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This paper investigates feature subset selection for dimensionality reduction in machine learning. We
provide a brief overview of the feature subset selection techniques that are commonly used in machine
learning. Different metaheuristic strategies are proposed to solve the feature selection problem – GRASP,
Tabu Search and Memetic Algorithm. These three strategies are compared with a Genetic Algorithm
(which is the metaheuristic strategy most frequently used to solve this problem) and with other typical
feature selection methods, such as Sequential Forward Floating Selection (SFFS) and Sequential Backward
Floating Selection (SBFS). The results show that, in general, GRASP and Tabu Search obtain significantly
better results than the other methods.
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1. Introduction

Data preprocessing is an indispensable step in effective data
analysis. It involves the preparation of data for data mining and
machine learning, and aims to turn data into business intelligence
or knowledge. Feature or variable selection is a preprocessing tech-
nique commonly used for high-dimensional data. This entails
selecting a subset or list of attributes or variables that are used
to construct models describing data.

Recently, there has been an immense increase in the amount of
data collected and stored regarding almost every area of human
endeavour. These collections of massive amounts of data have cre-
ated opportunities to analyze and predict processes of interest. In
today’s fierce competitive business environment, firms need to
rapidly turn these data into significant insights regarding their cus-
tomers, markets, products and processes to guide their manage-
ment strategies and investments to gain competitive advantages.

It is known that raw data sets by themselves do not provide
much information. For this reason, raw data must first be pro-
cessed to extract patterns or useful knowledge. To this end, the
development of effective and efficient methods for deriving knowl-
edge from these data is becoming increasingly important (Fayyad
et al., 1996).
ll rights reserved.
A typical real-world dataset consists of as many features as are
deemed necessary. This is constrained by the following: (1) knowl-
edge concerning the domain of interest and, in turn, knowledge
concerning the essential features that capture knowledge in this
domain; (2) the availability of these essential features; (3) the re-
sources available to collect these available essential features; (4)
the resources available to store, maintain, and retrieve these fea-
tures. Given these constraints, it is clear that not all the features
that are stored in the resulting data set are necessary or sufficient
to learn the concept of interest. Assuming that all the necessary
features are present in these data, feature selection is the problem
of choosing a small subset of features that ideally are necessary
and sufficient to describe the target concept (Kira and Rendell,
1992).

Basically, the object of the feature selection problem is to find a
subset of variables that can be used to carry out the classification
task in a optimum way. One usually starts with a given set of fea-
tures and then attempts to derive an optimal subset of features
leading to high classification performance.

The term feature selection refers to algorithms that output a
subset of the input feature set. In supervised learning we have a
set of examples characterized by the same attributes as the in-
stances and another attribute corresponding to the class they be-
long to. Using this set of examples we can create and generalize
a rule or set of rules that allows us to classify the instance set with
the greatest possible precision. The research on feature selection
dates back to the early 1960s (for an overview and biographical
notes see Devijver and Kittler (1982) or Siedlecki and Sklansky
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(1988)). Extensive research into feature selection has been carried
out over the past four decades. Many studies on feature selection
are related to medicine and biology, such as those by Sierra et al.
(2001), Ganster et al. (2001), Inza et al. (2000), Lee et al. (2003),
Shy and Suganthan (2003), Tamoto et al. (2004) and Baek et al.
(2008).

The search for a variable subset is a NP-hard problem (Kohavi,
1995; Cover and Van Campenhout, 1997; Cotta et al., 2004). There-
fore, the optimal solution cannot be guaranteed to be acquired ex-
cept when performing an exhaustive search in the solution space.
The use of metaheuristic techniques allows us to obtain reasonably
good solutions without having to explore the whole solution space.
The quality of ‘‘heuristic” solutions varies depending on the meth-
ods used. As found in other optimization problems, metaheuristic
techniques have proved to be superior methodologies. In real-
world applications, people are more interested in obtaining good
solutions in a reasonable amount of time rather than being ob-
sessed with optimal solutions. Therefore, we favour metaheuristic
methods that are efficient for dealing with real-world applications.
The most frequently used metaheuristic strategy applied to the
variable selection problem is the Genetic Algorithm (GA) (Siedlecki
and Sklansky, 1989; Bala et al., 1996; Jourdan et al., 2001; Oliveira
etal., 2003; Inza etal., 2001a,b; Shin and Lee,2002; Wong and Nan-
di, 2004). The results obtained show that GA are appropriate meth-
ods for this problem.

In the present work, other different metaheuristic strategies are
proposed to solve the feature selection problem. Specifically,
GRASP (Feo and Resende, 1995), Tabu Search (Glover and Laguna,
1997, 2002) and Memetic Algorithms (Moscato, 2002). We com-
pare our proposed strategies with a GA (this strategy has fre-
quently been used for solving the feature selection problem, in
fact, it may be the one most frequently used) and with other typical
feature selection methods such as Sequential Forward Floating
Search (SFFS) and Sequential Backward Floating Search (SBFS).

In addition, the special case treated in this work involves only
using quantitative variables to carry out the classification. The
exclusive use of quantitative variables allows better measurement
and comparison of their classificatory capacity.

The rest of the paper is organized as follows: Section 2 presents
an overview of feature selection methods; in Section 3, the prob-
lem is modelled; Section 4 describes the metaheuristic methods
proposed: GRASP, Tabu Search and Memetic Algorithm; Section 5
is devoted to computational experiments; and Section 6 summa-
rises the main conclusions.
2. An overview of feature selection methods

Dimensionality reduction is a commonly used step in machine
learning, especially when dealing with a high-dimensional feature
space. The original feature space is mapped onto a new space of re-
duced dimensions. Identification of relevant features is extremely
important for classification tasks (improving accuracy and reduc-
ing computational costs), as well as for understanding the relative
significance of features. Dimensionality reduction is usually per-
formed either by selecting a subset of the original dimensions or
by constructing new dimensions. Feature selection has often been
distinguished from feature extraction in the research literature.
Feature selection is aimed at individually finding from among a
large group of features the best features that maximize classifica-
tion ability. More general methods that create new features based
on transformations or combinations of the original feature set are
termed feature extraction algorithms. Feature extraction has been
traditionally viewed as a process to use different weighting
schemes to linearly combine features to produce a reduced number
of new, ideally uncorrelated, features (as in Principal Component
Analysis, PCA, and Linear Discriminant Analysis, LDA) or to com-
bine them non-linearly (as in neural networks).

