reference set enumeration if the number of attributes and their levels is large and most multi-attribute
products represented by different attribute level combinations are economically and technologically
feasible [13].

Hence, a GA approach is employed in this research to solve the mixed integer program in Eqs. (1a)–(1e).
The focus is to develop an efficient algorithm that is capable of producing acceptable solutions for the
combinatorial optimization problem involving a wide variety of configurations of attributes and their
levels as well as product profiles in portfolio planning. In accordance with a generic variety structure
inherent in product families [30], a heuristic GA is formulated as follows.

5.1. Generic encoding

The first step in the implementation of a heuristic GA involves the representation of a problem to
be solved with a finite-length string called chromosome. A generic strategy for encoding the portfolio
planning problem is illustrated in Fig. 1, with an example shown in Fig. 2.A product portfolio is represented
by a chromosome consisting of a string. Each fragment of the chromosome (i.e., substring) represents a
product contained in the portfolio. Each element of the string, called gene, indicates an attribute of the
product. The value assumed by a gene, called allele, represents an index of the attribute level instantiated
by an attribute. A portfolio (chromosome) consists of one to many products (fragments of chromosome),
exhibiting a type of composition (AND) relationships. Likewise, each product (fragment of chromosome)
comprises one to many attributes (genes). Nevertheless, each attribute (gene) can assume one and only
one out of many possible attribute levels (alleles), suggesting an exclusive all (XOR) instantiation.

The format of an allele may be either a binary or integer number [23]. The binary format is the
most general form widely used for modeling the binary-selection type of problems [39]. In our case,

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1783

AND/a part of

Attribute

Product

1

Attribute Level

1..*

1

1..*

XOR/an instance of

AND/a part of

Portfolio

1

1..*

AND/a part of

Gene

Fragment of
Chromosome

1

Allele

1..*

1

1..*

XOR/an instance of

AND/a part of

Chromosome

1

1..*

Association

Association

Association

Association

AND/a part of

Attribute

Product

1

Attribute Level

1..*

1

1..*

XOR/an instance of

AND/a part of

Portfolio

1

1..*

AND/a part of

Gene

Fragment of
Chromosome

1

Allele

1..*

1

1..*

XOR/an instance of

AND/a part of

Chromosome

1

1..*

Association

Association

Association

Association

Fig. 1. Generic encoding for product portfolio.

Fig. 2. An illustration of generic encoding.

each attribute (genes) may assume multiple levels (alleles), resulting in a multi-selection problem.
Therefore, the integer format is adopted for representing multiple choices among attribute levels. Each
gene assumes an integer number that corresponds to the index of the attribute level associated with a
particular attribute.

1784 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Given J † �J products to be selected for a product portfolio, � = { ⇀zj }J † , and K + 1 attributes in each
product, ⇀zj , a generic string of the chromosome is defined to be composed of J substrings, with J − J †

empty substrings corresponding to those unselected products, and contains a total number of J · (K + 1)

genes, with each substring consisting of K + 1 genes.
Further introduce an allele equal to 0 as the default value for every gene. This indicates that the

corresponding attribute is not contained in a product. Then with Lk possible levels for an attribute, ak ,
the corresponding gene may assume an allele from the set, {0, 1, . . . , Lk}, meaning that a total number of
Lk + 1 alleles are available for each gene. This corresponds to the fact that an attribute, ak , may assume
a de facto level, that is, ∃a∗

kl ∈ {�, a∗
k1, . . . , a

∗
kl, . . . , a

∗
kLk

}. If all genes throughout a substring assume
{0}K+1 alleles, then it means that the corresponding product is not selected in the portfolio. In this way, a
chromosome enables a unified structure, through which various portfolios consisting of different numbers
of products can be represented within a generic product portfolio, � = { ⇀zj }J . Each individual portfolio
can be instantiated from the same generic product portfolio by indirect identification of zero or non-zero
alleles for all substrings [30].

For example, the chromosome shown in Fig. 2 suggests that product ⇀zj is not selected for the portfolio
(i.e., yJ = 0) as the corresponding substring is totally empty. As far as product ⇀z1 is concerned (i.e.,
y1 = 1), the 1st allele assumes a value of 2 indicating that the 1st attribute of the product chooses the 2nd
attribute level associated with this attribute (i.e., x112 = 1). The last (K + 1) allele of the 1st substring
suggests that the price attribute takes on the 3rd price level for product ⇀z1 (i.e., x1(K+1)3 = 1). On the
other hand, the kth allele assumes a value of 0, indicating that the kth attribute is not contained in product
⇀z1 (i.e., x1kl = 0, ∀l ∈ {1, . . . , Lk}).

Following the basic GA procedures [39], the PPP problem in Eqs. (1a)–(1e) is solved iteratively, as
depicted below and also shown in Fig. 3.

5.2. Initialization

Initialization involves generating initial solutions to the problem. The initial solutions can be generated
either randomly or using some heuristic methods [40]. Considering the feasibility of product configura-
tions, an initial population of product portfolios of size M , {�m}M , is determined a priori and accordingly
M chromosome strings are encoded, respectively. Each chromosome string is assigned a fitness value in
lieu of its expected shared surplus obtained by calculating Eq. (1a).

