
Evolutionary Algorithms for Nurse Scheduling ProblemAhmad JanGraduate School of Engineering,Hokkaido University,Sapporo, 060, Japan.jan@complex.eng.hokudai.ac.jp Masahito YamamotoGraduate School of Engineering,Hokkaido University,Sapporo, 060, Japan.masahito@complex.eng.hokudai.ac.jp Azuma OhuchiGraduate School of Engineering,Hokkaido University,Sapporo, 060, Japan.ohuchi@complex.eng.hokudai.ac.jpAbstract- Nurse scheduling problem (NSPs) rep-resents a di�cult class of Multi-objective opti-mization problems consisting of a number of in-terfering objectives between the hospitals and in-dividual nurses. The objective of this research isto investigate di�culties that occur during solu-tion of NSP using Evolutionary Algorithms, inparticular Genetic Algorithms (GA). As the so-lution method a population-less Cooperative Ge-netic Algorithms (CGA) is taken into considera-tion. Because contrary to competitive GAs, wehave to simultaneously deal with the optimiza-tion of the �tness of the individual nurses andalso optimization of the entire schedule as the�nal solution to the problem in hand. To con-�rm the search ability of CGA, �rst a simpli�edversion of NSP is examined. Later we will re-port a more complex and useful version of theproblem. We will also compare CGA with an-other multi-agent evolutionary algorithm usingpheromone style communication of real ants. Fi-nally, we will report the results of computer sim-ulations acquired throughout the experiments.1 IntroductionGenerally, we can divide NSP approaches to conven-tional and Evolutionary Computation (EC) approaches,respectively. Two typical conventional methods are goalprogramming model[4], and mathematical programming[3]. Concerning EC approaches for solution of NSP, therehave been only a few papers published so far. Yamamuraet al proposed a Cooperative Genetic Algorithm (CGA)[2] and recently Yamamoto et al[5] proposed a collectivemulti-agent approach using pheromone style communi-cation of real ants for solution of NSP. In this paper, theapproach proposed by Yamamura et al [2] is taken intoconsideration. CGA initializes its search with an ini-tial feasible schedule and continues searching in feasiblesearch region only. This approach successfully generatesfeasible schedules, however due to presence of strong con-straints, and restricting the algorithms to search in thefeasible search region only, some optimization e�orts arenecessary to be carried out. In CGA new candidate so-lutions are created through application of an extended

Table 1: shifts and their corresponding assigned symbolsShift Symbolday-shift (8:00 - 16:00) dnight-shift (16:00 - 24:00) nlate-night shift (00:00 - 08:00) lo�-days as nurses' preference htwo-point crossover. Newly created candidate solutionsare evaluated and updated using Pareto ranking scheme.Only non-dominated solutions are allowed to survive forfurther competition and are introduced to the Paretorank1. From Pareto rank 1 of all non-dominated can-didate solutions, only one solution is randomly selectedand replaced with the previous schedule. The �rst phaseof the search continues until the pre-de�ned objectivesare met or generation reaches its maximum. As our fu-ture work, we are also interested to develop a secondphase of the CGA to support decision maker interac-tion. In the second phase, we consider that the acquiredschedule should be presented for the decision maker sothat she can modify it as she wishes and as long as sheis not satis�ed with the acquired schedule.The organization of this paper is as following. In sec-tion 2, we will briey introduce NSP and problem de�ni-tion. In section 3 hard and soft constraints. In section 4�tness calculation including �tness factors of individualnurses. In section 5 description of the CGA for NSPand a brief description of a multi-agent approach for thesame problem. In section 6 results of the computer sim-ulations. In section 7 optimization results. Finally, insection 8 we will discuss and conclude this work.2 Nurse Scheduling Problem (NSP)NSP as a scheduling task consists of assignment ofshifts and holidays to nurses for each day on the timehorizon, taking into consideration a variety of conictinginterests or objectives between the hospitals and individ-ual nurses. Given a number of nurses with speci�c skillsand working agreements, a contract may consist of gen-eral constraints as there are restrictions on the numberof nurses for each shift; the maximum number of shiftsin a week, a month, etc. Moreover, a number of personalwishes or desires representing nurses' preferences are al-



