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Abstract- Feature selection is a common and key
problem in many classification and regression tasks. It
can be viewed as a multiobjective optimisation problem,
since, in the simplest case, it involves feature subset size
minimisation and performance maximisation. This paper
presents a multiobjective evolutionary approach for
feature selection. A novel commonality-based crossover
operator is introduced and placed in the multiobjective
evolutionary setting. This specialised operator helps to
preserve building blocks with promising performance.
Selection bias reduction is achieved by resampling. We
argue that this is a generic approach, which can be used
in many modelling problems. It is applied to feature
selection on different neural network architectures.
Results from experiments with benchmarking data sets
are given.

1 Introduction
Feature selection is the process of selecting a subset of
available features to use in empirical modelling. The
solution to the feature selection problem is neither trivial,
nor unique. The set of optimal features can be different for
different hypothesis spaces. Therefore, optimality of a
feature subset should only be defined in the context of the
family of admissible modelling functions from which it is
intended to select the one that is finally deployed [1]. Even
for a fixed family of admissible functions, optimal feature
selection can only be guaranteed by exhaustive search of all
possible feature subsets. This is infeasible when the problem
involves a large number of features. Simple heuristic
approaches, such as the stepwise methods, are often used.
Forward selection, however, may fail to select
interdependent features [2]. The root problem with forward
selection and backwards elimination is that there is no
reason why the best subset of p variables, should contain the
(p-1) variables which give the best performance among all
subsets of (p-1) variables. The situation improves with
sequential replacement [3], where each feature deletion or
addition step is followed by a feature replacement step.
However, the interrelationships between features can be
such that a fixed number of replaced features at each step

may not be adequate, and this led to the development of
floating search methods [4]. Approaches that maintain a
population of solutions, such as evolutionary algorithms
(EAs), are less likely to be restricted by interdependencies
among features and may speedily perform efficient searches
in high dimensional spaces [5]. Evolutionary algorithms
have been used many times to aid the selection of feature
subsets in various classification tasks (e.g. [6] [7]).

This work introduces a multiobjective evolutionary
algorithm (MOEA) setting for the feature selection problem.
Multiobjective genetic algorithms have previously been
suggested for feature selection in neurofuzzy modelling [8].
Here we extend this approach to MOEA neural network
feature selection. In addition, a commonality-based
crossover operator is proposed, and employed in the
multiobjective evolutionary setting. The specialised operator
helps to preserve building blocks with promising
performance. Standard operators tend to yield offspring
where the number of features selected is the average of the
number selected in the parents, thus over-sampling medium-
sized feature sets. In contrast, using the new operator, each
offspring has on average the same number of features as one
particular parent. Thus, the offpring population maintains
diversity in the feature subset size space (complexity space)
and consequently the algorithm has exploratory power in
wider areas of the search space. Selection bias reduction is
achieved by means of resampling. We employ a variation of
the Niched Pareto Genetic Algorithm (NPGA) [9]. Focusing
on the feature selection problem, we employ a sharing
function in both the Hamming distance and the complexity
space and a specialised operator settings control strategy,
tailored to the new crossover operator. To demonstrate that
this feature selection approach is generic, we apply it to two
different neural modelling approaches, probabilistic neural
networks (PNN) [10] and multilayer perceptrons with
sigmoid activations (MLP). The developed methodology is
computationally simple, and can be applied to problems of
significant dimensionality. Results from experimentation
with two benchmarking data sets are given.



In 2000 Congress on Evolutionary Computation (CEC’2000), San Diego, California, July 2000. IEEE Service Center.