The population size, M , directly affects the computational efficiency of GA. A larger population size
gives the algorithm a higher chance of success by exploring a larger solution space; but leads to more
calculations. While a standard value could be suggested by extensive experimentation [23], this research
sets a population size of 100 chromosomes.

5.3. Handling of configuration constraints

In order to obtain feasible solutions, each chromosome must satisfy certain configuration constraints
on product generation from combinations of attribute levels. They constitute two types of constraints:
compatibility constraints and selection constraints. Compatibility constraints refer to the restrictions
on choices of attribute levels (e.g., size compatible) and are generally described as IF THEN rules
[30,41]. Selection constraints refer to those conjoint, exclusiveness, divergence and capacity conditions
as postulated in Eqs. (1b)–(1e).

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1785

Fig. 3. Procedure of the heuristic genetic algorithm.

A number of methods of constraint handling have been reported in the literature, such as the repairing,
variable restricting, and modifying generic operator methods [39]. This research adopts a penalizing
strategy. Whenever a new chromosome is generated, a constraint check is conducted with respect to all
types of constraints, and those invalid ones are penalized in the population.

1786 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Most existing GA implementations incorporate constraint handling into the GA process. This makes GA
operations very complex and less efficient. For example, Steiner and Hruschka [38] have introduced extra
exit conditions for crossover and mutation in order to deal with the divergence constraint. This research
designs a separate constraint check module as a filter at the outset of the GA process. The constraint
rules are generated based on the designers’ experience and production capability. The generated rules
are stored in a pool. Whenever a new chromosome is produced, it must be checked with the pool. If
any genes of the new chromosome are found in the pool, the chromosome is penalized. As a result, only
valid chromosomes are kept high fitness, whilst a standard GA process can be maintained without being
intervened by concerning the validity of GA operations or the feasibility of each offspring.

5.4. Fitness function

A fitness function must be used to evaluate the fitness value of each individual chromosome within the
population of each generation. Good chromosomes should probably expose to more opportunities to be
selected as a parent, whereas poor ones may not be selected at all. Within the context of PPP, the fitness
function used is the expected shared surplus as described in Eq. (1a).

5.5. Selection and reproduction

With the optimization of an expected shared surplus, the fitness values are continuously increasing until
a near-optimal solution is found. Once the fitness function is defined and used for the first generation,
the GA starts the parent selection and reproduction process. Parent selection is a process that allocates
reproductive opportunities among chromosome population. The most popular selection method is the
roulette wheel selection. The roulette wheel selection is one probabilistic selection method, that is, a
reproduction probability is assigned to each chromosome based on its fitness value. Then the roulette wheel
is filled using the respective cumulative probabilities of every chromosome. The areas of the sections on
the wheel depend on the fitness values of the associated chromosomes, with fitter chromosomes occupying
larger areas in this biased roulette wheel, thus increasing their chances of survival. The roulette wheel
selection can be implemented by generating random numbers between 0 and 1 in accordance with the
cumulative reproduction probabilities [40].

The advantage of probabilistic selection is that the better the chromosomes are, the more chances to be
selected they have. Thus, those chromosomes with better fitness gain more opportunities to change their
good components to reproduce better offspring. But a biased selection sometimes may lead to premature
convergence although it enables the convergence of the search [23]. Imagine a roulette wheel selection
where all the chromosomes in the population are placed, the size of the section in the roulette wheel is
proportional to the value of the fitness function of every chromosome—the bigger the value is, the larger
the section is. In this case, if one chromosome is dominant in the population, this dominant chromosome
with bigger fitness value will be selected more times. For example, if the best chromosome fitness is 90%
of the sum of all fitness then the other chromosomes will have very few chances to be selected. Thus,
the diversity of the population is destroyed, so as the performance of the global searching capability of
genetic algorithm. In this case, this research adopts rank selection to select the appropriate chromosomes
for crossover and mutation operations. The rank selection is also a probabilistic selection method. Rank
selection ranks the population first and then every chromosome receives fitness value determined by
this ranking. The worst will have the fitness 1, the second worst 2, etc., and the best will have fitness

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1787

N (number of chromosomes in population). Rank selection decreases the difference between dominant
chromosomes and non-dominant ones, thus all the chromosomes have a chance to be selected to keep the
diversity of the population.

5.6. Crossover

After reproduction, each two of the parent strings in the mating pool are picked randomly and each
pair of strings undergoes crossover with a probability. Crossover requires two individual chromosomes
to exchange their genetic compositions. The offspring thus inherits some genes from parents via such
operations. While a number of crossover operators are available for specific encoding schemes [40], this
research adopts a multi-point random crossover operator. The idea behind multi-point is that parts of
the chromosome that contribute to most of the performance of a particular individual may not neces-
sarily be contained in adjacent substrings. Compared with single-point crossover operator, the disrup-
tive nature of multi-point crossover appears to encourage the exploration of the search space, rather
than favoring the convergence to highly fit individuals early in the search, thus making the search
more robust.