The first critical issue is whether to use feature selection or fea-
ture extraction. There is no clear-cut evidence that one is superior
to the other for all types of tasks. They also have their own limita-
tions. Feature extraction methods, such as PCA (Fukunaga and Koo-
ntz, 1970) – which use all of the available features and then
combine them linearly to generate an, ideally uncorrelated, set of
features – can fail if the variability of some of the features is nearly
zero, and data assumptions are not met. Similarly, for feature selec-
tion, exhaustive search – and most sequential search methods – for
high-dimensional datasets are unfeasible. Methods that examine
features individually are simple to use, but yield poor feature sub-
sets. On the other hand, those methods that try different feature
combinations simply take too much time and run out of computer
memory. Finally, features that appear to be important on training
data may not fare that well on test data.

As mentioned, this work is only concerned with the problem of
feature selection.

Feature selection (so-called variable selection) has become the
focus of much research on applications for which datasets with
tens or hundred of thousands of variables are available. Feature
selection problems are found in many machine learning tasks,
including classification, regression, time-series prediction, etc.

There has been a resurgence of interest in applying feature
selection methods due to the large numbers of features encoun-
tered, for example, in the following types of problems:

(1) Applications where data taken by multiple sensors are com-
bined. Jain and Vailaya (1996), for instance, have merged
both colour and shape features to provide improved retrieval
accuracy for a trademark image database.

(2) Integration of multiple models, where the parameters from
different mathematical models are pooled for the purpose
of classification, as in (Solberg and Jain, 1995).

(3) Data mining applications, where the goal is to discover the
hidden relationships from among a large number of features,
as in (Punch et al., 1993).

An appropriate feature selection can enhance the effectiveness
of an inference model. Liu and Motoda (1998) indicated that the ef-
fects of feature selection are as follows: (1) to improve perfor-
mance (speed of learning, predictive accuracy, or simplicity of
rules); (2) to visualize the data for model selection; and (3) to re-
duce dimensionality and remove noise. Although feature selection
offers many advantages, it may run the risk of decreasing accuracy
or over-fitting. Thus, an important consideration is how to achieve
and maintain the expected classification performance and avoid
these risks.

Feature subset selection is an important area in the field of ma-
chine learning and pattern recognition and many approaches have
been proposed. The most important are described below.

The universal algorithms of feature selection are often divided
into three modalities: wrappers, filters and embedded (Guyon
and Elisseeff, 2003; Kohavi and John, 1997). If the feature selection
method works in conjunction with the learning algorithm it is using
a wrapper approach (Devijver andKittler, 1982; Yang and Honavar,
1997). The wrapper approach performs selection taking into ac-
count the classifier as a black box and ranking the subset of features
by their predictive power. The filter approach (Kira and Rendell,
1992; Anderson andMatessa, 1992; Lanzi, 1997) selects the features
using a preprocessing step that ignores the learning algorithm. The
main disadvantage of this procedure is that it ignores the effect of
the subset of features in the learning algorithm.

Obviously, exhaustive search under these two approaches can
be performed, if the number of variables is not too large. However,
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the problem is known to be NP-hard (Kohavi, 1995; Cover and Van
Campenhout, 1997; Cotta et al., 2004) and the search quickly be-
comes computationally intractable. The approaches may incur high
computational costs when the number of variables is too large.
Embedded methods, in contrast to wrapper approaches, select fea-
tures while taking into account the classifier design.
2.1. Wrappers approach

A wrappers model consists of two phases (Liu and Motoda, 1998):

Phase 1 – feature subset selection, which selects the best subset
using the accuracy of the classifier (on the training data) as a
criterion.
Phase 2 – learning and testing, where a classifier is learned from
the training data with the best feature subset, and is tested on
the test data.

The wrappers approach consists of using the prediction perfor-
mance of a given learning machine to assess the relative usefulness
of subsets of variables. It performs selection taking into account
the classifier as a black box and ranking the subset of features by
their predictive power. Although the wrappers approach is often
criticized to be a ‘‘brute force” method which involves massive
computation time, some researchers have different opinions. In
this regard, Reunanen (2003) indicated that coarse search strate-
gies may alleviate the problem of over-fitting.

Due to the fact that a full search requires 2n different evalua-
tions, ‘‘forward” selection or ‘‘backward” elimination methods are
used. These methods are also referred to as ‘‘sequential” methods.
These are the most commonly used methods for performing fea-
ture selection. Sequential Forward Selection, SFS (Whitney, 1971)
starts with the empty set and variables are progressively incorpo-
rated into larger and larger subsets, whereas in Sequential Back-
ward Selection, SBS (Marill and Green, 1963), one starts with the
set of all the variables and progressively eliminates the least prom-
ising ones. Both these methods suffer from the so-called ‘‘nesting
effect”. This means that in the case of the backward elimination
method the discarded features cannot be re-selected, whereas in
the case of the forward selection method once the features are se-
lected they cannot be discarded later. The result is that the meth-
ods are only suboptimal. In addition, forward selection and
backward elimination require high computation time when the
variable is very large (Kohavi and John, 1997).

A definite improvement can be obtained by combining SFS and
SBS to avoid the nesting effect. The ‘‘plus-l-take-away-r” method
was proposed to prevent the ‘‘nesting” effect.

