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Abstract Numerous tools automating various aspects of software engineering
have been developed, and many of the tools are highly configurable through pa-
rameters. Understanding the parameters of advanced tools often require deep
understanding of complex algorithms. Unfortunately, sub-optimal parameter
settings limit the performance of tools and hinder industrial adaptation, but
still few studies address the challenge of tuning software engineering tools. We
present TuneR, an experiment framework that supports finding feasible pa-
rameter settings using empirical methods. The framework is accompanied by
practical guidelines of how to use R to analyze the experimental outcome. As a
proof-of-concept, we apply TuneR to tune ImpRec, a recommendation system
for change impact analysis. Compared to the output from the default setting,
we report a 20% improvement in the response variable. Moreover, TuneR re-
veals insights into the interaction among parameters, as well as non-linear
effects. TuneR is easy to use, thus the framework has potential to support
tuning of software engineering tools in both academia and industry.

Keywords software engineering tools · controlled experiment · parameter
settings · configuration · recommendation system

1 Introduction

Tools that increase the level of automation in software engineering are of-
ten highly configurable through parameters. Examples of state-of-the-art tools
that are highly configurable include EvoSuite for automatic test suite gener-
ation [37], FindBugs for static code analysis [7], and MyLyn, a task-oriented
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recommendation system in the Eclipse IDE [52]. However, the performance of
these tools, as well as other tools providing decision support, generally depend
strongly on the parameter setting used [11], often more so than the choice of
the underlying algorithm [56]. The best parameter setting depends on the spe-
cific development context, and even within the same context it might change
over time.

Finding feasible parameter settings is not an easy task. Automated tools in
software engineering often implement advanced techniques such as genetic al-
gorithms, dimensionality reduction, Information Retrieval (IR), and Machine
Learning (ML). Numerous studies have explored how tool performance can
be improved by tailoring algorithms and tuning parameters, for example in
test data generation [38], test case selection [59], fault localization [2,90], re-
quirements classification [28], and trace recovery [103,77]. We have previously
published a systematic mapping study, highlighting the data dependency of
IR-based trace recovery tools [18], and Hall et al. found the same phenomenon
in a systematic literature review on bug prediction, stating that “models per-
form the best where the right technique has been selected for the right data,
and these techniques have been tuned for the model rather than relying on
default tool parameters” [41]. However, the research community cannot expect
industry practitioners to have the deep knowledge required to fully understand
the settings of advanced tools.

Feasible tuning of parameter settings is critical for successful transfer of
Software Engineering (SE) tools from academia to industry. Unfortunately,
apart from some work on Search-Based Software Engineering (SBSE) [34,5]
there are few software engineering publications that specifically address pa-
rameter tuning. One could argue that academia should develop state-of-the-art
tools, and the actual deployment in different organizations is simply a matter
of engineering. However, we argue that practical guidelines for tuning SE tools,
i.e., finding feasible parameter settings, are needed to support adaptation in
industrial practise.

In this paper we discuss ImpRec [19], a Recommendation System for Soft-
ware Engineering (RSSE) [81] developed to support Change Impact Analysis
(CIA) in a company developing safety-critical software. ImpRec implements
ideas from the area of Mining Software Repositories (MSR) to establish a se-
mantic network of dependencies, and uses state-of-the-art IR to identify tex-
tually similar nodes in the network. The tool combines the semantic network
and the IR system to recommend artifacts that are potentially impacted by
an incoming issue report, and presents a ranked list to the developer. During
development of the tool, we had to make several detailed design decisions,
e.g., “how should distant artifacts in the system under study be penalized in
the ranking function?” and “how should we weigh different artifact features in
the ranking function to best reflect the confidence of the recommendations?”.
Answering such questions at design time is not easy. Instead we parametrized
several decisions, a common solution that effectively postpones decisions to
the tool user. We have deployed an early version of ImpRec in two pilot de-
velopment teams to get feedback [23]. However, we did not want to force the
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study participants to consider different parameter settings; instead we de-
ployed ImpRec with a default setting based on our experiences. The question
remains however; is the default setting close to the optimum?