For the PPP problem, the product portfolio comprises several different products which are composed
of many attributes. The complexity of the problem results in a long string representing the chromosome.
Adopting single-point crossover is inclined to keep most adjacent substrings intact thus resulting in the
premature. In this regard, for each substring, we adopt single-point crossover operator to encourage its
changing. Thus, the whole chromosome is implemented with a multi-point crossover operation.

Within a generic encoding chromosome, for every substring, one crossover point is randomly lo-
cated and the integer string of an offspring is first copied from the first parent from the beginning till
the crossover point; and then the rest is added by copying from the second parent from the crossover
point to the end. The order of combination is reversed for the other offspring. In regard to the generic
chromosome, for each substring, there are (K − 1) cutting points, and there are totally J · (K − 1)

cutting points.
The probability of crossover is characterized by a crossover rate, indicating the percentage of chro-

mosomes in each generation that experience crossover. Crossover aims at producing new chromosomes
that possess good elements of old chromosomes. Nonetheless it is also desirable to allow some chromo-
somes, in particular those good ones, to survive without change in the next generation (namely elitism).
Therefore, this research adopts a crossover rate of 0.80. In practice, this value could be selected based on
sensitivity analysis of trial examples using crossover rates that range, for example, 0.05–0.95.

5.7. Mutation

Mutation is applied to each offspring individually after crossover. It randomly picks a gene within each
string with a small probability (referred to as mutation rate) and alters the corresponding attribute level at
random. This process enables a small amount of random search, and thus ensures that the GA search does
not quickly converge at a local optimum. But it should not occur very often, otherwise the GA becomes
a pure random search method [23]. Empirical findings have suggested a mutation rate of 0.01 as a rule
of thumb to obtain good solutions [39]. While reproduction reduces the diversity of chromosomes in a
population, mutation maintains a certain degree of heterogeneity of solutions which is necessary to avoid
premature convergence of the GA process [38].

1788 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

5.8. Termination

The processes of crossover and reproduction are repeated until the population converges or reaches a
pre-specified number of generations. The number of generations has direct consequence on the perfor-
mance of the algorithm. A maximal number can be set ex ante at a large number. However, the algorithm
may have found a solution before this number is ever reached. Then extra computations may have to be
performed even after the solution has been found. Balakrishnan and Jacob [42] have shown a moving
average rule that can provide a good indication of convergence to a solution. More specifically, the GA
process terminates if the average fitness of the best three strings of the current generation has increased
by less than a threshold (namely convergence rate) as compared with the average fitness of the best three
strings over three immediate previous generations.

To leverage possible problems of termination by either convergence or maximal number of generations
alone, this research adopts a two-step stopping rule to incorporate both. A moving average rule is used for
the first stopping check. The convergence rate is set at 0.1%. In practice, this value could be determined
based on sensitivity analysis of trial examples according to the particular problem context. Then a maximal
number of generations is specified as the criterion for the second stopping check. In our case, a number of
1000 is used. Similarly, this value could be determined based on trial runs in line with specific problems
under study. These two steps complement each other. If the search is very difficult to converge (for
example, in the case of a very tight convergence rate), the second stopping criterion helps avoid running
the GA process infinitely. If can converge at the near-optimal solution with a few generations, then there
is no need to run as many generations as the maximal number.

Moreover, in each generation the highest fitness value achieved so far and its corresponding string
keep updated and stored. This makes sure that the best product portfolio solution found, not only from
the final generation but also over all generations, is returned at convergence. Upon termination, the GA
returns the product portfolio with the highest fitness (expected shared surplus) as well as the contained
products in terms of specific configurations of attribute levels. All intermediate results of each generation
(e.g., product portfolio candidates and their fitness values) and some descriptive statistics (e.g., numbers
of crossovers and mutations, average population fitness, population standard deviation and status-quo of
product portfolio solution) are recorded in the output report. Thus decision makers can track the progress
of the GA or examine other feasible product portfolio solutions that are of high fitness values.

6. Application to notebook computer portfolio planning

6.1. Background

The proposed framework has been applied to the notebook computer portfolio planning problem for
a world-leading computer manufacturing company. For illustrative simplicity, a set of key attributes and
available attribute levels are listed in Table 1. Among them, “price” is treated as one of the attributes to be
assumed by a product. Every notebook computer is thus described as a viable configuration of available
attribute levels.

With regard to the class-member relationships defined in Fig. 1, notebook computer portfolios comprise
a four-layer AND/OR tree structure, as shown in Fig. 4. The first layer is portfolios, each of which consists
of one or more products. Each product consists of a few attributes, thus constituting the second layer.
The fourth layer represents the value options for each attribute located at the third layer, indicating the

