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Abstract

Considerable research e1ort has been expended to identify more accurate models for decision support
systems in &nancial decision domains including credit scoring and bankruptcy prediction. The focus of this
earlier work has been to identify the “single best” prediction model from a collection that includes simple
parametric models, nonparametric models that directly estimate data densities, and nonlinear pattern recognition
models such as neural networks. Recent theories suggest this work may be misguided in that ensembles of
predictors provide more accurate generalization than the reliance on a single model. This paper investigates
three recent ensemble strategies: crossvalidation, bagging, and boosting. We employ the multilayer perceptron
neural network as a base classi&er. The generalization ability of the neural network ensemble is found to be
superior to the single best model for three real world &nancial decision applications.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Financial credit is an immense global industry. In the United States alone the annual transactions
of Visa, Mastercard, Discover, and American Express credit cards totaled $1.2 trillion from over 500
million cards in circulation. The outstanding level of consumer debt in the U.S. totals about $1.5
trillion, with high interest credit card loans comprising $568.4 billion of that total. More than 4% of
credit card loans are delinquent and placed for collection every year. U.S. bankruptcy &lings for the

∗ Corresponding author. Tel.: +1-252-3286370; fax: +1-919-3284092.
E-mail addresses: westd@mail.ecu.edu (D. West), dellanas@mail.ecu.edu (S. Dellana).

0305-0548/$ - see front matter ? 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2004.03.017

mailto:westd@mail.ecu.edu
mailto:dellanas@mail.ecu.edu


2544 D. West et al. / Computers & Operations Research 32 (2005) 2543–2559

year 2002–2003 set a record level, totaling 1,650,279, which includes 37,182 business bankruptcy
&lings.

There is a clear need for accurate decision support for both the credit granting decision and the
monitoring of the ongoing health of credit customers. An improvement in accuracy of even a fraction
of a percent translates into signi&cant future savings for the credit industry.

Traditional methods of &nancial decision support include scorecards for consumer credit [1–5] and
discriminant models for assessing corporate &nancial health [6,4]. Both are essentially multivariate
linear models that output a probability that the client will repay debt as agreed. Recent research
interest has focused on more complex nonlinear models, particularly neural networks, to increase
the credit decision accuracy [2,6–19]. The reader is referred to Smith and Gupta [20] for a recent
survey of the application of neural networks in a diverse range of operations research problems that
include &nancial forecasting and creditworthiness.

The focus of prior research has been to identify the “single best” model that is most accurate for
a given &nancial decision application. This reliance on a single model may be misguided. Recent
studies of ensembles (or committees) of predictors have demonstrated the potential to reduce the
generalization error of a single model from 5% to 70% [21,22]. Three major strategies have been
advanced for forming ensembles of predictors. The simplest is the crossvalidation (CV) neural net-
work ensemble where all ensemble members are trained with the same data [23,16]. The second
and third strategies create perturbed versions of the training set so that ensemble members learn
from di1erent variants of the original training data. Bagging ensembles create a unique training set
for each ensemble member by sampling with replacement over a uniform probability distribution
on the original data [21,24,25]. This creates training sets where some observations are replicated
and others may be missing. Boosting is also a re-sampling strategy, with a probability distribution
that is dependent on the misclassi&cation rate for each observation [26,16]. Boosting is an iterative
algorithm where the probability of the misclassi&ed observations is increased and the corresponding
probability of correctly classi&ed observations is decreased over time. As boosting progresses, the
composition of the training sets becomes increasingly dominated by hard-to-classify examples. The
purpose of this research is to investigate the accuracy of ensembles of neural networks formed from
these three strategies for credit granting and bankruptcy decision applications.

In the next section of this paper we review the recent theory and application of ensembles,
with particular attention given to neural networks. Speci&c research questions are de&ned in this
section. The research methodology is described in Section 3, and in Section 4 the comparison of
generalization errors for the neural network ensemble strategies is discussed. We conclude in Section
5 with guidelines for implementing neural network ensembles for &nancial decision applications.