Table 2: some typical examples of restriction conditions for real world NSPsClassi�cation of Constraints Descriptionhuman related limitations 1) chief nurse is exempted from night-shifts2) those in birth leave or sick leave are exempted, too.3) do not assign night shifts for unskilled nurses onlyDAILY restrictions: 4) each nurse can work only one shift in a day5) number of day shift nurses must be � required number of nurses for day shift6) number of night shift nurses must be = required number of night shift nurses7) number of late-night shift nurses must be = required number of late-night shit nursesrestriction on combination 8) consideration of the professional level of the nursesof the late-night shifts 9) do not combine those nurses, who are not in good relations with each otherrestriction on individual 10) number of legal holidays = assigned number of holidaysnurses' monthly schedule. 11) combination of the day shift and night shift is illegal12) combination of the day shift and late-night shift is illegalrestrictions on the previous and next 13) the interval between night-shift patterns must be at least � one week.month's schedule 14) request for the holiday when the coming next day is due night shift, is illegal15) request for the holiday when it is due night-shift is illegal.Nurses' Preferences 16) the right for assignment of the desired day o�.17) the right for selection of the preferred partners.... ...etc... etc...lowed. For instance, a demand for the desired day o�,demand for doing certain shift on a certain day with acertain nurse, etc. Conventionally, every nurse works onthree shifts, day shift, night shift, and late night shift andhas some holidays. Throughout this paper, these shiftsand holidays are denoted by symbols shown in table 1.For an image of the complexity of NSP, in table 2 sometypical real world examples of the restriction conditionsfor NSP are summarized.2.1 Problem de�nitionTo describe NSP mathematically, let N;M be the num-ber of nurses and days; w one of the three shifts or dayo� required to be scheduled, respectively. Then, NSPrepresents a problem to decide a M �N matrix, so thateach Xijw element of the matrix express that nurse iworks her w th shift on day j.whereN : Max number of nurses to be scheduledM : Max number of days to be scheduledXijw=� 1 (if Nurse i works w shift on day j)0 (otherwise)Generally, the objective of solution of NSP is to �nda schedule ful�lling a set of constraints representing theobjective of the hospitals. Moreover, it is desired to sat-isfy as many wishes of the individual nurses as possible.

In this paper, the maximum numbers of nurses and daysto be scheduled is set to 15 nurses and 30 days, recep-tively.
Figure 1: mathematical description of NSP3 Hard and Soft ConstraintsExisting constraints are generally divided into two ma-jor categories; hard and soft constraints. The hard con-straints must always be satis�ed. Violation of the hardconstraints means that the acquired schedule is no longer



w shift1 n (night)2 l (late-night)3 d (day)4 h (day o�)feasible. Soft constraints are desired to be satis�ed asmuch as possible, however their violation does not leadto generation of infeasible schedules.3.1 Assignment of shifts and restriction condi-tionsIn this paper, from table 2, the following items are con-sidered as the hard constraints (see also table 2 DAILYrestrictions , items 4, 5, 6, 7):wXk=1Xijw = 1 (8i; j) (1)NXi=1Xij1 � Rdj = 9 (8j) (2)NXi=1Xij2 = Rnj = 2 (8j) (3)NXi=1Xij3 = Rlj = 2 (8j) (4)Where:Rd : : : required number of nurses for day shift,Rn : : : required number of nurses for night shift,Rl : : : required number of nurses for late-night shift,k : : : number of allowed shifts per day for nurse iAs the nurses preferences, they are allowed to choosetheir day o�s as they wish.4 Fitness CalculationTo evaluate each nurse, a �tness function denoted by Fiis calculated for each nurse. All nurses are assigned thesame �tness function. Fi consists of three factors thatare described in the following subsections.4.1 Fitness of the night shift pattern, in respectto it's order and length: F piTo evaluate the number of the consecutive night shiftpatterns (as a vector value), four valid patterns and theircorresponding penalty values are assigned. These pat-terns and their corresponding penalty values are shownin table 3. Selected length and order of F pi is ob-served, and corresponding �tness values are assigned.The more is the gap from the basic night patterns, themore penalty is charged.