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1789

Table 1
List of attributes and their feasible levels for notebook computers

Attribute Attribute levels

ak Description a∗
kl Code Description

a1 Processor a∗
11 A1-1 Pentium 2.4 GHz

a∗
12 A1-2 Pentium 2.6 GHz

a∗
13 A1-3 Pentium 2.8 GHz

a∗
14 A1-4 Centrino 1.4 GHz

a∗
15 A1-5 Centrino 1.5 GHz

a∗
16 A1-6 Centrino 1.6 GHz

a∗
17 A1-7 Centrino 1.7 GHz

a∗
18 A1-8 Centrino 1.8 GHz

a∗
19 A1-9 Centrino 2.0 GHz

a2 Display a∗
21 A2-1 12.1” TFT XGA

a∗
22 A2-2 14.1” TFT SXGA

a∗
23 A2-3 15.4” TFT XGA/UXGA

a3 Memory a∗
31 A3-1 128 MB DDR SDRAM

a∗
32 A3-2 256 MB DDR SDRAM

a∗
33 A3-3 512 MB DDR SDRAM

a∗
34 A3-4 1 GB DDR SDRAM

a4 Hard Disk a∗
41 A4-1 40 GB

a∗
42 A4-2 60 GB

a∗
43 A4-3 80 GB

a∗
44 A4-4 120 GB

a5 Disk Drive a∗
51 A5-1 CD-ROM

a∗
52 A5-2 CD-RW

a∗
53 A5-3 DVD/CD-RW Combo

a6 Weight a∗
61 A6-1 Low (below 2.0 KG with battery)

a∗
62 A6-2 Moderate (2.0–2.8 KG with battery)

a∗
63 A6-3 High (2.8 KG above with battery)

a7 Battery Life a∗
71 A7-1 Regular (around 6 hours)

a∗
72 A7-2 Long (7.5 h above)

a8 Software a∗
81 A8-1 Multimedia package

a∗
82 A8-2 Office package

a9 Price a∗
91 A9-1 Less than $800

a∗
92 A9-2 $800–$1.3K

a∗
93 A9-3 $1.3K–$1.8K

a∗
94 A9-4 $1.8K–$2.5K

a∗
95 A9-5 $2.5K above

instantiation of an attribute by one out of many levels. This tree structure not only reflects a generic variety
structure [30] underlying notebook computer product offerings, but also establishes the searching space
for the GA solver.

1790 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Fig. 4. Generic variety structure for notebook computer portfolios.

Based on a total number of 30 customers acting as the respondents, three segments are identified, i.e.,
s1, s2, and s3. With conjoint analysis, the part-worth utilities for each respondent in one segment can
be derived. Averaging the part-worth utility results of all respondents belonging to the same segment,
a segment-level utility is obtained for each attribute level. Fig. 5 shows the part-worth utilities of three
segments with respect to every attribute level. With assembly-to-order production, the company has
identified and established standard routings as basic constructs of its process platform. Based on empirical
studies, costing parameters and part-worth standard times for all attribute levels are determined.

6.2. HGA implementation

To determine a near-optimal notebook computer portfolio for the target three segments, the GA pro-
cedure is applied to search for a maximum of expected shared surplus among all attribute, product and
portfolio alternatives. Assume that each portfolio may consist of a maximal number of J † = 5 products.
Then a chromosome string comprises 9 × 5 = 45 genes. Each substring is as long as nine genes and
represents a product that constitutes the portfolio.

Based on the economical analysis, some constraints are generated to ensure the profitability. The
constraints are represented by “IF–THEN” rules, that is, “IF x1 = 9 , THEN x9 �= 1; IF x1 = 3, THEN
x9 �= 2; IF x3 = 4, THEN x9 �= 1; IF x4 = 4, THEN x9 �= 1”. These constraints restrict the customers
buying high performance notebook computer with too low price. Through constraint check, the invalid
chromosomes are penalized by subtracting a large number and passed on for further evaluation. For every
generation, a population size of M = 100 is maintained, meaning that only top 100 fit product portfolios
are kept for reproduction.

In addition, it is not uncommon that in the notebook computer business most manufacturers directly
order components and parts from their suppliers. It is thus reasonable to assume that the competitors
of the company under our study offer the same product attributes and levels. As a result, the status-quo
product alternatives in the current generation are used as the pool of competing products for the choice
model in Eq. (3).

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1791

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A1-1

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A1-1 A1-2 A1-3 A1-4 A1-5 A1-6 A1-7 A1-8 A1-9

s1 s2 s3

A1 - Processor

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

A2 -Display

s1 s2 s3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A3-1 A3-2 A3-3 A3-4

s1 s2 s3

A3-Memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s1 s2 s3

s1 s2 s3

0

0.5

1

1.5

2

A4–Hard Disk

s1 s2 s3

0

0.5

1

1.5

2

A4-1 A4-2 A4-3 A4-4 A5-1

A2-1 A2-2 A2-3

A5-2 A5-3 A6-1 A6-2 A6-3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

A5 –Disk Drive

s1 s2 s3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

s1 s2 s3

A6 –Weight

0

0.2

0.4

0.6

0.8

1

1.2

s1 s2 s3

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A7-1 A7-2 A8-1 A8-2
A9-1 A9-2 A9-3 A9-4 A9-5

A7 –BatteryLife

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A7-1

A8 –Software

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s1 s2 s3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

s1 s2 s3

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

s1 s2 s3

A9 –Price

Fig. 5. Plots of segment-level part-worth utilities.