This method (Stearns, 1976) consists of applying SFS l times fol-
lowed by r steps of SBS, repeating this fixed cycle of forward and
backward selection until the required number of features is
reached. In this case, features that have been previously added
can be removed in posterior steps thus avoiding the nesting effect.
This method allows ‘‘fixed backtracking” defined by the values of l
or r depending on whether the search is top-down or bottom-up.
Even though the problem of nested features can be partially over-
come with this procedure, another problem arises: there is no the-
oretical guide to determine the appropriate value of land r to
obtain good enough solutions with a moderate amount of
computation.

The idea behind the plus-l-take-away-r method aimed at coun-
teracting the nesting effect, can be more efficiently implemented
by considering the conditional inclusion and exclusion of features
controlled by the value of the criterion itself.

Pudil et al. (1994a) introduced the concept of ‘‘floating feature
search” and two ‘‘floating” selection methods, SFFS (Sequential For-
ward Floating Selection) and SBFS (Sequential Backward Floating
Selection).

The floating search methods are related to the plus-l-take-
away-r algorithm, but in contrast to the latter, the number of for-
ward and backtracking steps is dynamically controlled instead of
being fixed beforehand.

The SFFS and SBFS methods are characterized by the changing
number of features included or eliminated at different stages of
the procedure; According to Jain and Zongker (1997), SFFS and
SBFS are probably the most effective feature selection techniques.

Basically, in the case of forward search, the algorithm starts
with a null feature set and, for each step, the best feature that sat-
isfies some criterion function is included in the current feature set,
i.e. one step of the sequential forward selection is performed. The
algorithm also verifies the possibility of improvement of the crite-
rion if some feature is excluded. In this case, the worst feature (in
relation to the criterion) is eliminated from the set, that is, it one
sequential backward selection step is performed. Therefore, the
SFFS proceeds by dynamically increasing and decreasing the num-
ber of features until the desired number of features is reached.
SFBS works similarly, but starts with the full feature set and per-
forms the search until the desired dimension is reached, using
SBS and SFS steps. Although neither of these methods can always
guarantee obtaining the best subset of features, their performance
is very good compared to other search methods.

The particular advantage of the floating search methods over
the plus-l-take-away-r methods is that they can make more than
one sweep through feature set subsets to achieve good perfor-
mance. In practice, searching with dynamic backtracking has very
robust performance and if one had to choose between feature set
search methods then the floating search procedures would be the
first choice (Pudil et al., 1994b). In addition, the floating methods
are at least as good as the best sequential methods.

Although the floating methods are considered to be more intel-
ligent, they are still suboptimal. The drawback of these sequential
floating methods is that they are still likely to become trapped in a
local optimal solution even if the criterion function is monotonic
and the scale of the problem is quite small.
2.2. Filters approach

The filters approach is based on the intrinsic properties of the
data, rather than being biased toward a particular classifier. The es-
sence of filters is to seek the relevant features and eliminate the
irrelevant ones. A filters model of feature selection also consists
of two phases (Liu and Motoda, 1998):

Phase 1 – feature selection using measures such as information,
distance, dependence, or consistency; no classifier is engaged in
this phase.
Phase 2 – this is the same as in the wrappers model, where a
classifier is learned on the training data with the selected fea-
tures, and tested on the test data.

In addition to being based on the intrinsic properties of the data,
the filters approach has other characteristics, as follows:

1. Measuring information gains, distance, dependence, or consis-
tency is usually cheaper than measuring classifier accuracy, so
a filters method can produce a subset faster, all things being
equal.

2. Because of the simplicity of the measures and low time com-
plexity, a filters method can handle larger amount of data than
a classifier can; so in the case where a classifier cannot directly
be learned from the large amount of data, it can be used to
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reduce data dimensionality so that the classifier can be learned
from such data. However, there is a danger that the features
selected by a filters model may not allow a learning algorithm
to fully exploit its potential.

ReliefF is a popular filter algorithm in microarray classification
problems because of its simplicity. One example is DNA micro-
array data (Golub et al., 1999; Ramaswamy et al., 2001), where
the number of features (genes) is typically on the order of thou-
sands or even tens of thousands, whereas the number of the use-
ful genes is believed to be in the range of tens and hundreds.
Due to the high cost of collecting a large amount of patient data,
there are usually only tens or at most hundreds of samples for
training.

Other methods or algorithms used in the literature for the fea-
ture selection problem include the following:

� The Branch-and-Bound (BB) feature selection algorithm, pro-
posed by Narendra and Fukunaga (1977), can be used to find
the optimal subset of features. One drawback is that this method
requires the feature selection criterion function to be mono-
tonic. This means that the addition of new features to a feature
subset can never decrease the value of the criterion function.
Unfortunately, the monotonic condition is seldom satisfied. Nev-
ertheless, its computational cost is prohibitive for large feature
spaces: in the worst case, it performs an exhaustive search and
its time complexity is exponential according to the dimension
of the feature space. As pointed out by Jain and Zongker
(1997) the BB method is still impractical for problems with very
large feature sets.

� The Max–Min (MM) method proposed by Backer and Shipper is
a computationally efficient method (Backer and Shipper, 1977).
It only evaluates the individual and pairwise merits of features.
The results achieved with this method are invariably rather
unsatisfactory. The experiments performed by many researchers
show that this method gives the poorest results (Kittler, 1978;
Jain and Zongker, 1997).

� Siedlecki and Sklansky (1989) introduced the use of GA for fea-
ture selection. In a GA approach, a given feature subset is repre-
sented as a binary string (a ‘‘chromosome”) of length n, with a
zero or one in position i denoting the absence or presence of fea-
ture i in the set. Note that n is the total number of available fea-
tures. A population of chromosomes is maintained. Each
chromosome is evaluated to determine its ‘‘fitness,” which
determines how likely the chromosome is to survive and breed
into the next generation. New chromosomes are created from
old chromosomes by the following processes: (1) crossover,
where parts of two different parent chromosomes are mixed
to create offspring and (2) mutation, where the bits of a single
parent are randomly disturbed to create a child. Other works
applying the GA approach to the feature selection problem
include those of Bala et al. (1996), Jourdan et al. (2001), Oliveira
et al. (2003), Inza et al. (2001a,b), Shin and Lee (2002), and Wong
and Nandi (2004).