We see a need for tuning guidelines for SE tools, to help practitioners
and applied researchers to go beyond trial and pick-a-winner approaches. We
suspect that three sub-optimal tuning strategies [32, pp. 211][71, pp. 4] domi-
nate tuning of SE tools: 1) ad hoc tuning, 2) quasi-exhaustive search, and 3)
Change One Parameter at a Time (COST) analysis. Ad hoc tuning might be
a quick way to reach a setting, but non-systematic tuning increases the risk of
deploying tools that do not reach their potential, therefore not being dissem-
inated properly in industry. Quasi-exhaustive search might be possible if the
evaluation does not require too much execution time, but it does not provide
much insight in the parameters at play unless the output is properly analyzed.
COST analysis is a systematic approach to tuning, but does not consider the
effect of interaction between parameters.

We present TuneR, a framework for tuning parameters in automated soft-
ware engineering tools. The framework consists of three phases: 1) Prepare
Experiments, 2) Conduct Screening, and 3) Response Surface Methodology.
The essence of the framework lies in space-filling and factorial design, estab-
lished methods to structure experiments in DoCE and DoE, respectively. As
a proof-of-concept, we apply TuneR to find a feasible parameter setting for
ImpRec. For each step in TuneR, we present hands-on instructions of how to
conduct the corresponding analysis using various packages for R [79]. Using
TuneR we increase the accuracy of ImpRec’s recommendations, with regard to
the selected response variable, by 20%. We also validate the result by compar-
ing the increased response to the outcome of a more exhaustive space-filling
design.

The rest of this paper is structured as follows: Section 2 introduces the
fundamental concepts in DoE and DoCE, and discusses how tuning of SE
tools is different. Section 3 presents related work on finding feasible parameter
setting for SE tools. In Section 4 we introduce ImpRec, the target of our tuning
experiments. The backbone of the paper, the extensive presentation of TuneR,
interweaved with the proof-of-concept tuning of ImpRec, is found in Section 5.
In Section 6, we report from the exhaustive experiment on ImpRec parameter
settings. Section 7 discusses our results, and presents the main threats to
validity. Finally, Section 8 concludes the paper.

2 Background

This section introduces design of experiments, both of physical and simulated
nature, and presents the terminology involved. Then we discuss how tuning of
automated software engineering tools differ from traditional experiments. We
conclude the section by reporting related work on experimental frameworks
and parameter tuning in software engineering.
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2.1 Design of Experiments

Design of Experiments (DoE) is a branch of applied statistics that deals with
planning and analyzing controlled tests to evaluate the factors that affect the
output of a process [71]. DoE is a mature research field, a key component
in the scientific method, and it has proven useful for numerous engineering
applications [45]. Also, DoE is powerful in commercialization, e.g., turning
research prototypes into mature products ready for market release [74]. DoE
is used to answer questions such as “what are the key factors at play in a
process?, “how do the factors interact?”, and “what setting gives the best
output?”.

We continue by defining the fundamental experimental terminology that is
used throughout the paper. For a complete presentation of the area we refer
to one of the available textbooks, e.g., Montgomery [71], Box et al. [24], and
Dunn [32]. An experiment is a series of experimental runs in which changes are
made to input variables of a system so that the experimenter can observe the
output response. The input variables are called factors, and they can be either
design factors or nuisance factors. Each design factor can be set to a specific
level within a certain range. The nuisance factors are of practical significance
for the response, but they are not interesting in the context of the experiment.

Dealing with nuisance factors is at the heart of traditional DoE. Nuisance
factors are classified as controllable, uncontrollable, or noise factors. Control-
lable nuisance factors can be set by the experimenter, whereas uncontrollable
nuisance factors can be measured but not set. Noise factors on the other hand
can neither be controlled nor measured, and thus require more of the experi-
menter.

The cornerstones in the experimental design are randomization, replication,
and blocking. Randomized order of the experimental runs is a prerequisite for
statistical analysis of the response. Not randomizing the order would introduce
a systematic bias into the responses. Replication means to conduct a repeated
experimental run, independent from the first, thus allowing the experimenter
to estimate the experimental error. Finally, blocking is used to reduce or elim-
inate the variability introduced by the nuisance factors. Typically, a block is
a set of experimental runs conducted under relatively similar conditions.