Table 3: Pre-assigned �tness values of working-patternsWorking Pattern Assigned PenaltyF pil l n n 0l l n -40l n n -40l n -60others -1204.2 Number of consecutive night shifts, in re-spect to its length: F ciThe aim of this evaluation factor is to observe the num-ber of consecutive night shift patterns, regardless of theirorder. F ci is formalized according to the following equa-tion: F ci =Xk 100�max[ck � 4] (5)Where, counting from the beginning of the month, ckrepresents the length of the k th night shift pattern. Inwords, while the number of the consecutive night shiftsare less or equal to four consecutive shifts, no penaltyis assigned, otherwise corresponding penalty values areassigned.4.3 The interval between night shifts: F diF di = �Xj (dj � 11)2 (6)Where, dj represents either of the j th number ofthe consecutive day shifts or day o�s, counting from thebeginning of the month. In words, if the interval betweennight shifts (i.e., either of the consecutive day shifts orday o�) is exactly 11 days, it is considered as an idealinterval, and thus no penalty is charged. Otherwise, apenalty according to F di is assigned.4.4 Overall �tness of individual nurse: FiOverall �tness of individual nurses, Fi is calculated ac-cording to equation 7.Fi = �F pi + �F ci + F di (7)�; �;  are parameters, representing speci�c criterion ofthe hospitals, chief nurses, etc. After all, the objectivefunction for the entire schedule is formalized as:Maximize: avg = 1N NXi=1 FiMinimize: dev = vuut 1N NXi=1 F 2i � 1N2 ( NXi=1 Fi)2Subject to: DAILY restrictions (seesubsection 3.1)



It is desired to attain maximization of the average ofthe �tness of all nurses, and minimization of the varianceof all nurses. A schedule with avg = 0 and dev = 0represents the desired absolute solution to the problem.Moreover, for individual nurses Fi = 0 represents thebest �tness value. Since it is very di�cult to predictwhether there ever exists a solution to a schedule withthe values of avg = 0 and dev = 0, thus it is desiredto attain the values of avg and dev as close to zero aspossible.4.5 Multi-agent approach for NSPIn order to compare search performance of CGA with an-other evolutionary approach for NSPs, a brief overviewof a multi-agent approach for solution of the same modelof NSP is described. Yamamoto et al [5] proposed analgorithms for solution of NSP using pheromone stylecommunication of real ants. Search procedure of this ap-proach begins with an infeasible initial schedule. Eachnurse tries to improve her own schedule using two kindsof operators, namely 'swap' and 'slide' operators. Thepheromone information is used to resolve conicts amongnurses. Unfortunately, this approach does not alwaysguarantee generation of feasible schedules, which is a se-rious drawback in real NSPs.5 Algorithmic Flow of CGAFigure 2 shows the pseudo code of CGA for the exper-iments reported in this paper. To begin with, let usbriey describe search procedure of CGA . After initial-ization of the initial feasible schedule and 15 days of thehistory of the previous month, (see �gure 3 top and �g-ure 4 top), all nurses are evaluated according to their�tness Fi, including the 15 days of the history of theprevious month. To create a new schedule, from the cur-rent schedule two nurses are selected, the �rst nurse withthe worst Fi and the second nurse is randomly selected.Moreover, two crossing points are selected so that all le-gal children could be generated. As crossover progressesnew solutions (new ch) are generated and updated if andonly: if ( (new ch.avg�current.avg) &&(new ch.dev�current.dev) )Any candidate solution that is no longer non-dominatedis simply discarded from the list of candidate solutionsIf and only if the new ch is non-dominated, it can sur-vive and is introduced to the rank 1 of the Pareto non-dominated solution From rank 1 of all non-dominatedcandidate solutions, only one solution is randomly se-lected. The selected solution becomes the current sched-ule. The �rst phase of the search continues until for allnurses Fi 6= 0 or generation� Max generation. We alsoconsider a second phase of CGA for decision maker inter-action. In the second phase of the search, the acquired