2 Multiobjective Evolutionary Feature
Selection

In multiobjective optimisation, a key concept is that of
Pareto optimality. Solutions are compared against each other
in terms of Pareto dominance, i.e. a solution is dominant
over another only if it has better performance in at least one
criterion and non-inferior performance in all criteria. A
solution is said to be Pareto optimal if it cannot be
dominated by any other solution in the search space. In
complex search spaces, wherein exhaustive search is
infeasible, it is very difficult to guarantee Pareto optimality.
Therefore, instead of the true set of optimal solutions
(Pareto Set), one usually aims to derive a set of non-
dominated solutions with objective values as close as
possible to the objective values (Pareto Front) of the Pareto
Set. Feature selection is well-suited to multiobjective
optimisation. In the simplest case, it involves two objectives:
minimisation of the number of features and maximisation of
the modelling performance. In classification tasks,
performance can be assessed in terms of the
misclassification rate. A common approach is to combine
the objectives in a composite function [11]. This may yield
solutions good enough on average but not in each one of the
objectives separately. Alternatively, multiple runs can be
performed to optimise one objective, while keeping the rest
at a desired level. For example, it is possible to seek to
optimise performance for a given subset size. This can be
pursued with EAs in a number of ways but, in principle, it
would involve evolving a population of solutions
increasingly concentrated around the desired subset size.
Such an approach would limit the possibility for creative
recombination of the genetic material between individuals
whose complexity differs from the desired one. However, a
significant part of the exploratory power of a genetic
algorithm is attributed to the recombination operator and its
ability to discover good solutions by building on existing
schemata of promising performance. By imposing
restrictions on the subset size, there is a danger of
eliminating useful population diversity; thus, chromosomes
of diverse subset size may not stand a chance to pass on well
performing schemata to the next generation. Such
population diversity can be maintained by aiming both at
subset size minimisation and performance maximisation,
without specifying which objective is more important. We
therefore treat feature selection as a multiobjective
optimisation problem, in the Pareto sense.

We concentrate on classification and consider a dual
modelling performance criterion consisting of two terms: the
estimated misclassification rate and the cost function.  The
former is common regardless of the classifier and the
training algorithm employed, whereas the latter depends on
the choice of classifier and algorithm. We employ a
variation of the niched Pareto GA (NPGA) [9]. This is

known to be a fast MOEA [12] since tournament domination
is determined by a random subsample of the population.
However, any MOEA could be employed in this setting. We
introduce some modifications to the main NPGA algorithm
to tailor it to the feature selection problem. In the remainder
of this section, we describe the main characteristics of  the
MOEA employed.
•  Offspring and Parent populations: The offspring
population is double the size of the parent population.
Mating pairs are selected at random and produce two
offspring. Every individual in the parent population has the
chance to mate twice on average, at each generation. This
polygamy, together with the crossover operator we introduce
in the next section and the sharing technique employed,
increases the chance that there will be individuals across a
greater range of the Pareto front.
•  Elitism: The formulation of elitism in MOEAs is
different from that for the single objective EAs, since
instead of a single elite individual there is now an elite set of
non-dominated solutions. The MOEA employed here
maintains such an elite set and updates it each time a new
offspring population is created. The individuals in the set are
the first to be inserted into the next generation parent
population. The rest are selected by random sampling
tournament selection. This is a viable approach as long as
the elite set is not too big compared to the size of the
population. In the latter case, clustering techniques can be
used to reduce the size of the elite set that is copied to the
mating pool [13]. Here, we set a minimum population size
depending on the chromosome length. The population size is
allowed to change to ensure that it is no less than ten times
the size of the elite set.
•  Tournament Selection. The NPGA employs binary
tournament selection. In this paper the offspring population
is double the size of the parent population. Tournament
groups of three individuals are employed, to reduce the
chance that an individual from the parent population may
not be selected for mating. The tournament sampling set size
is set to a tenth of the parent population size [9].
•  Fitness sharing: In the NPGA algorithm, the tournament
winner is determined by checking each competing individual
for domination against the sampling tournament set. When
the outcome of the tournament is not clear cut, the winner is
nominated by performing sharing. Thus, the individual with
the smallest niche count is selected, where the niche count is
a measure of how crowded the neighbourhood around it is,
in the partially filled mating pool. Calculating the niche
count based on the Hamming distance helps niche formation
primarily in the Hamming space and only secondarily in the
complexity space, which is one of the dimensions of the
objective space in feature selection. We would like to boost
the selection chances of those individuals which lie in a less
crowded area of the complexity space. We therefore employ
sharing in both the Hamming and subset size space:
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where im  is the niche count of the ith  individual in the
tournament group, ijd  is the Euclidean distance of the above
individual to the jth of the N individuals already present in
the mating pool, ijhd  and ijcd  are the corresponding
distances in the Hamming and complexity space
respectively, sα  is often set to one to correspond to
triangular sharing function, and sσ  is the sharing threshold,
below which two individuals are considered similar enough
to affect the niche count. This niching technique allows the
selection of dissimilar subsets that may achieve good
performance at the same complexity level, while preventing
domination of the population by a single very fit individual
at early stages of the process. It also balances the population
distribution across the subset size space. Hence, it enables
more exploration to take place across a wider range of the
non-dominated front.
•  Adaptive operator settings. General guidelines often
suggest values of crossover no less than 0.6 and mutation
rate equal to 1/lc , where lc is the chromosome length [14].
When employing the crossover operator introduced in this
paper, there is no need for adapting the crossover rate, while
there is a simple way to control the mutation rate.