Montgomery lists five possible goals of applying DoE to a process: 1) factor
screening, 2) optimization, 3) confirmation, 4) discovery, and 5) robustness [71,
pp. 14]. Factor screening is generally conducted to explore or characterize a
new process, often aiming at identifying the most important factors. Opti-
mization is the activity of finding levels for the design factors that produce
the best response. Confirmation involves corroborating that a process behaves
in line with existing theory. Discovery is a type of experiments related to fac-
tor screening, but the aim is to systematically explore how changes to the
process affect the response. Finally, an experiment with a robustness goal tries
to identify under which conditions the response substantially deteriorates. As
the goal of the experiments conducted in this paper is to find the best re-
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sponse for an automated software engineering tool by tuning parameters, i.e.,
optimization, we focus the rest of the section accordingly.

The traditional DoE approach to optimize a process involves three main
steps: 1) factor screening to narrow down the number of factors, 2) using facto-
rial design to study the response of all combinations of factors, and 3) applying
Response Surface Methodology (RSM) to iteratively change the setting toward
an optimal response [73]. Factorial design enables the experimenter to model
the response as a first-order model (considering main effects and interaction
effects), while RSM also introduces a second-order model in the final stage
(considering also quadratic effects).

Different experimental designs have been developed to study how design
factors affect the response. The fundamental design in DoE is a factorial ex-
periment, an approach in which design factors are varied together (instead of
one at a time). The basic factorial design evaluates each design factor at two
levels each, referred to as a 2k factorial design. Such a design with two design
factors is represented by a square, where the corners represent the levels to
explore in experimental runs (see A in Figure 1). When the number of design
factors is large, the number of experimental runs required for a full factorial
experiment might not be feasible. In a fractional factorial experiment only a
subset of the experimental runs are conducted. Fractional factorial designs are
common in practise, as all combinations of factors rarely need to be studied.
The literature on fractional factorial designs is extensive, and we refer the
interested reader to discussions by Montgomery [71] and Dunn [32].

All points in the experimental designs represent various levels of a design
factor. In DoE, all analysis and model fitting are conducted in coded units
instead of in original units. The advantage is that the model coefficients in
coded units are directly comparable, i.e., they are dimensionless and represent
the effect of changing a design factor over a one-unit interval [71, pp. 290]. We
use 1 and −1 to represent the high and low level of a design factor in coded
units.

Factorial design is a powerful approach to fit a first-order model to the
response. However, as the response is not necessarily linear, additional exper-
imental runs might be needed. The first step is typically to add a center point
to the factorial design (cf. B in Figure 1). If quadratic effects are expected,
e.g., indicated by experimental runs at the center point, the curvature needs
to be better characterized. The most popular design for fitting a second-order
model to the response is the Central Composite Design (CCD) [71, pp. 501]
(cf. C in Figure 1). CCD complements the corners of the factorial design and
the center point with axial points. A CCD is called rotatable if all points are
at the same distance from the center point [53, pp. 50].

RSM is a sequential experimental procedure for optimizing a response (for
a complete introduction we refer the reader to Myers’ textbook [73]). In the
initial optimization phase, RSM assumes that we operate at a point far from
the optimum condition. To quickly move toward a more promising region of
operation, the experimenter fits a first-order model to the response. Then, the
operating conditions should be iteratively changed along the path of steepest
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ascent. When the process reaches the region of the optimum, a second-order
model is fitted to enable an analysis pinpointing the best point.

DoE has been a recommended practise in software engineering for decades.
The approaches have been introduced in well-cited software engineering text-
books and guidelines, e.g., Basili et al. [10], Pfleeger [78], and Wohlin et
al. [100]. However, tuning an automated software engineering tool differs from
traditional experiments in several aspects, as discussed in the rest of this sec-
tion.

Fig. 1 Overview of experimental designs for two factors. Every point represents an exper-
imental setting.