Table 4: parameter settings for the experimentstime horizon 30 dayshistory of the previous month 15 daysmax number of nurses 15 nursesmax generation 10000�=�= 1.0schedule is presented to the decision maker. If she is sat-is�ed, CGA terminates. While she is not satis�ed, thesystem asks her for entering a benchmark day[j-MAXD]representing a point in the schedule where no morechanges are needed. For the remaining days (day[j+1] today[MAXD]) she is asked to enter nurse[n].shift[j] thatshe wishes to replace with nurse[m].shift[j]. After re-placement of the above mentioned shifts, CGA contin-ues to search for n runs and search is restricted fromday[j+1] to day[MAXD]. The acquired schedule is pre-sented for the decision maker and this process continuesuntil the decision maker is not satis�ed. Currently wework on the second phase of CGA and we will report theacquired results in our future works.6 Computer Simulations6.1 Con�rmation of the search ability of CGATo con�rm the search ability of CGA (without applica-tion of mutation and escape, described in subsection 7.3),some preliminary experiments were carried out. Table 4shows parameter settings for the computer simulationsbeing reported. During these experiments day o� wasnot taken into consideration, i.e, the initial scheduleshown in �gure 3(top) was initialized.Figure 3 (bottom) shows the best observed scheduleobtained during the preliminary experiments. This ex-periment revealed the existence of the absolute solutionfor simpli�ed version of the problem. However, the solu-tion was observed only once out of each 12 independentruns of the CGA. Later our experiments showed that af-ter some optimization e�orts it is possible to acquire thebest solution for the simpli�ed version of the problem ineach run of the CGA, i.e, after application of the escapeoperator, that is described in subsection 7.3.6.2 Consideration of the day o�In this experiment, the schedule shown in �gure 4 (top)with addition of the day o�s was initialized. However,the absolute solution was not observed. Unfortunately itis very di�cult to predict whether the absolute solutionfor this schedule ever exists. To investigate whether itis possible to improve the search performance of CGA,some experiments were carried out that are described inthe following subsections.



Figure 2: Co-operative GA for NSP1. main()f /* main function */generation==0; load initial feasible schedule and 15 days of the history of previous month;sum=0; sqr sum=0;for( i=0; i<MAXN; i++ )ffor( j=0; j<MAXH; j++ )f /* 15 days of the history of the previous month */evaluate(nurse[i]); /* according to Fi */sum+=nurse[i].�tness; sqr sum+=nurse[i].�tness�nurse[i].�tness;avg=sum/MAXN; dev=sqrt( sqr sum/MAXN-avg*avg );ggdo f if(generation==mutation frequency) mutation();else if (generation==escape frequency) escape();else generation();if(generation%250==0) print current schedule(); /* print current schedule after each 250 generations */g while (8 Fi 6= 0 or generation � Max generation);g /* end of the main function */2. description of the utility functions: /* MAXN , MAXD: Max number of nurses and days to be scheduled */crossover(p1, p2, c1, c2, cp1, cp2)ffor( j=0; j<MAXD; j++ )fag=TRUE;if (nurse[n1].shift[j]==h j j nurse[n2].shift[j]==h) ag=FALSE; /* replacement of h is illegal */if (ag)if ( j�cp1 && j<cp2 )fc1[j]=p2[j]; c2[j]=p1[j];g else f c1[j]=p1[j]; c2[j]=p2[j];ggmutation()flet n1, and n2 be two di�erent nurses.mp1=select(MAXD); mp1=select(MAXD); /* select mutation points */ag=TRUE;if (nurse[n1].shift[mp1]==h j j nurse[n2].shift[mp2]==h) ag=FALSE; /* replacement of h is illegal */if (ag) swap( nurse[n1].shift[mp1], nurse[n2].shift[mp2] );gescape()flet n1, and n2 be two di�erent nurses.dofep1=select(MAXD); ep2=select(MAXD); /* select escape points */while(ep1==ep2)fep2=select(MAXD); g ag=TRUE;for(i=ep1; i�ep2; i++)fif (nurse[n1].shift[i]==h j j nurse[n2].shift[i]==h) ag=FALSE;gg while(!ag);if (ag) ffor(j=0; j<MAXD; j++)fif (j�ep1 && j<ep2) swap( nurse[n1].shift[j], nurse[n2].shift[j] ); ggpareto()f8(new ch.c) update, new ch.avg and new ch.dev according to:if((new child:avg � current:avg)&&(new child:dev � current:dev))ggeneration()flet mate1, and mate2 be two di�erent nurses.sum-=nurse[mate1].�tness+nurse[mate2].�tness;sqr sum-=nurse[mate1].�tness�nurse[mate1].�tness+nurse[mate2].�tness�nurse[mate2].�tness;for( cp1=0; cp1<MAXD; cp1++ )ffor( cp2=cp1+1; cp2�MAXD; cp2++ )fag=TRUE;for( i=cp1; i<cp2; i++ )fif ( nurse[mate1].shift[i]==h j j nurse[mate2].shift[i]==h ) ag=FALSE;gif ( ag )f new ch.c1=nurse[mate1]; new ch.c2=nurse[mate2];crossover( nurse[mate1].shift, nurse[mate2].shift,new ch.c2.shift, new ch.c2.shift, cp1, cp2 );evaluate(new ch.c1); evaluate(new ch.c2); /* according to Fi */new ch.avg=(sum+new ch.c1.�tness+new ch.c2.�tness)/MAXN;new ch.dev=sqrt(sqr sum+new ch.c1.�tness�new ch.c1.�tness+new ch.c2.�tness�new ch.c2.�tness/MAXN-new ch.avg�new ch.avg );pareto();generation=generation+1;g