2. Ensemble strategies

The basic concept of the ensemble method is that diverse perspectives on di1erent aspects of a
problem can be combined to produce a high quality decision. For example, O’Leary [27] investigated
human performance in the task of knowledge acquisition of probability estimates. He compared the
relative performance of individuals versus groups of “multiple experts” (i.e., ensembles). His results
suggest that knowledge acquisition from groups provided more correct probability orderings than
the orderings from individuals acting alone. This &nding is consistent with earlier research cited
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by O’Leary concluding that individuals exhibit fallacies in their probability reasoning [27]. Similar
research has been conducted with machine learning algorithms for decision support systems [28].
Zhou and Lopresti [29] found that a consensus vote of multiple machine learning models trained by
repeated sampling always yields a net improvement in recognition accuracy for common distributions
of interest. These &ndings suggest that ensembles or collections of learning models provide more
accurate problem generalization than the selection of a “single best” model determined from cross
validation tests [21,22,30–32].

Hansen and Salamon provide some of the &rst research results to demonstrate that the gener-
alization error of a neural network can be signi&cantly reduced by using an ensemble of similar
networks, all trained with the same data [33]. They referred to this strategy as a crossvalidation
(CV) ensemble [34]. An explanation o1ered by Hansen and Salamon for the performance advantage
of the CV ensemble is that the multitude of local minima encountered in the training of individual
neural networks results in errors occurring in di1erent regions of input space. The collective deci-
sion of the ensemble is, therefore, less likely to be in error than the decision made by any of the
individual networks [33]. There are some recent studies of the use of genetic algorithms to train a
population of neural networks that have some similarities to CV ensemble strategies. For example,
Pendharkar [35] investigated hybrid approaches that include both evolutionary and neural training
algorithms. Pendharkar used a population of 100 CV neural networks and a genetic algorithm to
evolve a pool of neural network candidates with near optimal weights.

Another prominent ensemble strategy is “bootstrap aggregating”, or “bagging”, championed by
Breiman [21,22] and used by Zhang [30,31]. A bagging ensemble is formed by perturbing the training
data, creating a unique training set for each ensemble member by sampling with replacement over a
uniform probability distribution on the original data [21,24,25]. This creates training sets where some
observations are replicated and others may be missing. A key distinction of bagging is that each of
the “expert models” is trained under di1ering conditions, and an algorithm is applied to the model
outputs (usually majority vote) to produce a single “expert decision”. Breiman [21] investigated
bootstrap replicates to create diverse learning sets for classi&cation trees and tested them on both
real and simulated data sets. Breiman reported a reduction in test set misclassi&cations (comparing
the “bagging estimator” to the “single best” estimator) ranging from 6% to 77% and concluded
that a vital element for the success of bagging is the instability of the estimators. If perturbing the
learning set can cause a signi&cant change in the predictor constructed, then bagging can improve
the generalization accuracy. For classi&cation problems, Breiman demonstrates that if a model’s
prediction is “order-correct” for most inputs, then an aggregated predictor or bagging model can
be transformed into a nearly optimal predictor [21]. Using an approach similar to Breiman’s work,
Zhang [30,31] explores bagging an ensemble of thirty multiplayer perceptron neural network models
on learning sets created by bootstrap replicates and concludes that the bagging estimator is more
accurate and more robust than the “single best” neural network.

AdaBoost, or “adaptive boosting”, is another ensemble strategy that uses perturbation in an attempt
to improve the performance of the learning algorithm [36]. In this paper we will refer to this
algorithm as simply “boosting”, although the reader should be aware that there are a number of
variants that have been proposed. Boosting is a re-sampling strategy, with a probability distribution
that is dependent on the misclassi&cation rate for each observation [26,16]. Boosting employs an
iterative algorithm that constructs an ensemble by sequentially training each ensemble member with
unique training sets that increase the prominence of certain hard-to-learn examples misclassi&ed by
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earlier ensemble members. Boosting maintains a probability distribution, Dt(t), over the original
data available for training. In each iteration, a classi&er(t) is trained by sampling with replacement
from this distribution. After training and testing, the probability of incorrectly classi&ed training
examples is increased and the probability of correctly classi&ed examples is decreased. The ensemble
decision is obtained by a weighted vote of all ensemble members [36]. Schwenk and Bengio applied
AdaBoost methods to neural network ensembles and report that boosting can signi&cantly improve
neural network classi&ers [37]. They conclude that boosting is always superior to bagging, although
the di1erences are not always signi&cant.