6.3. Results

The results of GA solution are presented in Fig. 6. As shown in Fig. 6, the fitness value keeps being
improved generation by generation. Certain local optima (e.g., around 70 generations) are successfully
overcome. The saturation period (240–280 generations) is quite short, indicating the GA search is efficient.
This proves that the moving average rule is a reasonable convergence measure. It helps avoid such
a possible problem that the GA procedure may run unnecessarily as long as 1000 generations. Upon
termination at the 287th generation, the GA solver returns the near-optimal result, which achieves an
expected shared surplus of 109, as shown in Table 2.

6.4. Performance evaluation

Fig. 7 compares the achievements, in terms of the normalized shared surplus, cost, and utility with
choice probability, of 20 product portfolios in the 287th generation that returns the near-optimal solution.
It is interesting to see that the peak of utility achievement (portfolio #6) does not contribute to producing
the best fitness as its cost is estimated to be high. On the other hand, the minimum cost (portfolio #20)
does not mean the best achievement of shared surplus as its utility performance is low. Also interesting
to observe is that the worst fitness (portfolio #20) performs with neither the lowest utility achievement

1792 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Fig. 6. Results of GA solution: shared surpluses among generations.

nor the highest cost figure. The best portfolio (#1) results from a higher level of utility and moderate cost
performances.

Fig. 8 shows the performance of individual constituent products in terms of unbalance index for each
portfolio in the 287th generation. It is noted that top five portfolios all contain a moderate number (2–3)
of products, whereas those portfolios consisting of more products (e.g., portfolios #11, 16 and 19) seldom
produce very good performances. This exactly illustrates the granularity tradeoff issue in PPP. In fact, too
many products introduced in a portfolio may even bring about competition among themselves. On the
other hand, none of the top 20 portfolios contains only one product. In practice, a single-product portfolio
is not a desired case either, as it facilitates a limited coverage of diverse customer segments. Fig. 8 shows
that three product portfolios are outstanding with respect to their shared surplus (portfolio # 1, 2, 3) with
their normalized shared surplus of 1, 0.94, and 0.58, respectively. Among these portfolios, the portfolio
1 is the best with respect to its unbalance scores with unbalanced score of 0.2 and thus is selected as the
final choice.

7. Sensitivity analysis

It is most important to keep the population diversity during the GA searching process. Low diversity
may cause “inbreeding”, thus weakening the exploratory capability. Many parameters can influence the
population diversity. For example, an excessively high crossover rate will cause the solution to converge
quickly before the optimum is found. On the other hand, a low crossover rate decreases the population
diversity and results in long computation time. The mutation rate also influences the GA performance, as it
determines the frequency of random search. Generally, a very low mutation rate is recommended to avoid
that the GA process becomes a pure random search, which impairs the property of GA. The population
size may be the most distinct factor influencing the population diversity. For a complex problem, large
population size is preferred to ensure exploration in a large search space. In this section, we evaluate
the performance of the HGA by means of sensitivity analysis. Based on varying parameter values, such
as the population size, the crossover and mutation rates, HGA performance is examined for different
problem sizes.

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1793

Ta
bl

e
2

N
ea

r-
op

tim
al

so
lu

tio
n

of
no

te
bo

ok
co

m
pu

te
r

po
rt

fo
lio

Pr
od
uc
t

po
rt

fo
lio

�
†

C
hr

om
os

om
e

�
†
=

[6,
3,

3,
3,

1,
1,

1,
1;

9,
2,

1,
4,

2,
3,

2,
2,

2;
0,

0,
0,

0,
0,

0,
0,

0,
0;

0,
0,

0,
0,

0,
0,

0,
0,

0;
0,

0,
0,

0,
0,

0,
0,

0,
0]

C
on

st
itu

en
tp

ro
du

ct
s

⇀ z
† j
} J†

Su
bs

tr
in

g
⇀ z

1 1
=

[6,
3,

3,
3,

3,
1,

1,
1,

1]
Su

bs
tr

in
g

⇀ z
1 2
=

[9,
2,

1,
4,

2,
3,

2,
2,

2]
a

† k
a

† k
l

a
† k

a
∗† k
l

A
ttr

ib
ut

es
{a† k

} (K
+1

)†
Pr

oc
es

so
r

C
en

tr
in

o
1.

6
G

H
z

Pr
oc

es
so

r
C

en
tr

in
o

2.
0

G
H

z
D

is
pl

ay
15

.4
”

T
FT

X
G

A
/U

X
G

A
D

is
pl

ay
14

.1
”

T
FT

SX
G

A
M

em
or

y
51

2
M

B
D

D
R

SD
R

A
M

M
em

or
y

12
8

M
B

D
D

R
SD

R
A

M
H

ar
d

di
sk

80
G

B
H

ar
d

D
is

k
1

G
B

D
D

R
SD

R
A

M
D

is
k

dr
iv

e
D

V
D

/C
D

-R
W

C
om

bo
D

is
k

D
ri

ve
C

D
-R

W

A
ttr

ib
ut

es
le

ve
ls

{a∗† k
l
} (K

+1
)†

W
ei

gh
t

L
ow

(b
el

ow
2.