Despite some progress, the feature selection techniques avail-
able for large feature sets are not yet completely satisfactory.
They are either computationally feasible but far from optimal,
or they are optimal or almost optimal but cannot cope with the
computational complexity of feature selection problems of realis-
tic size. Further research is needed to develop more powerful
methods for feature selection, with the aim of providing very
good results and being computationally more efficient. In the
present work, three metaheuristic strategies are proposed to solve
the feature selection problem: GRASP, Tabu Search and Memetic
Algorithm.
3. The feature selection problem

We can formulate the problem of selecting the subset of fea-
tures with superior classificatory performance as follows: Let V
be the original set of features with cardinality m. Let d represent
the desired number of features in the selected subset, X, X # V.
Let the feature selection criterion function for the set X be repre-
sented by J(X). Without any loss of generality, let us consider a high
value of J to indicate a better feature subset. Formally, the problem
of feature selection is to find a subset X # V such that jXj = d and

JðXÞ ¼ max
Z # V ;jZj¼d

JðZÞ:

In this case, the criterion function for assessing the ‘‘goodness” of a
feature subset is computed as follows: Let C be a set of cases. For
each case we know the class to which it belongs (only two classes
are considered). We make the following partition in C: C = C1 [ C2,
where C1 and C2 have approximately the same number of cases
and the same proportions of cases in both classes. For each case
in C2 we calculate the Euclidean distance to every case in C1 and
the class with the closest case is assigned. The value of J(X) is the
percentage of hits in the assigned classes. That is, the number of
times that the assigned class is the same as the real class.

An exhaustive approach to this problem would require examin-

ing all m
d

� �
possible d-subsets of the feature set V. The number of

possibilities grows exponentially, making exhaustive search
impractical for even moderate values of m.

As mentioned, this is an NP-hard problem (Kohavi, 1995; Cover
and Van Campenhout, 1997; Cotta et al., 2004) and therefore it is
appropriate to use heuristic and metaheuristic techniques.

4. Description of the algorithms

4.1. Description of the GRASP algorithm

GRASP (Feo and Resende, 1995) is an iterative process, where
each iteration consists of two phases: construction and local
search. A feasible solution is built in the construction phase, and
then its neighbourhood is explored by the local search. The result
is the best solution found over all iterations. The operating scheme
is as follows:

Repeat
– Construction phase
– Local search
Till a stop criterion is satisfied

The construction phase of GRASP is an iterative process where,
at each iteration, the elements vj 2 V/X, j = 1, . . . ,m – which are
the elements that do not belong to the solution – are evaluated
by a greedy function g that estimates the value of including it in
the partial solution. They are ordered by their estimated value in
a list called the restricted candidate list (RLC) and one of them is
randomly chosen and included in the solution. The size of the
RLC is limited by the parameter a. Only the elements vj 2 V/X,
j = 1, . . . ,m, whose g values g(vj) 6 a � gmax + (1 � a) � gmin are placed
in the RLC where gmax is the maximum value of g obtained for all
elements in V/X and gmin is the minimum value of g obtained for
all elements in V/X. In addition, the a parameter is used to control
the degree of randomness of the procedure. The greater the value
of a, the greater the degree of randomness. If a = 1, the procedure
is totally random, because the RCL would be made up of all the
variables not included in the solution. If a = 0, the RLC would only
be made up of the variable corresponding to gmin. In this work
a = 0.85 is considered.
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Let X be the solution that is going to be built; the constructive
procedure is as follows:

1. Make X=;
2. Calculate g(vj), j = 1 . . . ,m
3. While jXj < d make:

– Determine gmin = min{g(vj), j = 1, . . . ,m} and gmax = max{g(vj),
j = 1, . . . ,m}

– Build RLC = {vjg(vj) 6 a � gmax + (1 � a) � gmin}
– Select vj� 2 RLC randomly and make S ¼ S [ fvj� g

In this case, the greedy function, g, guiding the entry of variables
into the solution, is the ‘‘in-group variability” (IGV). For each fea-
ture vj defined on the n cases under consideration, that is
vj ¼ fv1

j ; v
2
j ; . . . ; vn

j }, the ‘‘in-group variability” is defined as follows:

IGVðvjÞ ¼
Xn

i¼1

ðvi
j � lclðiÞÞ

2

where lcl(i) is the mean of the variable vj in the cases of the class the
individual i belongs to.

The lower the value of IGV (vj) the greater the value of including
a feature in the partial solution.

This construction procedure is executed several times generat-
ing different solutions and only the best solution is selected to be
used as the initial solution for the local search phase.

A local search is then performed to attempt to improve each
constructed solution. This works by successively replacing the cur-
rent solution by a better one from its neighbourhood until no more
better solutions are found. Let X be a solution and the neighbour-
hood (N(X)) of this solution is defined as follows:

NðXÞ ¼ fX 0=X0 ¼ X [ fvj0 g � fvjg;8vj 2 X; vj0 R Xg:

The local search procedure can be described as follows:

Read initial solution X
Repeat
– Make previous_value = J(X)
– Search J(X*) = max{J(X0)/X0 2 N(X)}
– If J(X*) > J(X) then make X = X*

till J(X*) 6 previous_value
Thus, the procedure ends when no exchange provides a better
solution.

4.2. Description of Tabu Search

Tabu Search (TS) is a strategy proposed by Glover (1989, 1990).
This procedure explores the solution space beyond the local opti-
mum. Once a local optimum is reached, upward moves and those
worsening the solutions are allowed. Simultaneously, the last
moves are marked as tabu during the following iterations to avoid
cycling. Recent and comprehensive tutorials on Tabu Search that
include all types of applications can be found in (Glover and La-
guna, 1997, 2002).