Ensemble strategies have been investigated in several application domains. For example, Hu and
Tsoukalas report that ensembles of multilayer perceptron (MLP) neural networks reduce the error in
predicting the relative importance of situational and demographic factors on consumer choice [38].
Sohn and Lee employ ensembles of neural networks to improve the classi&cation accuracy of road
traQc accident severity [39]. They tested both bagging and boosting ensembles, and report a reduction
in generalization error for the bagging neural network ensemble of 6.3% relative to the single
neural network model [39]. Hayashi and Setiono report increased accuracy diagnosing hepatobiliary
disorders from ensembles of 30 MLP neural networks [40]. They employed CV ensembles (without
the data perturbation methods of bagging or boosting) with a relatively small training set size of
373 examples [40]. Zhou et al. employed ensembles of neural networks to identify lung cancer
cells from needle biopsies [32]. The authors report high overall accuracy and a low rate of false
negatives. Zhang aggregated 30 MLP neural networks to estimate polymer reactor quality [30], while
Cunningham et al. report improved diagnostic prediction for medical diagnostic decision support
systems that aggregate neural network models [41]. Zhilkin and Somorjai explore bagging ensembles
by using combinations of linear and quadratic discriminant analysis, logistic regression, and MLP
neural networks to classify brain spectra by magnetic resonance measurement [42]. They report that
the bootstrap ensembles are more accurate in this application than any “single best” model.

The authors are not aware of any existing research on the application of ensemble strategies to
&nancial decision applications. There is a need for more systematic study of the properties of neu-
ral network ensembles and the relative performance of these ensembles in &nancial classi&cation
applications. The contribution of this paper is to investigate the potential for reducing the general-
ization error of &nancial decision applications by forming neural network ensembles with each of the
three main strategies (CV, bagging, and boosting). We conduct a controlled experiment capable of
producing statistically signi&cant conclusions about the relative performance of the three ensemble
strategies and the strategy of reliance on a single model. Our focus is on two-group classi&cation
in &nancial credit scoring and bankruptcy prediction problems where the spatial data structure is
characterized by two naturally occurring clusters. To further these purposes, we pose the following
research questions.

1. Can a neural network ensemble be expected to universally produce a more accurate &nancial
application decision than the strategy of relying on a single neural network model for a decision,
or are there some conditions where the single model is preferred?

2. Are the neural network ensemble strategies that perturb the training set more accurate than the
simple CV ensemble?

3. Does the complexity of the classi&cation problem inSuence the relative performance of the neural
network ensemble strategy?
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For this research, we consider an ensemble to be a collection of a &nite number of neural networks
that are individually trained and whose member predictions are combined to create an aggregate
decision. Speci&c algorithms for bagging and boosting are given in Section 3.

3. Research methodology

In this research, all neural network ensembles are constructed with 100 members. This quantity
is based on &ndings that accurate boosting ensembles require a relatively large ensemble mem-
bership [22]. We focus exclusively on ensembles formed with the popular multilayer perceptron
(MLP) neural network trained with the backpropagation algorithm. All MLP networks have a sin-
gle hidden layer; the number of hidden neurons is determined for each of the 100 members by
randomly sampling with replacement from the integer interval [2, 3; : : : number of network in-
puts]. A total of i = 100 experimental iterations are conducted for each data set by randomly
shuUing the data rows and partitioning the data set into a learning set Li with 70% of the ex-
amples, a validation set Vi with 15%, and an independent holdout test set Ti with 15%. These
iterations allow us to contrast generalization errors between the three ensemble strategies (CV,
bagging, and boosting) and the single best model and to detect relatively small di1erences in
performance.