0
K

G
w

ith
ba

tte
ry

)
W

ei
gh

t
H

ig
h

(2
.8

K
G

ab
ov

e
w

ith
ba

tte
ry

)
B

at
te

ry
lif

e
R

eg
ul

ar
(a

ro
un

d
6

h)
B

at
te

ry
L

if
e

L
on

g
(7

.5
h

ab
ov

e)
So

ft
w

ar
e

M
ul

tim
ed

ia
pa

ck
ag

e
So

ft
w

ar
e

O
ffi

ce
pa

ck
ag

e
Pr

ic
e

L
es

s
th

an
$8

00
Pr

ic
e

$8
00

–$
1.

3K

E
xp

ec
te

d
sh

ar
ed

su
rp

lu
s
E

[V
†
]

10
9

U
nb

al
an

ce
in

de
x

�
†

0.
2

1794 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Fig. 7. Performance comparison of product portfolio population in the 287th generation.

1.210.80.60.40.20

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

P
ro

du
ct

 P
or

tf
ol

io

Normalized Shared Surplus

(z + z): = 0.2ψ
(z + z + z): = 0.45ψ

(z + z + z): = 0.25ψ
(z + z): = 0.11ψ

(z + z + z): = 0.06ψ

(z + z + z): = 0.35ψ

(z + z + z): = 0.37ψ

(z + z + z): = 0.35ψ

(z + z + z): = 0.59ψ

(z + z): = 0.45ψ
(z + z): = 0.07ψ
(z + z): = 0.17ψ

(z + z): = 0.17ψ

(z + z + z + z): = 0.48ψ
(z + z + z + z): = 0.47ψ

(z + z + z + z): = 0.26ψ

(z + z + z + z): = 0.26ψ

(z + z + z + z): = 0.26ψ

(z + z + z + z): = 0.43ψ
(z + z + z + z): = 0.53ψ

Fig. 8. Comparison of constituent products for each product portfolio produced in the 287th generation.

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1795

Table 3
Performance of different problem sizes and respective parameter values

Problem Number of Problem Parameter value and performance Number of
type attributes size runs

Population Crossover Mutation

Size Ave_App Pc Ave_App Pm Ave_App
(%) (%) (%)

Simple 3 15 20 97.3 0.6 95.6 0.005 96.2 360
Moderate 6 30 50 96.7 0.7 96.3 0.01 95.8 360
Complex 9 45 100 94.2 0.8 97.1 0.01 94.1 360

7.1. Problem size

In accordance with different parameter values required for varying problem sizes, three cases are
constructed to represent three different problem sizes for notebook computer portfolio specification.
The first case represents a simple problem size, where three attributes are selected, including processor,
memory, and weight that are of 9, 4, and 3 levels, respectively. The second case corresponds to a moderate
problem size, consisting of six attributes, i.e., processor, memory, weight, hard disk, display, and battery
life, which assume 9, 4, 3, 4, 3, and 2 attributes levels, respectively. The third case stands for a very
complex problem size, in which all nine attributes and their possible levels are considered. Table 3 lists
all three scenarios.

7.2. Experiment design

The proper parameter values for the population size, the crossover and mutation rates are recommended
through sensitivity analysis. To setup the experiments, 4 values are considered for population size, namely
20, 50, 80, and 100. Likewise 3 values of crossover rate (0.6, 0.7, 0.8) and 3 values of mutation rate (0.005,
0.01, 0.03) are used. Therefore, sensitivity analysis experiment is constructed based on a 4 × 3 × 3 full
design. For more complex analysis, where more values are involved, other experiment design method,
such as orthogonal design and factorial design, can be employed. The values of these parameters are
selected based on the rule-of-thumb from most of GA applications—a crossover rate at least 0.6 and a
very low mutation rate.

7.3. Parameter selection

The full design generates 36 scenarios. For each scenario, the GA runs for 10 times to collect the mean
value of its performance. Thus, the parameter values for each problem size are recommended on the basis
of 360 test runs. The average degree of approximation (Ave_App) associated with GA solutions is adopted
as the performance indicator of each problem type. The best GA parameter values are recommended as
shown in Table 3.

As illustrated in Table 3, a larger population size is required for a complex problem in order to keep the
population diversity. A population of diverse products is necessary to guarantee thorough exploration in

1796 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

84

86

88

90

92

94

96

98

20 40 60 80 100 120 140 16080

Population size

Av
er

ag
e

de
gr

ee
 o

f a
pp

ro
xi

m
at

io
n

(%
)

Fig. 9. Performance of different population sizes.

96.6

96.8

97

97.2

97.4

97.6

0.6 0.7 0.8 0.9 1.0

97.8

Crossover rate

Av
er

ag
e

de
gr

ee
 o

f a
pp

ro
xi

m
at

io
n

(%
)

Fig. 10. Performance of different crossover rate values.

the search space so as to achieve a high degree of average approximation. The crossover rate (pc) of 0.8
is recommended to encourage more chromosomes to exchange their promising parts and to generate the
offspring with better performance. It also demonstrates the tendency that a higher crossover rate leads
to better approximation. For complex problem, a higher mutation rate is recommended to avoid search’s
falling into local optimum. For the simple problem type, a lower mutation rate is recommended so that
the search does not become a pure random search.