3 Subset Size-Oriented Common Features
Crossover Operator

Common uniform or n-point crossover operators can be
disruptive since they may result in breaking up useful
building blocks. When the aim is to identify good subsets of
features at different complexity levels, i.e. to develop a
range of solutions across the neighbourhood of the Pareto
front, common crossover operators can have an additional
negative side effect. A standard crossover operating on two
individuals, coding subsets of size n and m, tends to yield
offspring with complexity approximately (n+m)/2.
Therefore, the EA tends to explore mostly medium-sized
subsets, while the edges of the non-dominated front are less
well explored. Improved performance can be achieved if
mating restrictions are applied, so that mating between too-
dissimilar individuals is discouraged [15] [16]. Dissimilarity
here applies both to the Hamming distance between
chromosomes and to the size of the coded subsets.

This paper introduces a novel crossover operator that helps
to preserve building blocks of promising performance. It
also produces offspring populations with relatively even
distribution, across the range of the Pareto front. This is
achieved whithout any need for mating restrictions. It
exploits the concept that preserving the maximal common
schema of two parents results in a more creative
recombination strategy, compared to standard crossover.
This concept has been recently termed the Commonalty-
Based Crossover Framework [17] and has been employed
for feature selection in conjuction with Random Sample
Climbing (RSC), a mutation-based strategy that performs a
local search in the neighborhood of each individual in a
population of solutions [18]. The Common Features /
Random Sample Climbing (CF/RSC) approach maintains a
small population of individuals, as starting seeds for the
RSC hill-climbing procedure. The CF operator yields a
single offspring for each mating pair and each parent is
allowed to mate twice in order to fill up the population for
the next generation. The offspring inherits the common
features of the parents. In a somewhat similar fashion, the
common features are preserved by the crossover operator
employed in the CHC algorithm, where half of the differing
bits are crossed at random [19]. Thus, this operator also
tends to average the number of selected bits. CHC feature
selection has been examined in [20]. In both CF/RSC and
CHC the aim is to identify a single solution.

In this work, instead of aiming at a single solution, we seek
to obtain a range of solutions across the Pareto front. In the
simplest case, these are non-dominated solutions in a two-
dimensional complexity-performance space. Our common
features operator utilises the subset size of each mating
parent as the desirable target state for each offspring and we
therefore call it Subset Size Oriented Common Features
crossover operator (SSOCF). The functionality of the
SSOCF operator is illustrated in Figure 1. Both offpring
preserve the common features of their parents. The non-
shared features are inherited by the offspring corresponding
to the ith parent with probability (ni-nc)/nu, where ni is the
subset size of the ith parent, nc is the number of commonly
selected features across both mating partners and nu is the
number of non-shared selected features. Those non-shared
features which are not inherited by the first offspring are
inherited by the second. Due to the inherent randomness of
the non-common features assignment, the subset size of the
offspring can be somewhat different from that of their
parents, although it will be very close to it and on average
equal to it. Following this procedure, each individual in the
population becomes a starting point for exploration around
its own complexity level. However, this exploration is more
flexible than that of stepwise or sequential replacement
methods. It is worth noting that this crossover operator has
no effect when all bits are common, or if one parent feature
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set is a subset of its mating partner. In such cases, any
potential modification is the result of consequent mutation.