3.1. Description of data sets

The three real world &nancial data sets summarized in Table 1 are used to test the predictive
accuracy of the ensemble strategies investigated. Dr. Hans Hofmann of the University of Hamburg
contributed the German credit scoring data. It consists of 700 examples of creditworthy applicants and
300 examples where credit should not be extended. For each applicant, 24 variables (3 continuous
and 21 categorical of which 9 are binary), describe credit history, account balances, loan purpose,
loan amount, employment status, personal information, age, housing, and job. This data set has a
relatively high noise/signal ratio, which confounds the task of learning a classi&cation function. The
Australian credit scoring data [43] is similar but more balanced with 307 and 383 examples of each
outcome. The data set contains a mixture of six continuous and eight categorical variables. To protect
the con&dentiality of this data, attribute names and values have been changed to symbolic data. The
reader is cautioned that neither data set contains credit bureau information, which is usually available
to the credit granting institution. The German credit data also contains some information like gender,
marital status, and nationality that cannot legally be used in the U.S. The bankruptcy data set was
constructed by the authors from Standard and Poor’s Compustat &nancial &les. This data set consists
of &ve key &nancial ratios from Altman’s research [6]. These ratios, constructed from &nancial
statement information two years prior to bankruptcy include: working capital/total assets, retained
earnings/total assets, earnings before interest and taxes/total assets, market value of equity/book value
total liability, and sales/total assets. There are a total of 329 observations in the data set with 93
bankrupt companies and 236 healthy companies. We use labels of −1 (bad credit/bankrupt) and +1
(good credit/healthy) for all three data sets.
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Table 1
Data set characteristics

Australian credit German credit Bankruptcy data

Number of Examples 690 1000 329
Proportion of Bad Credit 0.445 0.300 0.283
Number of Predictors 14 24 55
Binary Predictors 4 9 0
Mean Correlation of Predictors 0.102 0.085 0.091
Skewness 1.97 1.70 2.05
Kurtosiss 12.55 7.79 10.12
Noise/Signal 19.36 79.38 14.67

3.2. Experimental design

A data partitioning strategy is employed in this research that follows the general spirit of earlier
work [21,22,31,32]. A total of i= 100 di1erent experimental iterations are created for each data set
by randomly shuUing the data rows and partitioning the data into a learning set Li with 70% of the
observations, a validation set Vi with 15%, and an independent test set Ti with 15%. For each of
the 100 iterations, the neural network model (with randomly determined hidden layer architecture) is
trained with Li and the generalization error on the independent test set Ti is assessed. The validation
set Vi is used during this process to implement early stopping and avoid model over-&tting.

The estimate of the generalization error of the single best model is determined for each iteration
by training all potential MLP models with Li using Vi to implement early stopping. Recall that all
potential MLP models include hidden layer neurons varying from a minimum of two to a maximum
that equals the number of network inputs. The hyperbolic tangent activation function is used in the
neural network to map to outputs of ±1. The single most accurate model is identi&ed from the set
of potential models based on a minimum validation error. The generalization error of that model is
then measured on the independent test set, Ti. An estimate of the mean generalization error for the
single model is then determined by averaging the generalization error for the 100 iterations.

A corresponding estimate of the generalization error for the three ensemble strategies is obtained
using the same data partitions and neural network architectures employed for the single best model.
The CV ensemble does not require any perturbation of the learning set Li. Each MLP architecture
is trained on Li for i = 1; : : : ; 100, with Vi again used to implement early stopping of training and
avoid over&tting. The decision of each MLP ensemble member (+1 or −1) is then recorded for
each instance of the test set Ti. An aggregate decision for the CV ensemble is simply a majority
vote of the individual ensemble members.

In this research, bagging ensembles are constructed by forming 100 bootstrap replicates training
sets, LiB, for each of the 100 iterations. Bootstrap replicates are formed by sampling with replacement
from the original training set partition Li. An implication of the bootstrap process is that some of
the original training set observations will be missing in LiB, the bagging training set, while other
observations may be replicated several times. This provides diversity in the training set, which may
potentially decrease the ensemble generalization error. The speci&c algorithm for creating bagging
ensembles follows.
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Algorithm for bagging ensemble
Given: training set of size n and base classi&cation algorithm Ct(x)

Step 1. Input sequence of training samples (x1; y1); : : : (xn; yn) with labels y∈Y = (−1; 1)
Step 2. Initialize probability for each example in learning set D1(i) = 1=n and set t = 1
Step 3. Loop while t ¡B=100 ensemble members

a. Form training set of size n by sampling with replacement from distribution Dt
b. Get hypothesis ht : X → Y
c. Set t = t + 1
End of loop

Step 4. Output the &nal ensemble hypothesis

C∗(xi) = h&nal(xi) = argmax
B∑

t=1

I (Ct(x) = y):