In the present work, a simple Tabu Search has been designed
that uses the neighbouring moves employed in the Local Search
procedure previously described (Section 4.1). These moves consist
in exchanging an element that is in solution X for an outside ele-
ment at each step. In order to avoid repetitive looping when a
move is performed, consisting in exchanging vj from X for vj0 from
V/X, element vj is prevented from returning to X for a certain num-
ber of iterations. We define

vector_tabu (vj) = the number of the iterations in which element
vj leaves X.
Some ‘tabu’ moves can be permitted under specific conditions
(‘‘aspiration criterion”), for example, to improve the best solution
found. The Tabu Search method is described next, where X is the
current solution and X* the best solution. The Tabu_Tenure param-
eter indicates the number of iterations during which an element is
not allowed to return to X. After different tests, Tabu_Tenure was
set as d.

Tabu Search Procedure

Read initial solution X
Do vector_tabu(vj) = �Tabu_Tenure, j = 1, . . . ,m; niter = 0,
iter_better = 0 and X* = X
Repeat
– niter = niter + 1
– Calculate Djj0 ¼ JðX [ fvj0g � fvjgÞ
– Determine Dj� j0� ¼maxfDjj0=8vj 2X;vj0 RX verifying: niter >

vector_tabu(vj) + Tabu_Tenure or Djj0 > JðX�Þ (‘aspiration
criterion’)}

– DoX ¼ X [ fvj0� g � fvj�g and vector_tabu ðvj� Þ ¼ niter
– If J(X) > J(X*) then do: X* = X, J* = J and iter_better = niter;

until niter > iter_better + 2 �m

That is, this procedure terminates when 2 �m iterations have ta-
ken place without improvement.
4.3. Description of the Memetic Algorithm

Memetic Algorithms (MA) are population-based methods which
combine local search procedures with crossing or mutating opera-
tors; due to their structure some researchers have called them Hy-
brid Genetic Algorithms, Parallel Genetic Algorithms (PGAs) or
Genetic Local Search methods. The method is gaining wide accep-
tance particularly for the well-known problems of combinatorial
optimization. A recent tutorial can be found in (Moscato, 2002;
Moscato andCotta, 2003). Similarly, information on Memetic Algo-
rithms can be found at the Memetic Algorithms’ Home Page:
http://densis.fee.unicamp.br/~moscato/memetic_home.html.

The MA works by generating an initial population of random
solutions to the problem to be solved and improving these solu-
tions via local search. Prior to this the problem has to be formu-
lated in vectorial or chromosome notation. In a second step, the
fitness value of every chromosome (potential solution) – according
to an objective function that classifies the solutions from the best
to the worst – is computed and the subset of the nsel best solutions
from the initial population is selected. In the third step, the MA ap-
plies the crossover and mutation operators, where information
from the former solution is exchanged and mutated. The obtained
solutions (‘‘children” solutions) are then improved with a local
search procedure. Finally, if a child solution improves the worst
solution in population, this solution is replaced.

For this problem binary representations of the solutions are
used. Thus, for example,

X ¼ ð1;0;0;0;1; 0;1;0; 0;1Þ

represents a solution that contains variables 1, 5, 7 and 10.
An essential element in MA functioning is the crossover opera-

tor. Important similarities between highly fitted strings can help
guide the search. Thus, a schema is defined as a similarity template
that describes a subset of strings with similarities at certain string
positions. Good schemata are hidden in parent chromosomes and
the crossover operator is an efficient way to extract them in order
to produce an evolved population from the parent population. In
this study, the crossover operator is the well-known ‘‘one point
crossover”, that is, let X and X0 be a pair of solutions

http://densis.fee.unicamp.br/~moscato/memetic_home.html
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X ¼ ðx1; x2; . . . ; xmÞ and X0 ¼ ðx01; x02; . . . ; x0mÞ

and a ‘crossover point’ is randomly generated between 1 and m � 1,
(pto_cruce), in such a way that the new child solutions are defined
as

X� ¼ ðx1; x2; . . . ; xpto cruce; x0pto cruceþ1; . . . ; x0mÞ;

X�� ¼ ðx01; x02; . . . x0pto cruce; xpto cruceþ1; . . . ; xmÞ:
Table 1
Comparison of Genetic Algorithm, SFFS, SBFS and the proposed methods.