Figure 3: top: simpli�ed version of the initial schedule, bottom: acquired �nal schedule7 Optimization E�orts7.1 Increasing the number of mates for crossoverIn an attempt to generate more candidate solutions andexplore in a wider portion of the solution space, the fol-lowing experiments with GA operators were performed.Firstly, we increased the number of the selected matesfor crossover, from 2 to 4 and to 6 mates, respectively.With more mates for crossover, considerable results werenot acquired. In addition, comparing to the selection oftwo mates for crossover, with more mates computationalcost of CGA gets higher as expected.7.2 Diversi�cation of the solution spaceSince CGA is a population-less approach, considerationof other ranks rather than rank 1 and the use of somekind of niching techniques to keep CGA from converg-ing to a single point on the front (as suggested by Gold-berg [1]) is not applicable. As an alternative, to enableCGA for more exploration of the search space, in sub-section 7.3 we will introduce a simple technique called"escape" operator.7.3 Application of the mutation and escape oper-atorsAs the second attempt we applied mutation. During ap-plication of traditional mutation, two nurses i and j and

two mutation points are randomly selected. Then, theircorresponding shifts are interchanged. According to theresults of simulations shown in table 6, and �gure 6, tra-ditional mutation fails to to improve search performanceof CGA. as the probability of selection of day shifts arevery high. As an escape strategy from the local min-ima and a hope for exploration of larger portion of thesearch space, we developed a very simple operator thatis called escape operator. During application of the es-cape operator, two nurses i and j are randomly selectedand a block-wise exchange of shifts between the selectednurses is carried out. Detailed explanation of the es-cape operator is given in �gure 2. The best observedfrequency of application of the mutation and escape op-erators are shown in table 5. It was observed that thebest frequency of application of the escape operator isafter each 10 generations.Table 5: best observed frequency of mutation and escapeMax generation 10,000Max run 100Best observed mutation frequency 1950Best observed escape frequency 10Figure 4 (bottom) shows a typical view of the �nal ac-quired schedule after application of the escape operatorafter each 10 generations.



Figure 4: top: initial schedule with day o� being added, bottom: acquired �nal scheduleAs is shown in �gure 5 applying escape operator CGAis given a greater chance to explore in a larger portionof the search space. As expected, some improvement isalso acquired. Figure 5 shows distribution of the solutionspace prior to and after application of the of the escapeoperator.Figure 6 shows comparison of the e�ect of applicationof the mutation after each 1950 generations and applica-tion of the escape operator after each 10 generations(theaverage of 100 runs of CGA).7.4 E�ect of the number of generationsTo con�rm whether CGA can explore better resultswith more generations, the Max generation was set to100,000 generations. Best observed results of 100 inde-pendent runs of CGA are summarized in table 6. Ac-cording to the acquired data, increasing the number ofgenerations CGA can explore better results. All exper-iments were carried out on a PC with CPU Pentium 2Processor 300 MHz. The total of the execution time for10000 generations of CGA was 49 seconds.8 ConclusionThe objective of this research was to investigate prob-lems that occur during solution of NSP using Evolution-ary Computation approaches, in particular, GAs. As a