A boosting ensemble is also constructed by perturbing the original training set. For boosting, the
sampling process is controlled by a probability distribution, Dt(i), maintained over the observations
in Li. For the construction of the &rst ensemble member, Dt(i) is a uniform distribution. At each
iteration a training set is generated by sampling with replacement from Dt(i) (Step 3a), the neural
network is trained and tested (Step 3b), and a weighted error is calculated from the sum of the
probabilities of misclassi&ed observations (Step 3c). An inSation factor �t is calculated in Step 3e
from the weighted error. In Step 3f, the probability of all misclassi&ed observations is increased by
multiplying the probability of each misclassi&ed observation by the inSation factor �t and then Dt(i)
is renormalized. If the weighted error is ever less than zero or greater than 0.5, the distribution Dt(i)
is reset to a uniform distribution (Step 3d). After 100 ensemble members have been constructed
in this fashion, the ensemble decision is determined by weighting the decision of each ensemble
member by log(�t) (Step 4). The speci&c boosting algorithm used in this research follows.

Algorithm for AdaBoost ensemble
Given: training set of size n and base classi&cation algorithm Ct(x)

Step 1. Input sequence of training samples (x1; y1); : : : (xn; yn) with labels y∈Y = (−1; 1)
Step 2. Initialize probability for each example in learning set D1(i) = 1=n and set t = 1
Step 3. Loop while t ¡B=100 ensemble members

a. Form training set of size n by sampling with replacement from distribution Dt
b. Get hypothesis ht : X → Y
c. Calculate the weighted error rate: �t =

∑
i:ht(xi) �=yi

Dt(i)

d. If �t6 0 or �t¿ 0:5 then reinitialize Dt(i) = 1=n and GOTO step 3a
e. Calculate �t = (1 − �t)=�t
f. Update probability distribution: Dt+1(i) =

Dt(i)�
I(ht (xi �=yi))
t
Zt

where Zt is a normalization
constant

g. Set t = t + 1
End of loop

Step 4. Output the &nal ensemble hypothesis C∗(xi) = h&nal(xi) =
∑

log(�t)
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Table 2
Australian credit ensemble error (100 experimental replications)

Average Average Minimum Maximum
100 members 50–100 members 50–100 members 50–100 members

CV ensemble 0.131262 0.131315 0.130097 0.132718
Bagging ensemble 0.127961 0.128252 0.125243 0.132524
Boosting ensemble 0.14767 0.149214 0.134951 0.163301
Single model 0.132271 NA NA NA

Table 3
German credit ensemble error (100 experimental replications)

Average Average Minimum Maximum
100 members 50–100 members 50–100 members 50–100 members

CV ensemble 0.241867 0.236933 0.241758 0.246867
Bagging ensemble 0.251333 0.251758 0.243467 0.259400
Boosting ensemble 0.254733 0.256442 0.244400 0.268800
Single model 0.253117 NA NA NA

Table 4
Bankruptcy ensemble error (100 experimental replications)

Average Average Minimum Maximum
100 members 50–100 members 50–100 members 50–100 members

CV ensemble 0.129184 0.129425 0.127959 0.130816
Bagging ensemble 0.126327 0.125937 0.122041 0.130408
Boosting ensemble 0.127551 0.128293 0.116531 0.14
Single model 0.131429 NA NA NA

4. Ensemble generalization results

The generalization errors for each data set investigated are reported in Tables 2–4. The single
most accurate model result is determined by training each potential MLP model and identifying the
most accurate model based on its classi&cation accuracy on the validation examples. In this research,
potential models include hidden layer neurons ranging from 2 to the number of input features in
the data set. The generalization error of the most accurate model is then assessed by classifying
the independent holdout sample. We report the average generalization error for an ensemble formed
from 100 MLP members and an average error across all ensembles with 50 or more members. We
also include an average of the minimum and maximum errors for ensembles of 50 members or more.
All averages are calculated across the 100 iterations conducted for this research. A &gure depicting
the generalization error as a function of the number of ensemble members is also included for each
data set. The results are reported by data set in the next three subsections.
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Australian Credit
Paired Difference-Single Model-Bagging Ensemble
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Fig. 1. Australian credit paired di1erence-single model-bagging ensemble.