2.2 Design of Computer Experiments

DoE was developed for experiments in the physical world, but nowadays a
significant amount of experiments are instead conducted as computer simu-
lation models of physical systems, e.g., during product development [84]. Ex-
ploration using computer simulations shares many characteristics of physical
experiments, e.g., each experimental run requires input levels for the design
factors and results in one or more responses that characterize the process
under study. However, there are also important differences between physical
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experiments and experiments in which the underlying reality is a mathematical
model explored using a computer.

Randomization, replication, and blocking, three fundamental components
of DoE, were all introduced to mitigate the random nature of physical exper-
iments. Computer models on the other hand, unless programmed otherwise,
generate deterministic responses with no random error [96]. While the deter-
ministic responses often originate from highly complex mathematical models,
repeated experimental runs using the same input data generates the same
response, i.e., replication is not required. Neither does the order of the ex-
perimental runs need to be randomized, nor is blocking needed to deal with
nuisance factors. Still, assessing the relationship between the design factors
and the response in a computer experiment is not trivial, and both the design
and analysis of the experiment need careful thought.

Design of Computer Experiments (DoCE) focuses on space-filling designs.
Evaluating only two levels of a design factor, as in a 2k factorial design, might
not be appropriate when working with computer models, as it can typically not
be assumed that the response is linear [33, pp. 11]. Instead, interesting phe-
nomena can potentially be found in all regions of the experimental space [71,
pp. 524]. The simplest space-filling designs are uniform design (cf. D in Fig-
ure 1), in which all design points are spread evenly, and random design (cf. E
in Figure 1). Another basic space-filling design is the Latin Hypercube design.
A two-factor experiment has its experimental points in a latin square if there
is only one point in each row and each column (cf. F in Figure 1), in line with
the solution to a sudoku puzzle. A Latin hypercube is the generalization to an
arbitrary number of dimensions. Latin Hypercubes can be combined with ran-
domization to select the specific setting in each cell, as represented by white
points in Figure 1.

Also RSM needs adaptation for successful application to computer experi-
ments. There are caveats that need to be taken into consideration when trans-
ferring RSM from DoE to DoCE. Vining highlights that the experimenter
need some information about starting points, otherwise there is a considerable
risk that RSM ends up in a local optimum [96]. Moreover, bumpy response
surfaces, which computer models might generate, pose difficulties for optimiza-
tion. Consequently, a starting point for RSM should be in the neighborhood of
an acceptable optimum. Finally, RSM assumes that there should be only few
active design factors. Vining argues that both starting points and the number
of design factors should be evaluated using screening experiments [96], thus
screening is emphasized as a separate phase in TuneR.

2.3 Tuning Automated Software Engineering Tools

DoE evolved to support experiments in the physical world, and DoCE was
developed to support experiments on computer models of physical phenom-
ena. The question whether software is tangible or intangible is debated from
both philosophical and juridical perspectives (see e.g., [72,13]), but no matter



8 Markus Borg

what, there are differences between software and the entities that are typically
explored using DoE and DoCE. Furthermore, in this paper we are interested in
using experiments for tuning1 a special type of software: tools for automated
software engineering. We argue that there are two main underlying differences
between experiments conducted to tune automated SE tools and traditional
DoCE. First, automated SE tools are not computer models of anything in the
physical world. Thus, we often cannot relate the meaning of various parame-
ter setting to characteristics that are easily comprehensible. In DoCE however,
we are more likely to have a pre-understanding of the characteristics of the
underlying physical phenomenon. Second, a tuned automated SE tool is not
the primary deliverable, but a means to an end. An automated SE tool is
intended to either improve the software under development, or to support the
ongoing development process [35]. In DoCE on the other hand, the simulation
experiments tend to be conducted on a computer model of the product under
development or the phenomenon under study.