Table 6: comparison of the e�ect of the number of gen-erationsMax gene- state best gene- best best timesration ration avg. dev. found10,000 CGA 2112 -41.73 25.64 123mutation 1105 -43.4 26.08 122escape 9774 -32.27 22.71 159100,000 CGA 44648 -32.40 24.91 138mutation 1106 -43.4 26.08 122escape 54224 -13.47 20.00 184max-step multi- -17.71 22.94200,000 agentcase study CGA was applied to NSP. During the pre-liminary experiments the best solution for the simpli�edversion of the problem was found only once out of 12independent runs of CGA. The presence of strong con-straints and limiting CGA to search only in feasible so-lution space required some optimization e�orts. In anattempt to improve the search performance of the CGA,the number of selected mates for crossover were changedfrom two to more mates. However, there was not a con-siderable improvement acquired, in addition computa-tional cost of CGA was increasing. According to re-ported results, application of the conventional mutation



Figure 5: distribution of the solution space: prior to(top) and after (bottom) application of the escape oper-atoralone itself was not su�cient. Since the original CGArepresents a population-less approach, consideration ofother ranks rather than rank 1 and the use of some kindof niching techniques to keep CGA from converging toa single point on the front was not applicable to CGA.As an alternative, a so called escape operator was takeninto consideration. Application of the escape operatorenables CGA to explore in a larger portion of the solu-tion space, moreover as expected some performance im-provement is also acquired. Therefore for the moment weconsider application of escape operator as the best choicefor improvement of the search ability of CGA, becauseof it's simplicity and e�ciency. Comparing to the multi-agent approach, CGA always satis�es hard constraintssuccessfully i.e., required number of nurses for each shiftis always satis�ed. Moreover, after application of the es-cape operator and increasing the number of generations,CGA outperforms the multi-agent approach. In the cur-rent model of NSP from the table 2 the most importantrestriction conditions have been taken into consideration,i.e., the required number of nurses for each shift and asthe nurses preferences they are given the right to selecttheir day o�s as they wish. CGA can �nd reasonable�nal schedules satisfying all prede�ned hard constraints.However, from the practical scheduling point of view, itis necessary to investigate the degree of satisfaction ofthe desicion maker regarding the acquired schedule. Forthis purpose we are considering a second phase of CGA

Figure 6: comparison of CGA and the e�ect of applica-tion of mutation and escape operatorsfor decision maker interaction. This is another topic thatwe would like to consider in our future studies of theproblem. Besides, the F values (�gure 4 bottom) arenegative values. In the current model of NSP it is de-sired to optimize the �tness of individual nurses as muchas possible. However, as they represent soft constraints,they can be violated. Regarding problem de�nition anddesign of the �tness function of the individual nurses, itis noted that the problem is not described realistically.For example, the length of consecutive day shifts is con-sidered too long, the same �tness function is assigned forall nurses, etc. However, for evaluation purpose the def-inition of the problem is su�cient enough. In our futurestudies of practical scenario of NSP, we will reconsiderthe discussed di�culties and alter the present approachaccordingly.Bibliography[1] Goldberg, D., Genetic Algorithm in Search,Optimization and Machine Learning, Addison-Wesley, Reading, MA 1989.[2] Kitano, H. Genetic Algorithm vol 3, SangyouTosho, pp.89-126 in Japanese, May, 1995.[3] D.Michael, Scheduling Nursing Personnel Ac-cording To Nursing Preference: A Mathemat-ical Programming Approach Duke University,Durham, North Carolina, 1977.[4] I.Ozkarahan, (1987) Goal Programming ModelSubsystem of Flexible Nurse Scheduling Sup-port System Pennsylvania State University,Behrend College, School of business.[5] M, Yamamoto et al, Collective Approach toOptimization Problems, Proceedings of ITC-CSCC '98, pp 1479-1482