Database D GRASP Tabu Search Mem

Spambase 3 J_mean: 0.821 0.821 0.78
St_d: 0.0481 0.0481 0.05

4 J_mean: 0.824 0.824 0.79
St_d: 0.0447 0.0447 0.05

5 J_mean: 0.86 0.825 0.79
St_d: 0.0387 0.0455 0.03

6 J_mean: 0.862 0.833 0.81
St_d: 0.04391 0.0397 0.05

7 J_mean: 0.864 0.829 0.80
St_d: 0.0445 0.0414 0.04

Waveform 3 J_mean: 0.802 0.802 0.78
St_d: 0.0656 0.0656 0.03

4 J_mean: 0.82 0.82 0.80
St_d: 0.0343 0.0343 0.05

5 J_mean: 0.815 0.815 0.78
St_d: 0.0403 0.0403 0.03

6 J_mean: 0.832 0.832 0.78
St_d: 0.051 0.051 0.03

7 J_mean: 0.84 0.84 0.77
St_d: 0.0380 0.0380 0.04

Ionosfera 3 J_mean: 0.905 0.905 0.88
St_d: 0.0092 0.0092 0.01

4 J_mean: 0.907 0.912 0.9
St_d: 0.011 0.0081 0.02

5 J_mean: 0.906 0.914 0.88
St_d: 0.016 0.0046 0.00

6 J_mean: 0.914 0.898 0.90
St_d: 0.0046 0.0130 0.01

7 J_mean: 0.89 0.905 0.88
St_d: 0.019 0.0186 0.00

Vehicle 3 J_mean: 0.893 0.87 0.86
St_d: 0.0202 0.0130 0.02

4 J_mean: 0.885 0.885 0.86
St_d: 0.0212 0.0212 0.02

5 J_mean: 0.896 0.896 0.87
St_d: 0.0203 0.0203 0.06

6 J_mean: 0.895 0.933 0.91
St_d: 0.0085 0.0165 0.01

7 J_mean: 0.926 0.926 0.91
St_d: 0.0157 0.0157 0.08

Wincosin 3 J_mean: 0.915 0.938 0.90
St_d: 0.0145 0.0078 0.01

4 J_mean: 0.937 0.937 0.93
St_d: 0.0079 0.0079 0.01

5 J_mean: 0.938 0.911 0.90
St_d: 0.0081 0.014 0.00

6 J_mean: 0.926 0.907 0.92
St_d: 0.0127 0.0128 0.01

7 J_mean: 0.934 0.937 0.92
St_d: 0.0125 0.0085 0.01

German 3 J_mean: 0.926 0.929 0.92
St_d: 0.0081 0.0066 0.01

4 J_mean: 0.926 0.93 0.92
St_d: 0.070 0.0073 0.00

5 J_mean: 0.929 0.926 0.92
St_d: 0.0082 0.0076 0.00

6 J_mean: 0.928 0.926 0.92
St_d: 0.0082 0.0081 0.00

7 J_mean: 0.927 0.927 0.92
St_d: 0.0068 0.0104 0.00
The mutation operator is responsible of maintaining diversity.
Each of the elements of each new offspring can mutate with a
probability of p_mut. To decide if a specific element is changed, a
random value is generated in (0,1); if this value is lower than
p_mut, then the element is changed, and this change consists of
taking out this element and randomly selecting a new element
which is not in the solution.

The functioning of the Memetic Algorithm can be described as
follows:
etic Algorithm Genetic Algorithm SFFS SBFS

0.729 0.723 0.723
45 0.040 0.0442 0.0442
1 0.766 0.713 0.713
45 0.0305 0.0452 0.0452
6 0.756 0.717 0.717
50 0.043 0.0444 0.0444
3 0.78 0.755 0.755
02 0.0226 0.0494 0.0494
8 0.786 0.741 0.741
34 0.0394 0.0670 0.0670

8 0.768 0.77 0.761
67 0.0367 0.0561 0.0490
7 0.771 0.787 0.787
4 0.041 0.0507 0.0507
5 0.755 0.767 0.767
83 0.0535 0.0427 0.0427
6 0.769 0.797 0.797
41 0.0397 0.0611 0.0611
4 0.766 0.798 0.798
57 0.0389 0.0637 0.0637

5 0.835 0.861 0.864
34 0.0104 0.0235 0.0224

0.843 0.897 0.897
05 0.0127 0.0106 0.0102
32 0.8539 0.9 0.89
79 0.0135 0.0647 0.0089
2 0.875 0.894 0.9
73 0.0119 0.0169 0.0111

0.877 0.893 0.896
58 0.0111 0.0181 0.0089

7 0.795 0.855 0.848
1 0.0569 0.0179 0.0148
1 0.819 0.885 0.856
3 0.0785 0.0083 0.0106

0.8283 0.896 0.859
84 0.0163 0.0158 0.0191

0.854 0.885 0.878
83 0.024 0.0127 0.0127
5 0.894 0.91 0.91
56 0.0093 0.0157 0.0171

9 0.893 0.9 0.9
29 0.059 0.0574 0.0574

0.9 0.9 0.9
25 0.060 0.0579 0.0579
5 0.906 0.906 0.904
85 0.044 0.0519 0.0595
5 0.908 0.91 0.908
17 0.053 0.0453 0.0303
4 0.9 0.917 0.9
62 0.073 0.03972 0.0377

2 0.922 0.86 0.851
13 0.0077 0.0684 0.068
8 0.926 0.863 0.854
86 0.0068 0.0456 0.0456
8 0.927 0.856 0.856
53 0.00701 0.0472 0.0472
7 0.927 0.866 0.86
7 0.0006 0.0685 0.0562
7 0.927 0.871 0.86
38 0.0064 0.0633 0.0522
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1. Generate an initial population of random solutions of size npop
2. Improve these solutions via local search.
3. Repeat:

(a) Select the subset of nsel elements of the population with the
highest fitness value.

(b) Crossreprodution: cross a pair of these solutions(parents)to
give rise to new solutions(children). From each pair of par-
ents a new pair of child solutions is generated.

(c) Mutation: the ‘‘child” solutions can change some of their ele-
ments with a small probability p_mut.

(d) Improve child solutions with local search.
(e) Population replacement: substitute the worst solutions of

the population with the new child solutions.
0
0.7
0.7
0.7
0.7

0
0.8
0.8
0.8
0.8

J

Fig. 1. O
databas

Table 2
Results

Databas

Spamba

Wavefo

Ionosph

Vehicle

Wincos

German
Until reaching a number of n_iter iterations.
4. Choose the solution with the highest fitness value as the final
solution

Each of the iterations in which the sequence of the selection of
‘‘parents”, crossreproduction, mutation and improved solutions is
computed is called ‘‘generation”. The Memetic Algorithm finishes
when a number n_iter of ‘‘generations” is reached.

In this work npop = 10; in each generation four parents are se-
lected, and the value of pmut is 0.10.
5. Computational results

In order to check and compare the efficacy of the different
metaheuristic strategies previously described, a series of experi-
ments was run with different problems.
SPAMBASE

.7
2
4
6
8
.8
2
4
6
8

1 2 3 4 5
d

GRASP
Tabu S.
Memetic A.
Genetic A.
SFFS
SBFS

bjective function values, J, obtained for the various techniques for the Spam
e (note that the values of SFFS and SBFS are equal).

obtained for each database and strategy.

e GRASP Tabu Search Memetic

se J_mean: 0.846 0.8264 0.7976
St_d: 0.0190 0.0041 0.0102

rm J_mean: 0.821 0.821 0.788
St_d: 0.0148 0.0148 0.0119

era J_mean: 0.904 0.906 0.890
St_d: 0.0087 0.0063 0.0101

J_mean: 0.899 0.902 0.884
St_d: 0.0157 0.0268 0.0257

in J_mean: 0.93 0.926 0.918
St_d: 0.0096 0.0155 0.0109

J_mean: 0.927 0.927 0.926
St_d: 0.0013 0.0018 0.0025
5.1. Previous test

In this section, we compare the three metaheuristic strategies
described in Section 4 with a Genetic Algorithm and the SFFS and
SBFS methods.