4.1. Australian credit

The generalization errors for the Australian credit data are reported in Table 2. For this data set,
the bagging ensemble has the lowest average error of 0.127961 for ensembles of 100 members. This
compares to errors of 0.131262 for the CV ensemble and 0.14767 for the boosting ensemble. The
average generalization error of the 100-member bagging ensemble is a reduction of 3.26% from the
single best model error of 0.132271. In an earlier study of this data set, West [18] reports a single
model MLP error of 0.1416 using a 10-fold crossvalidation partitioning scheme. A paired t-test on
the di1erences in generalization errors between the bagging ensemble and the single best model
for the 100 experimental replications concludes that the bagging ensemble achieves a statistically
signi&cant reduction in generalization error: p = 0:0000. A scatter plot of the paired di1erences is
presented in Fig. 1. The average maximum and minimum errors obtained con&rm that the boosting
ensemble is more erratic and unstable than the CV or bagging ensemble (see Table 2). The average
minimum error for boosting is 0.134951 and the average maximum error is 0.163301. This compares
to ranges of 0.130097–0.0132718 for CV ensembles and 0.125243–0.132524 for bagging ensembles.
This is con&rmed by prior research &ndings that boosting is a relatively unstable ensemble strategy
[24].

The average generalization error of the ensembles formed for the Australian credit data are shown
graphically in Fig. 2 as a function of the number of ensemble members. The solid horizontal line
represents the error determined for the single most accurate model. Note that the number of ensemble
members has no meaning for the single model case. Fig. 2 suggests that boosting is not an e1ective
ensemble strategy for this data set for any ensemble size. The fact that boosting is unpredictable,
working well in some applications and not in others, has been reported in the literature previously
[24]. It is also evident from Fig. 2 that the number of ensemble members has a pronounced e1ect on
the boosting ensemble error; the generalization error continuously declines with increasing member-
ship. This is consistent with Breiman’s experience that 100 or more members may be required for
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Australian Credit Ensemble Error
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Fig. 2. Australian credit ensemble error.

boosting ensembles with CART as a baseline classi&er [22]. By contrast, the generalization errors
of the CV and bagging ensembles remain fairly constant above 30 members.

4.2. German credit

The average generalization errors of ensembles investigated for the German credit data are reported
in Table 3. For this data, the CV ensemble has the lowest average generalization error of 0.241867,
compared to 0.251333 for bagging ensembles and 0.254733 for boosting ensembles. The CV en-
semble achieves a 4.44% error reduction from the single model result of 0.253117. West reported
an MLP single model error of 0.2672 for 10-fold crossvalidation [18]. A paired t-test contrasting
CV ensembles and single model errors concludes that this is a statistically signi&cant reduction:
p = 0:0000. Fig. 3 is a scatter plot of the di1erences in error between the single best model and
the CV ensemble for the German credit data. The average of the maximum and minimum errors
reported in Table 3 again illuminate that the boosting ensemble is more unstable, creating a higher
range of errors.

The generalization error of German credit ensembles is presented in Fig. 4 as a function of the
number of ensemble members. The performance of the boosting ensemble parallels the Australian
credit experience in that the boosting error is greater than the single model error at all ensemble sizes
investigated. Again we notice the pronounced e1ect that the number of ensemble members has on
the boosting generalization error. In this application, neither of the two data perturbation ensemble
strategies improves on the error performance of the single model, although the bagging ensemble
with 60 or more members has a slightly lower error. The CV ensemble however, is signi&cantly
more accurate than the single model with ensembles formed from 5 to 100 members.
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German Credit
Paired Difference Single Model-CV Ensemble
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Fig. 3. German credit paired di1erence single model-CV ensemble.
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Fig. 4. German credit ensemble error.

4.3. Bankruptcy data

Table 4 summarizes the average generalization error of each ensemble strategy for the bankruptcy
data set. The bagging ensemble with 100 members has the lowest generalization error of 0.126327
compared to 0.127551 for boosting and 0.129184 for the CV ensemble. The bagging ensemble error
is a 3.88% error reduction from the single model result of 0.131429. A paired t-test of this di1erence
between the bagging ensemble and the single model concludes a statistically signi&cant reduction:
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Fig. 5. Bankruptcy data paired di1erences single model—bagging ensemble.
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Fig. 6. Bankruptcy ensemble error.

p= 0:04. The average maximum and minimum errors for the ensemble strategies again show more
instability for the boosting ensemble, although in this application the boosting error is competitive
with the most accurate ensembles. A scatter plot of di1erences is presented in Fig. 5.