Fig. 9 shows the average degree of approximation for each population size based on an interval of 20
within the range [20,160] for the complex problem type. The crossover and mutation rates are set to 0.8
and 0.01, respectively. As illustrated in Fig. 9, too large a population size (160) may contribute to the
improvement of performance to only a modest extent.

Fig. 10 shows the average degree of approximation for varying crossover rate based on an interval of
0.1 within the range [0.6, 1.0] for the complex problem type. The population size and mutation rate are
set to 100 and 0.01, respectively. It suggests that too large a crossover rate may decrease the performance.
This is consistent with previous findings from GA applications, that is, a large crossover rate may cause
too many chromosomes to change, thus leading to premature.

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1797

8. Discussion

As witnessed in the case study, the strength of GA lies in the ability to carry out repeated runs without
major changes of parameter values or defining different initial populations, thus improving the chance of
finding an optimal or at least a near optimal solution. It is also possible to insert solutions obtained from
other techniques into the initial population. Hence, rather than generating all the members of the initial
population at random, the GA can use a prior knowledge about potential optima to arrange the initial
population or improve on an existing solution that can perform as a kind of lower bound or benchmark
for GA performance.

In the case study, we have tested the performance of the proposed heuristic GA on a small to medium
sized problem. Although we do not know how well the heuristic GA would perform on large problems
in an absolute sense, we believe, given the popularity of high performance computation, what important
is not the computational efficiency of GA, but the quality of solutions returned by the GA procedure.
For instance, even the most complex GA problem scenario among all testing runs in the case study and
sensitivity analysis takes less than 30 s to solve using Matlab� and with a Pentium IV 2.4 MH PC. From
the experience of using the product portfolio balance rule, it is obvious that the heuristic GA also provides
high flexibility with regard to the final decision making of a product portfolio. For example, the decision
maker may be provided with quite a number of solutions using similar high fitness values that are of his
expectations. In this way, the decision maker can instrument additional fitness criteria as appropriate for
selecting the best product portfolio.

If interactions between attributes are to be considered, the additive main-effect utility model could
be easily extended to include interaction terms without introducing additional decision variables. The
interaction terms merely affect a string’s fitness evaluation by taking into account the associated part-worth
utilities for preference evaluation. A possible means to deal with technologically infeasible configurations
of attribute levels is to incorporate related interaction terms into the cost functions and to impose certain
penalties on those high cost-carrying attribute levels. This may be implemented as a hybrid constraint
handling strategy during the GA procedure.

9. Conclusion

A heuristic genetic algorithm is developed and applied to solve the combinatorial optimization problem
involved in PPP. The study indicates that the GA works efficiently in searching for near-optimal product
portfolio solutions. Although the model is used to solve a seller’s problem of introducing a new product
portfolio with the objective of maximal shared surplus, the proposed framework could easily be adjusted
to handle such complex problems as maximizing share-of-choices and extending an existing product
portfolio by allowing for already existing items to be owned by the seller. This is supported by the
flexibility of the GA procedure that merely uses objective function information, and therefore is capable
of accommodating different fitness criteria without any substantial modification of the algorithm.

Acknowledgements

This research is supported by Singapore NTU-Gintic Collaborative Research Project (U01-A-130B).The
authors would like to express their sincere thanks to Professors Mitchell M. Tseng, Martin Helander and

1798 J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799

Halimahtun M. Khalid, and colleagues of Global Manufacturing & Logistics Forum at Nanyang for their
valuable advices.

References

[1] Ho TH, Tang CS. Product variety management: research advances. Boston/Dordrecht/London: Kluwer Academic
Publishers; 1998.

[2] Child P, Diederichs R, Sanders FH, Wisniowski S. SMR forum: the management of complexity. Sloan Management Review
1991;33(1):73–80.

[3] Wortmann JC, Muntslag DR, Timmermans PJM. Customer driven manufacturing. London: Chapman & Hall; 1997.
[4] Tseng MM, Jiao J. Design for mass customization. CIRP Annals 1996;45(1):153–6.
[5] Huffman C, Kahn B. Variety for sale: mass customization or mass confusion? Journal of Retailing 1998;74(4)491–513.
[6] Pine BJ, Victor B, Boynton AC. Making mass customization work. Harvard Business Review 1993;71(5):108–21.
[7] Henderson BD. The product portfolio. Boston, MA: Boston Consulting Group; 1970.
[8] Warren AA. Optimal control of the product portfolio. Ph.D. thesis, The University of Texas at Austin; 1983. 335p.
[9] Cooper R, Edgett S, Kleinschmidt E. Portfolio management for new product development: results of an industry practices

study. R & D Management 2001;31(4):361–81.
[10] Kaul A, Rao VR. Research for product positioning and design decisions: an integrative review. International Journal of

Research in Marketing 1995;12(4):293–320.
[11] Dobson G, Kalish S. Positioning and pricing a product line. Marketing Science 1988;7(2):107–25.
[12] Kohli R, Sukumar R. Heuristics for product-line design using conjoint analysis. Management Science 1990;36(12):

1464–78.
[13] Nair SK, Thakur LS, Wen K. Near optimal solutions for product line design and selection: beam search heuristics.