We define as the subsethood ratio the ratio of common bits
to the subset size of the smallest complexity mating partner.
The subsethood ratio becomes one when the feature set
defined by one of the mating partners is a subset of the
feature set defined by the other. In the extreme case this
corresponds to identical partners. The average subsethood
ratio over all mating partners in a single generation is a
measure of the impact of the SSOCF crossover operator on
the genetic material recombination. When random mating is
applied, the average subsethood ratio, is not uniquely
determined by the current population but depends on the
exact mating pairs formed. However, in general, the closer it
gets to one, the lower the impact of the crossover is. In such
cases, it is desirable to allow more exploration to take place
by increasing the mutation rate. This observation has led to
the following mutation rate adaptation strategy:
•  When progress is observed in a generation, i.e. when
the non-dominated set is updated with newly found
solutions, the mutation rate, pm , is decreased geometrically,
so that the effect of mutation is reduced considerably to
allow crossover to exploit the novel genetic material.
•  When no progress is observed over a number of
successive generations, pm is increased arithmetically, in
order to infuse more randomness into the population. This
will increase the hill-climbing opportunities.
•  In any event, the mutation rate, is forced to lie within:

cupperrmclowerr lspls // 3 αα ⋅<<⋅ (4)
where rs  is the average subsethood ratio, lc is the
chromosome length and lowerα , upperα  are constant upper
and lower bounds to prevent pm becoming either too small to
have any meaningful impact, or too large and, therefore,
excessively disruptive. We empirically set in our
experiments the geometric decrease factor to 0.6 to
correspond to a drastic decrease, the arithmetic increase to
0.05/lc so that it is a constant which becomes smaller for
longer chromosomes, and lowerα  to 0.8 and upperα  to 3.5, so

that the mutation rate can fluctuate around the recommended
1/lc value. These settings apply a small mutation rate as long
as the crossover operator leads to progress, while the
mutation rate is increased when this ceases to be the case.
The average subsethood ratio increases gradually as more
and more of the consequent generations’ offspring inherit
commonly featured bits. When performance fails to improve
over a longer period, an increased mutation rate results in
the introduction of more and more randomness in the genetic
material. This disruption in the population results in a drop
in the average subsethood ratio. However, lower average
subsethood ratio values imply lower upper value for the
mutation rate, which in turn allows the crossover operator to
start taking over again, in order to explore the potential
benefits of the newly inserted genetic material. This offers a
simple way of controlling the the beneficial role of both
crossover and mutation. It is worth noting that no crossover
rate setting is needed by the SSOCF operator.

4 Neural Network Fitness Evaluation
The major computational cost, associated with the use of
EAs for feature selection, is in the feature subset evaluation.
This involves building and evaluating a model for a given
subset. In order to reduce such costs, one can use a simpler
form of model that can be evaluated more quickly during the
feature selection stage. We distinguish two methods to
reduce the computational cost. First, one can choose a model
which has very low training requirements, such as
probabilistic neural networks. Second, one can select a form
of model such that a master model can be optimised at the
beginning of the feature selection process. The master model
uses the entire variable set, but can be deployed in such a
way that unavailable features can be eliminated from
consideration during feature subset evaluation, without
requiring retraining of the master model. We demonstrate
how the master model approach can be deployed with
multilayer perceptrons with sigmoid activations. Fitness
estimation noise is reduced by taking the average fitness
over different subsamples of the data.