The ensemble errors for the bankruptcy data are shown in Fig. 6 as a function of the number
of ensemble members. It is evident from Fig. 6 that the boosting ensemble error shows a marked
decline as the number of ensemble members increases from 5 to 100 members and that the boosting
ensemble with 95 members has the lowest generalization error of any alternative investigated. Unlike
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Table 5
Di1erence in mean generalization error (Boosting versus all others)

Boosting: CV Bagging Single

Di1erence 0.00922 (5.2%) 0.00811 (4.7%) 0.00491 (2.8%)
p 0.0000 0.0000 0.0002

Table 6
Di1erence in mean generalization error (Single best versus CV and Bagging)

Single: CV Bagging

Di1erence 0.0043 (2.5%) 0.0034 (1.9%)
p 0.0000 0.0000

the two credit data sets, boosting works well in this application, providing a large ensemble size is
used. The other data perturbation strategy, bagging, also achieves a low generalization error on this
data set, comparable to the boosting error. Both bagging and boosting errors are lower that the CV
ensemble error for ensemble sizes of 80 or more members.

4.4. Consolidated results for three data sets

In this subsection we analyze the consolidated performance of the three ensemble strategies inves-
tigated by contrasting paired di1erences in mean generalization error across all three data sets. We
&rst compare the consolidated result from the boosting ensemble to the other ensemble strategies and
to the single model as shown in Table 5. The boosting ensemble has a mean error 2.8% higher than
the single model, 4.7% higher than the bagging ensemble, and 5.3% higher than the CV ensemble.
All three di1erences are statistically signi&cant as evidenced from the p values of the paired t-test
given in the second row of Table 5. An explanation for the relatively poor performance of the
boosting ensemble is likely the presence of noise, outliers, and mislabeled learning examples in the
two credit data sets as reported by West [19]. Dietterich has documented the detrimental e1ects of
noise on the boosting algorithm [24]. An active area of research today is the design of new boosting
algorithms that are more robust in the presence of noise.

The consolidated generalization errors of the other two ensemble strategies (CV and bagging) are
compared to the single best model results in Table 6. The CV ensemble achieves an error that is
2.5% less than the single model across all three data sets. The consolidated generalization error of
the bagging model is 1.9% less than the single model. The reduction in error achieved by these two
ensemble strategies is statistically signi&cant for a paired t-test analysis: p¡ 0:0000. Unfortunately,
the choice of a speci&c ensemble strategy for a particular application remains ambiguous. The CV
ensemble is most accurate for the German credit data, while the bagging ensemble is most accurate
for the Australian credit and bankruptcy data. We also note that boosting was competitive with
bagging for the bankruptcy data.
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We now apply the weight of the &ndings for the individual and consolidated data sets to the
speci&c research questions that are the motivation for this research.

Question 1 asks, “Can a neural network ensemble be expected to universally produce more
accurate decision than the strategy of relying on a single model for a decision, or are there some
conditions where a single model is preferred?” We conclude that an ensemble strategy produces more
accurate generalization than the strategy of relying on a single model for a decision. An ensemble
strategy is signi&cantly more accurate for each of the three data sets investigated, and both CV
and bagging ensembles achieve statistically signi&cant reductions in error when considering results
aggregated across all three data sets.

Questions 2 asks, “Are the ensemble strategies that perturb the training set more accurate than
the simple CV ensemble?” We &nd no evidence of the e1ectiveness of ensemble strategies that per-
turb the data. A comparison of the consolidated error di1erence for the CV ensemble (non-perturbing)
and the bagging ensemble (perturbing) across all 3 data sets produces an error di1erence of 0.0011.
The check of statistical signi&cance suggests there is no di1erence in error performance gained by
perturbing the data (p= 0:16).
Question 3 asks, “Does the complexity of the classi;cation problem in<uence the relative per-

formance of the neural network ensemble strategy?” While experience with just three data sets is
not suQcient for strong conclusions, we observe that the boosting ensemble strategy is e1ective only
for the low noise bankruptcy data. The bagging ensemble tolerates noise better than boosting, and
is e1ective for the low and medium noise data. Neither of the perturbation strategies is competitive
with the CV ensemble for the relatively high noise German credit data.