Management Science 1995;41(5):767–85.
[14] Green PE, Krieger AM. Models and heuristics for product line selection. Marketing Science 1985;4(1):1–19.
[15] Krishnan V, Ulrich K. Product development decisions: a review of the literature. Management Science 2001;47(1):1–21.
[16] Nemhauser GL, Wolsey LA. Integer and combinatorial optimization. New York: Wiley; 1988.
[17] Sait SM, Youssef H. Iterative computer algorithms with applications in engineering: solving combinatorial optimization

problems. Los Alamitos, CA: IEEE Computer Society Press; 1999.
[18] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman

Publisher; 1979.
[19] Kamrani AK, Gonzalez R. A genetic algorithm-based solution methodology for modular design. Journal of Intelligent

Manufacturing 2003;14(6):599–616.
[20] Houck CR, Joines JA, Kay MG. Comparison of genetic algorithms, random restart, and two-opt switching for solving

large location-allocation problems. Computers & Operations Research 1996;23(6):587–96.
[21] Kirkpatrick S, Gelatt Jr. CD, Vecchi MP. Optimization by simulated annealing. IBM Research Report, RC 9355; 1982.
[22] Glover F. A user’s guide to tabu search. Annals of Operations Research 1993;41(3):3–28.
[23] Holland JH. Adaptation in natural and artificial systems. Cambridge, MA: MIT Press; 1992.
[24] Reeves CR. Modern heuristic techniques for combinatorial problems. Oxford: Blackwell Publisher; 1993.
[25] Aarts E, Lenstra JK. Local search in combinatorial optimization. Chichester: Wiley; 1997.
[26] Alexouda G. An evolutionary algorithm approach to the share of choices problem in the product line design. Computers

& Operations Research 2004;31(13):2215–29.
[27] Renders J-M, Flasse S. Hybrid methods using genetic algorithms for global optimization. IEEE Transactions on Systems,

Man and Cybernetics, Part B 1996;26(2):243–58.
[28] Chu PC, Beasley JE. A genetic algorithm for the generalized assignment problem. Computers & Operations Research

1997;24(1):17–23.
[29] Jiao J, Zhang Y. Product portfolio identification based on association rule mining. Computer-Aided Design

2005;37(2):149–72.
[30] Du X, Jiao J,Tseng MM.Architecture of product family: fundamentals and methodology. Concurrent Engineering: Research

and Application 2001;9(4):309–25.

J. Jiao et al. / Computers & Operations Research 34 (2007) 1777–1799 1799

[31] Jiao J, Zhang Y, Wang, Y. Product portfolio planning with customer-engineering interaction. IIE Transactions
2005;37(9):801–14.

[32] Moore WL, Louviere JJ, Verma R. Using conjoint analysis to help design product platforms. Journal of Product Innovation
Management 1999;16(1):27–39.

[33] Ben-Akiva M, Lerman S. Discrete choice analysis: theory and application to travel demand. Cambridge: The MIT Press;
1985.

[34] Jiao J, Tseng MM. Customizability analysis in design for mass customization. Computer-Aided Design 2004;36(8):
745–57.

[35] Jiao J, Tseng MM. A pragmatic approach to product costing based on standard time estimation. International Journal of
Operations & Production Management 1999;19(7):738–55.

[36] Li H, Azarm S. An approach for product line design selection under uncertainty and competition. Transactions of the
ASME, Journal of Mechanical Design 2002;124(3):385–92.

[37] Tarasewich P, Nair SK. Designer-moderated product design. IEEE Transactions on Engineering Management
2001;48(2):175–88.

[38] Steiner WJ, Hruschka H. A probabilistic one-step approach to the optimal product line design problem using
conjoint and cost data, Review of Marketing Science Working Papers, 1(4): Working Paper 4. http://www.bepress.
com/roms/vol1/iss4/paper4; 2002.

[39] Gen M, Cheng R. Genetic algorithm and engineering optimization. New York: Wiley; 2000.
[40] Obitko M. Introduction to genetic algorithms. http://labe.felk.cvut.cz/∼obitko/ga/; 2003.
[41] Jiao J, Zhang L, Pokharel S. Planning process platforms for variety synchronization from design to production. IEEE

Transactions on Engineering Management, 2005;51 (Fortcoming).
[42] Balakrishnan PVS, Jacob VS. Genetic algorithms for product design. Management Science 1996;42(1):1105–17.

http://www.bepress.com/roms/vol1/iss4/paper4
http://www.bepress.com/roms/vol1/iss4/paper4
http://labe.felk.cvut.cz/~obitko/ga/

	A heuristic genetic algorithm for product portfolio planning
	Introduction
	PPP as a combinatorial optimization problem
	Description of the PPP problem
	Mathematical model of product portfolio planning
	A heuristic GA for PPP
	Generic encoding
	Initialization
	Handling of configuration constraints
	Fitness function
	Selection and reproduction
	Crossover
	Mutation
	Termination

	Application to notebook computer portfolio planning
	Background
	HGA implementation
	Results
	Performance evaluation

	Sensitivity analysis
	Problem size
	Experiment design
	Parameter selection

	Discussion
	Conclusion
	Acknowledgements
	References