Selected
Features

n1=8

Chromosome Length: lc=13
common bits: 5

commonly selected: nc=2Chromosome

c1 * 1* * ***0 * *100

Parents

1 10 1 1100 1 1100

c2

non-common bits: nu=8
n2=4 1 *1 1 111* 1 1***0 11 0 0010 0 0100

OffspringChromosome  c o1 Chromosome  c o2

1 10 1 1010 1 1100 0 11 0 0100 0 0100

Figure 1: Example of the functionality of the Subset Size Oriented Common Features Operator
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Probabilistic Neural Networks. Probabilistic neural
networks (PNNs) have modest computational requirements
for reasonably small data sets [10]. Based on kernel density
estimation, equivalent to Parzen windows, the PNN uses
Bayes rule to estimate posterior class probabilities, that an
input vector x corresponds to the class iω . The probability
density function for class iω  is estimated by:
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where: iω =class, i=1..number of classes
j=pattern id number

mi=total number of class iω training patterns
xij=jth training pattern from class iω
σ =smoothing parameter
N=dimensionality of feature space

A good choice for the smoothing parameter is usually found
after experimentation. The a priori probability of class iω ,
pi , is usually not known. It can be estimated by the
frequency of class iω  patterns in the training set. For a two-
class problem, class 1ω  will be selected by the PNN
according to the rule 1221 )|()|( pppp >ωω xx . The
primary cost function employed in our experiments is the
estimated misclassification rate, while the secondary is a
sum squared error form:
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where )( ikig x  is the network activation for each class, when
the kth pattern belonging to class iω  is inserted. The index k
is employed instead of j to indicate that the cost function
may be calculated over a data set different from the training
set. PNNs are formed in one pass of the data.
Multilayer Perceptrons. A second approach is to employ a
multilayer perceptron with sigmoid activations as a master
model. The network is trained using all available input
features before the feature selection algorithm begins. To
evaluate a feature subset, we wish to "eliminate" unavailable
features from this model. The simplest way is to substitute
the sample mean of the feature from the training set. Other
approaches, such as median substitution or even more
complex data imputation methods could also be used. Here,
in order to perform feature selection, we first train a master
model to accept all input variables. MLP training in this
work is done with the Quasi-Newton method (BFGS). To
evaluate a feature subset, we test the master network on the
validation data. Features that are selected in the feature mask
are copied from the data set. Features that are not selected,
instead have the sample mean value provided. The MLPs
used during the MOEA search contain very few hidden
nodes, to ensure that variation in the output is not due to

overfit. Once the MOEA feature selection is complete, more
accurate MLPs can be built based upon the feature subset
selected.

5 Resampling and Fitness Assignment
Classifiers built without some of the useful features carry an
omission bias. A second type of bias, more difficult to
handle, is the selection bias  [3]. This occurs as a result of
the data-dependent nature of the subset selection process.
Selection bias becomes more of a problem when the ratio of
the number of training patterns to the number of potential
predictor variables is small. A simple way of reducing
selection bias is by resampling. Here we select a basic form
of this approach, employing ten different random splits of
the available data set, each into three subsets. The first set is
employed for training; the second for validation during
training and for assessing the impact of different subsets of
inputs during the MOEA feature selection procedure. The
same two sets are also used for building the final MLP
models, based on the selected feature subsets. The third set
(test set) is kept aside for independent evaluation of the final
models. Fitness assignment during the MOEA search is
performed by taking the average fitness over the different
validation sets. A three-element fitness vector is passed to
the MOEA. The first two values, the misclassification rate
and the feature subset size, are the primary objectives to be
minimised. The third value is the cost function and is treated
as a secondary cost term, only employed to compare
individuals achieving the same misclassification rate. An
additional benefit of the resampling is that it reduces the
effect of the noise in fitness evaluation.