4.5. Sensitivity and speci;city analysis

This research focuses not on the implementation of a &nancial decision system, but on under-
standing some general properties of neural network ensembles. For this type of research, it is fairly
common to measure misclassi&cation instances and not misclassi&cation costs. While we consider
the pursuit of di1erent economic cost scenarios to be a diversion from the basic purpose of this
research, we acknowledge that the costs of misclassi&cation do vary considerably by classi&cation
group and must be considered during the implementation stage. We therefore illustrate one method
of tuning the ensemble to speci&c decision economics. The practitioner can modify the ensemble
voting threshold to implement speci&c costs of misclassi&cation. In the prior analysis, we used ma-
jority vote to determine the ensemble decision. If 51 or more ensemble members classify an example
as belonging to group +1, the ensemble decision is to assign this instance to group +1. If 49 or
fewer ensemble members classify the example as group +1, then the ensemble assigns the instance
to group −1. In the event of a tie, the ensemble classi&es the instance to the group with the highest
prior probability.

Di1erent levels of sensitivity (the probability that a good credit example will be classi&ed into the
good credit group) and speci&city (the probability that a bad credit instance will be classi&ed into
the bad credit group) are obtained by varying the ensemble voting threshold from 0 to 100. The
resulting receiver operating characteristic (ROC) curve for the bankruptcy data using a 100 member
bagging ensemble is presented in Fig. 7 [44]. The arrow on this &gure identi&es the location of
the majority vote threshold on the ROC curve. At this voting threshold of 50, the sensitivity of the
ensemble is 91.6% and the speci&city is 77.4%. The sensitivity and speci&city vary over the voting
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Sensitivity = 0.143Ln(1-Specificity) + 1.1238
R2 = 0.981
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Fig. 7. ROC curve bankruptcy data.

threshold interval according to the following equation &tted to the data with an R2 of 0.981.

Sensitivity = 0:143Ln(1 − Speci&city) + 1:1238: (1)

For decision implementations where the false positive rate is a major cost concern, the practitioner
can increase the voting threshold for a +1 group assignment above the majority vote level of 50 and
thereby increase the ensemble decision speci&city. At the extreme threshold of 100, which requires
unanimous consensus of all members to classify an instance as +1, the speci&city for the bankruptcy
ensemble is increased to 91.6%, while the sensitivity decreases to 74.5%. The reader is cautioned that
prior group probabilities must also be considered in the determination of cost of misclassi&cation.
The reader is referred to West [38] for a more complete treatment of misclassi&cation costs for the
credit data sets.

5. Conclusions

Recent research has focused on the identi&cation of higher capacity nonlinear models to improve
the generalization accuracy of &nancial decision applications. A better approach than the reliance
on a single high capacity model is to pursue ensemble strategies that combine the predictions of a
collection of individual models. The results of this research con&rm that ensembles of neural network
predictors are more accurate and more robust that the “single best” MLP model based on experiments
with three real world &nancial data sets. The ensemble strategies employed in this research reduced
the generalization errors estimated for the single model case by 3.26% for the Australian credit,
4.44% for the German credit, and 3.88% for the bankruptcy data. All three di1erences are statistically
signi&cant reductions in generalization error. While an error reduction of 3–5% may seem modest,
the reader must appreciate that the global credit industry has transactions exceeding $1 trillion



2558 D. West et al. / Computers & Operations Research 32 (2005) 2543–2559

annually. Based on an annual write o1 rate of 4%, a decision technology that is capable of reducing
classi&cation errors by 3% could potentially save the industry $1.2 billion annually.

It is more diQcult to make a design recommendation for ensemble strategies that introduce diver-
sity by intentionally perturbing the training set using bootstrap or boosting algorithms. Our aggregate
analysis &nds no signi&cant di1erence in accuracy between the perturbation strategies and the simple
CV ensemble. However, we do note that each of the three ensemble strategies investigated achieved
a statistically signi&cant reduction in error in at least one application. The CV ensemble was most
accurate for the German credit data, an application characterized by high noise levels, a relatively
large training set size, and a large number of feature variables. The bagging strategy was most
e1ective for the Australian credit and the bankruptcy data set, both characterized by smaller training
samples, fewer feature variables, and less noise. The boosting strategy was e1ective only for the
bankruptcy data, the smallest data set with the fewest number of feature variables and the least
amount of noise. While 25–30 ensemble members are adequate for the CV and bagging ensembles,
we note as many as 100 members are necessary for the boosting ensemble.
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