As mentioned, GAs have often been used to solve the feature
selection problem, and may even be the most frequently used
strategy for solving this problem. The GA used in this case is very
similar to the MA described in Section 4.3. Specifically, it follows
the same general scheme of the Memetic Algorithm but does not
perform steps 2 and 3-d of the MA and which consists in improving
the solutions via local search (in step 2 after generating the initial
population and in step 3-d after the mutation).

We compare metaheuristic strategies with floating search
methods (Pudil et al., 1994a) because though neither of these
methods (SFFS and SBFS) can always guarantee providing the best
subset of features, their performance has been found to be very
good compared with other search methods. As mentioned, in prac-
tice, searching with dynamic backtracking has very robust perfor-
mance and, if one had to choose between feature set search
methods then the floating search procedures would be the first
choice. Finally, it should be emphasised that the floating methods
are at least as good as the best sequential methods.

Note that the experiments are conducted using the k-nearest
neighbours classification algorithm.

Six databases from the well-known data repository of the Uni-
versity of California, UCI, (see Murphy and Aha, 1994) have been
used for these experiments. The selected databases have enough
instances – at least around 10 cases – for every degree of freedom
in the training sets. This is recommended to avoid over-fitting.

A short description of these databases follows:

� Spambase database: 57 attributes, 2 classes and 4601 cases.
� Waveform database: 40 attributes with continuous values, 3

classes and 5000 instances. Only the examples from the first
two classes have been taken into account, and therefore 3347
instances have been used.

� Ionosphere database: 34 attributes, 2 classes and 351 cases.
� Vehicle database: 18 variables and 4 classes. The instances cor-

responding to the classes bus and saab have been considered,
that is, 435 instances.

� Wisconsin database breast cancer: 30 attributes, 2 classes and
569 cases.

� German-Data-Numeric database: a database with 24 numerical
attributes, 2 classes and 1000 cases.

For each database, a 1 � 10 cross-validation was developed to
measure and test the methods used. All the experiments were done
Algorithm Genetic Algorithm SFFS SBFS

0.7634 0.7298 0.7298
0.0135 0.0176 0.0176

0.765 0.7838 0.782
0.0063 0.0146 0.0171

0.856 0.889 0.8894
0.0187 0.0158 0.0146

0.838 0.886 0.872
0.0377 0.0202 0.0248

0.901 0.906 0.902
0.0058 0.0071 0.0035

0.925 0.863 0.856
0.0021 0.0057 0.0038
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on a Pentium IV 2.4 GHz PC using the BORLAND DELPHI compiler
(version 5.0).

Table 1 shows the results obtained with the three metaheuristic
strategies proposed in this work – GRASP, Tabu Search and Memet-
ic Algorithm – compared to the results obtained with the Genetic
Algorithm and floating search methods.

Different values of d have been considered, specifically from
d = 3 to d = 7. For each database and each value of d, the mean va-
lue (J_mean) and the standard deviation (St_d) of the objective
function J in test sets are shown. The best solutions for each data-
base and each value of d are written in bold-italics.

Table 1 shows that GRASP yields the best solutions in 23 cases
out of 30 and tabu search in 21 cases. Thus, these two strategies
obtain better results than the Memetic Algorithm, Genetic Algo-
rithm, SFFS, and SBFS. In general, among the remaining strategies,
MA obtains the best results, although the differences are not signif-
icant in most cases.

Fig. 1 shows the solutions obtained with GRASP, Tabu Search,
Memetic Algorithm, Genetic Algorithm, SFFS and SBFS for the Spam
database.

Fig. 1 very clearly shows how solutions obtained with GRASP,
Tabu Search and Memetic Algorithm dominate the solutions ob-
tained by the other methods.

Table 2 shows the mean value, J_mean, and standard deviation,
St_d, for each database and for each strategy, and Table 3 shows the
mean value and standard deviation of all the databases in conjunc-
tion for each strategy.

The main conclusion derived from Tables 2 and 3 is basically the
same as that derived from Table 1; that is, GRASP and Tabu Search
obtain similar results overall and obtain the best results compared
to MA, GA and floating search methods. The GA obtains the worst
results but these are very similar to the results obtained with SFFS
and SBFS.
Table 3
Results for all databases in conjunction and for each strategy.

Database GRASP Tabu
Search

Memetic
Algorithm

Genetic
Algorithm

SFFS SBFS

J_mean 0.888 0.885 0.867 0.841 0.843 0.838
St_d 0.0429 0.0467 0.0573 0.0652 0.0666 0.0645

Table 4
t-Test for every database (proposed methods versus GA).

Database GRASP–Genetic A. Tabu S.–Genetic A. Memetic A.–Genetic A.

t-Value Prob. t-Value Prob. t-Value Prob.

Spambase 10.534 0.000 4.703 0.000 6.517 0.003
Waveform 8.227 0.000 8.227 0.000 4.509 0.011
Ionosphera 6.763 0.000 3.291 0.002 3.492 0.025
Vehicle 6.465 0.000 3.679 0.001 5.496 0.005
Wincosin 3.678 0.001 3.143 0.005 2.302 0.030
German 1.871 0.135 0.612 0.544 1.5 0.208

Table 5
t-Test for every database (proposed methods versus SFFS).

Database GRASP–SFFS Tabu S.–SFFS Memetic A.–SFFS

t-Value Prob. t-Value Prob. t-Value Prob.