6 Experimental Results
We demonstrate how our multiobjective evolutionary
algorithm feature selection works on two benchmarking data
sets of considerable dimensionality.
Ionosphere. This data set  [21] consists of 351 patterns, with
34 attributes and one output with two classes, good or bad,
with good implying evidence of some type of structure in the
ionosphere and bad the lack of such evidence. Ten random
permutations of this data set are employed. Each one is split
in 3 subsets. The training set consists of 176 patterns, the
validation set 88 and the evaluation set 87.
Sonar. (Mines vs. Rocks) The task is to train a network to
discriminate between sonar signals bounced off a metal
cylinder and those bounced off a roughly cylindrical rock
[22]. The dataset has 208 cases, 60 inputs and one output. of
two classes. Ten random splits of 104/52/52
(training/validation/evaluation) data are employed.
The ratio of available data to the number of inputs is very
low for both data sets and therefore the selection bias when
feature selection is based on a single data split is too high.
In both PNN and MLP cases, different neural networks are
built for each data split. The average misclassification rate
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during feature selection is estimated by taking the average
rate over the validation sets. Final independent estimation is
performed over the separate test sets.

We compare how the MOEA feature selection performs
against sequential feature selection. The best non-dominated
solutions found by forward selection and backwards
elimination are compared against those found by the MOEA.
In terms of computational requirements, MOEA is
considerably more expensive. Backwards elimination
complexity becomes a problem for feature sets of very large
size. In sequential feature selection, when comparing two
subsets which achieve the same missclassification rate at the
same complexity level, we chose the one with the lowest
cost function value. In domination tournaments such a
situation is considered a tie. The sequential procedures
always continue from the subset having the best
performance at each step. A triangular sharing function is
employed and the sharing threshold is set to 4/cl . The
smoothing factor for the PNNs is set to 0.2 and the number
of hidden units in the MLPs is 2 and 3 for the ionosphere
and sonar data respectively. The initial population has
uniform distribution across the feature subset size and the
different features. The minimum parent population size is
200, apart from the sonar MLP feature selection, where it is
set to 250. In the latter case larger frontiers are created after
a few generations and a larger initial population size can
improve exploration. In both sequential and MOEA feature
selection there are cases where an increase in the subset size
does not improve performance. We have carried out 4
MOEA runs for each feature selection task. In all our
experiments MOEA has been able to identify at least as
good solutions as the sequential feature selection, for each
complexity level. In addition, the experiments have shown
that the MOEA consistently finds a large number of
solutions missed by the sequential feature selection, with
both the data sets and with both PNNs and MLPs (Figure 2).
When examining all the non-dominated solutions found by
all MOEA runs, it is also important to notice is that MOEA
discovers a large number of the non-dominated solutions at
early stages of the evolution process. This is illustrated in
Figure 3, where the average number of non-dominated
solutions found, out of a non-dominated set of size 9, is
shown at different generations, when performing PNN
feature selection on the ionosphere data.
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Figure 2: Non-dominated fronts found by MOEA and
Sequential Feature Selection

Similar behaviour has been observed for the rest of our
experiments, with the MLP sonar case appearing to be the
most difficult for the MOEA.
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Figure 3: Ionosphere PNN feature selection

Due to space limitations, in the remainder we analyse the
results obtained only from one set of MOEA runs. Figure 4
illustrates the subsethood ratio variation and the mutation
rate adaptation for MLP feature selection with the
ionosphere data.
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Initially the MOEA progresses at almost every single
generation. As more common bulding blocks appear in the
population, the subsethood ratio, sr, increases gradually,
exceeding 0.85 just after 15 generations. According to the
mutation adaptation strategy, this should bring down the
mutation rate, pm. However, there is a minimum value below
which pm is not allowed to drop and the MOEA has already
started with pm at its minimum. The minimum threshold
increases with higher sr, hence pm increases up to 0.02, with
sr settling around 0.85. Improved solutions are found up to
generation 60. The lack of further progress initiates step
increases in pm. This infuses randomness into the population,
which, in turn, results in a gradual decrease in sr. At
generation 102, progress is again observed and pm is reduced
drastically. The low mutation rate allows the crossover
operator to take over, in order to exploit the newly
introduced genetic material. More and more common
building blocks start to form, thus bringing sr up again. The
search is brought back to a productive phase. Progress is
observed up to generation 150, where increases in the
mutation rate are again imposed. Another large drop in pm
occurs after discovering an improved solution at a stage
when sr is relatively low (generation 219). Figure 5 (upper
row) illustrates how the SSOCF operator together with the
MOEA feature selection gradually eliminate dominated
individuals from the population (ionosphere, MLP). The
effect of the mutation adaptation policy can be seen in the
charts showing the individual features distribution during
evolution (Figure 5, lower row). Once feature selection is
completed, final MLP models are built, based on the training
and validation data. The sonar data set and, to a lesser extent
the ionoshpere, is so sparse that employing a large number
of hidden units seems to lead to overfit. Both MLP and PNN
models are tested on the independent evaluation data.
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Figure 6: PNN performance on the evaluation data sets
after feature selection

Effective selection bias reduction is achieved in the case of
the ionosphere data set, while in the sonar case, the data is
such that model selection is problematic. Figure 6 shows the
performance over the test set for the PNN models. The
subsets found by MOEA lead to improved performance with
the ionosphere data. Feature selection in the sonar case is
not consistent; feature subsets that have on average good
performance on the validation data appear to perform poorly
on the evaluation data. There are two reasons for that. First,
the data is so sparse that even resampling did not offer
significant selection bias reduction. Second, apart from very
few features, most carry very little information with respect
to the output. A summary of the results obtained with the
MLPs is shown in the following table:

MLP Feature Selection Ionosphere Sonar
Features 11 7
Hidden Nodes 4 3
Misclassification (MOEA) 10.21 % 25.57 %
Misclassification (Sequential) 9.42 % 24.81 %

Overall, in all cases MOEA performed a more efficient
search. Results are more consistent with PNNs, which is a
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Figure 5: Snapshots of population evolution. Ionosphere (MLP) Upper row: Subset size distribution; dominated individuals of
high complexity are phased out during evolution;. Lower row: Individual feature occurrence in the population. Generation 1: relatively
even occurrence of all features and subset sizes. Generations 45, 110: a quite selective phase of the algorithm with low mutation rate and
high subsethood ratio; Generations 90 ,275: high mutation rate and low subsethood ratio; more of the “less relevant” features do appear
in an attempt to bring novelty to the genetic material.
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full wraper approach [1], whereas MLP feature selecton was
more noisy, especially with the sonar data. Evidently, the
significance of a drop in the estimated misclasification rate,
associated with increasing the feature subset size, should be
interpreted with caution. One way of dealing with the
problem in stepwise feature selection is by employing F-to-
enter or F-to-delete values [3]. These are only employed a
priori and play a direct part in guiding the search. In MOEA
feature selection, F-values can be employed either a priori
in an adequate multiobjective optimisation formulation, or a
posteriori for the selection of the final set of non-dominated
solutions, without influencing the search.

7 Conclusion
A multiobjective evolutionary approach and a commonality-
based crossover operator have been introduced for feature
selection. The key issue of treating feature selection as a
multiobjective optimisation problem, in the Pareto sense has
been discussed. The approach has a number of attractive
features. First, it avoids imposing a priori restrictions on the
search, such as those posed when the subset size and the
performance are combined in an aggregating function or
when single objective optimisation is pursued. Second, the
algorithm exhibits exploratory power across the range of the
non-dominated front. This is achieved as a result of the
successful combination of the MOEA and the commonality
crossover operator introduced in this work. Third, the
method is quite generic and can be employed with different
classifiers in problems of considerable dimensionality. The
result is not a single solution but a range of non-dominated
solutions. Therefore, a more informed decision can be taken
regarding the features which are deemed to be important. A
natural extension to this approach is the adoption of
additional objectives for the search. These can be
mimimisation of false negative or positive classifications,
misclassification and data acquisition costs. However, an
increase in the number of objectives increases the size of the
Pareto front, and therefore some form of clustering is needed
if elitism is to be used. Further work is needed towards
comparing the novel crossover operator against other
operators, as well as MOEA feature selection against other
approaches.
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