Spambase 6.517 0.000 15.679 0.000 14.409 0.000
Waveform 12.461 0.000 12.461 0.000 0.461 0.668
Ionosphera 1.914 0.128 2.606 0.060 0.141 0.895
Vehicle 3.828 0.004 3.802 0.005 �0.159 0.882
Wincosin 5.075 0.005 2.348 0.079 2.318 0.081
German 23.064 0.000 23.579 0.000 23.990 0.000
In support of the previous conclusion, Tables 4–6 show the re-
sults of the t-test (t-value and probability) obtained by comparing
GRASP, Tabu Search and the Memetic Algorithm with the Genetic
Algorithm, SFFS and SBFS for each database.

Finally, Table 7 shows the results of the t-test for all the dat-
abases in conjunction.

Table 7 shows that for all databases in conjunction the proposed
metaheuristic strategies – GRASP, Tabu Search and the Memetic
Algorithm – obtain the best results, that is, the differences between
these strategies and the Genetic Algorithm, SFFS and SBFS are sig-
nificant with zero probability.

Tables 4–6 show that the differences between the Memetic
Algorithm and the Genetic Algorithm, SFFS and SBFS are not signif-
icant for most of the databases. Thus, the Memetic Algorithm ob-
tains worse results than GRASP and Tabu Search. We can also see
that for the Ionosphere database GRASP and Tabu Search obtain
poor results (no significant differences exist compared to the other
strategies) and for the German database the Genetic Algorithm ob-
tains good results (the differences between the Genetic Algorithm
and the other metaheuristic strategies are not significant).

5.2. Application: selection of financial ratios to predict corporate failure

The feature selection problem is applied to select financial ra-
tios for predicting corporate failure.

The discovery of knowledge in business data is an important
task capable of providing significant competitive advantages for a
business organization by exploiting the potential of large dat-
abases. Data mining has been applied to various business domains,
such as marketing, finance, banking, manufacturing and telecom-
munications (Branchman et al., 1996). Classification is one of the
important issues in many business applications. Typical examples
of business classification problems include credit approval, securi-
ties trading, product selection, risk estimation, personnel selection
and corporate bankruptcy.

Corporate bankruptcy triggers economic losses for management
stockholders, employees, customers and others, together with a
great social and economic cost to the nation. Thus, the accurate
prediction of bankruptcy is a critical issue in finance.

The financial database used contains information about the va-
lue of a series of financial ratios for a set of Spanish firms. Specifi-
cally, there are 93 variables with continuous values (financial
ratios), 17108 cases (firms) and two classes (failed/healthy). The
failed firms are firms which had failed in the period 2000–2003,
whereas healthy firms are firms which went on with their normal
activities in 2003.

As seen in the previous test, the GRASP and Tabu Search meta-
heuristic strategies obtained the best results, so we have only used
these strategies. Different values of d have been considered, specif-
ically from d = 3 to d = 7.

As in the experiments described in Section 5.1, a 1 � 10 cross-
validation has been developed to measure and test the methods
used. All the experiments were done on a Pentium IV 2.4 GHz PC
using the BORLAND DELPHI compiler (version 5.0).
Table 6
t-Test for every database (proposed methods versus SBFS).

Database GRASP–SBFS Tabu S.–SBFS Memetic A.–SBFS

t-Value Prob. t-Value Prob. t-Value Prob.

Spambase 14.982 0.000 15.679 0.000 14.409 0.000
Waveform 14.895 0.000 14.895 0.000 0.605 0.578
Ionosphera 1.983 0.118 2.398 0.75 0.104 0.922
Vehicle 6.120 0.004 5.692 0.005 2.826 0.048
Wincosin 6.014 0.004 4.774 0.006 3.133 0.035
German 46.816 0.000 29.750 0.000 50.401 0.000



Table 7
t-Test for all databases in conjunction.

t-Value Prob.

GRASP–Genetic A. 8.302 0.000
Tabu Search–Genetic A. 8.395 0.000
Memetic A.–Genetic A. 7.147 0.000
GRASP–SFFS 6.350 0.000
Tabu Search–SFFS 6.998 0.000
Memetic A.–SFFS 4.045 0.000
GRASP–SBFS 7.410 0.000
Tabu Search–SFFS 8.208 0.000
Memetic A.–SBFS 5.074 0.000

Table 8
Results for the financial database.

d GRASP Tabu Search

3 J_mean: 0.9 0.885
St_d: 0.04 0.056

4 J_mean: 0.897 0.911
St_d: 0.054 0.028

5 J_mean: 0.9 0.911
St_d: 0.0266 0.028

6 J_mean: 0.902 0.895
St_d: 0.0289 0.0368

7 J_mean: 0.902 0.9
St_d: 0.0209 0.0383
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Table 8 shows the results obtained.
Table 8 shows that by selecting only 3 features out of 93 the

percentage of hits is 88.5%, and when 7 are selected the percentage
is 90%. The number of features has been reduced considerably, but
the degree of accuracy regarding predicting bankruptcy is very
acceptable.

6. Conclusions

This work investigates the problem of feature selection. This is
an NP-hard problem and so the use of metaheuristic strategies is
very appropriate to solve it. Extensive research into feature selec-
tion has been carried out over the past four decades. The Genetic
Algorithm is the metaheuristic strategy that has been used more
times for solving this problem.

In the present work three metaheuristic strategies were pro-
posed to solve the feature selection problem, specifically, GRASP,
Tabu Search and the Memetic Algorithm. Computational experi-
ments with different databases were performed to compare
GRASP, Tabu Search and the Memetic Algorithm with a Genetic
Algorithm and the SFFS and SBFS floating methods. Although nei-
ther of these floating methods can always guarantee providing
the best subset of features, their performance has been found to
be very good compared with other search methods. The results ob-
tained show that GRASP and Tabu Search perform better than the
rest of the strategies. Finally the feature selection problem is ap-
plied to select financial ratios for predicting corporate failure.

It should be noted that all the metaheuristics strategies com-
pared are the simplest version of the strategies to avoid over-fit-
ting. Thus, a trade-off between optimization and generalization is
obtained.
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