Consequently, an experimenter attempting to tune an automated SE tool
must consider some aspects that might be less applicable to traditional DoCE.
The experimenter should be prepared for unexpected responses in all regions
of the experiment space, due to the lack of connection between parameters and
physical processes. Parameter ranges resulting in feasible responses might exist
anywhere in the experiment space, thus some variant of space-filling designs
need to be applied as in DoCE. However, responses from automated SE tools
cannot be expected to behave linearly, as the response might display sudden
steps in the response or asymptotic behavior. While certain peculiarities might
arise also when calibrating physical processes, we believe that they could be
more common while tuning automated SE tools. Other aspects that must be
taken into consideration are execution time and memory consumption. An SE
tool is not useful if it cannot deliver its output in a reasonable amount of time,
and it should be able to do so with the memory available in the computers of
the target environment.

When tuning an automated SE tool, we propose that it should be con-
sidered a black-box model (also recommended by Arcuri and Fraser [5]). We
define a black-box model, inspired by Kleijnen, as “a model that transforms
observable input into observable outputs, whereas the values of internal vari-
ables and specific functions of the tool implementation are unobservable” [53,
pp. 16]. For any reasonably complex SE tool, we suspect that fully analyzing
how all implementation details affect the response is likely to be impractical.
However, when optimizing a black-box model we need to rely on heuristic ap-
proaches, as we cannot be certain whether an identified optimum is local or
global. An alternative to heuristic approaches is to use metaheuristics (e.g., ge-
netic algorithms, simulated annealing, or tabu search [4]), but such approaches
require extensive tuning themselves.

1 Adjusting parameters of a system is known as calibration when they are part of a
physical process, otherwise the activity is called tuning [58].
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The main contribution of this paper is TuneR, a heuristic experiment
framework for tuning automated SE tools using R. TuneR uses a space-filling
design to screen factors of a black-box SE, uniform for bounded parameters
and a geometric sequence for unbounded parameters as shown in Figure 1.
Once a promising region for the parameter setting has been identified, TuneR
attempts to apply RSM to find a feasible setting. We complement the presen-
tation of TuneR with a hands-on example of how we used it to tune the RSSE
ImpRec.

3 Related Work on Parameter Tuning in Software Engineering

Several researchers have published papers on parameter tuning in software
engineering. As the internals of many tools for automated SE involve advanced
techniques, such as computational intelligence and machine learning, academic
researchers must provide practical guidelines to support knowledge transfer to
industry. In this section we present some of the most related work on tuning
automated SE tools. All tools we discuss implement metaheuristics to some
extent, a challenging topic covered by Birattari in a recent book [16]. He
reports that most tuning of metaheurstics is done by hand and by rules of
thumb, showing that such tuning is not only an issue in SE.

Parameter tuning is fundamental in Search-Based Software Engineering
(SBSE) [5,38]. As SBSE is based on metaheuristics, its performance is heavily
dependent on context-specific parameter settings. However, some parameters
can be set based on previous knowledge about the problem and the software
under test. Fraser and Arcuri refer to this as seeding, i.e., “any technique
that exploits previous related knowledge to help solve the testing problem at
hand” [38]. They conclude that seeding is valuable in tuning SBSE tools, and
present empirical evidence that the more domain specific information that can
be included in the seeding, the better the performance will be. In line with
the recommendations by Fraser and Arcuri, we emphasize the importance of
pre-understanding by including it as a separate step in TuneR.

Arcuri and Fraser recently presented an empirical analysis on how their
tool EVOSUITE, a tool for test data generation, performed using different
parameter settings [5]. Based on more than one million experiments, they show
that different settings cause very large variance in the performance of their
EVOSUITE, but also that “default” settings presented in the literature result
in reasonable performance. Furthermore, they find that tuning EVOSUITE
using one dataset and then applying it on others brings little value, in line
with the No Free Lunch theorem by Wolpert [101]. Finally, they applied RSM
to tune the parameters of EVOSUITE, but conclude that RSM did not lead
to improvements compared to the default parameter setting. Arcuri and Fraser
discuss the unsuccessful outcome of their attempt at RSM, argue that it should
be treated as inconclusive rather than a negative result, and call for more
studies on tuning in SE. Their paper is concluded by general guidelines on
how to tune parameters. However, the recommendations are on a high-level,
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limited to a warning on over-fitting, and advice to partition data into non-
overlapping training and test sets. The authors also recommend using 10-fold
cross-validation in case only little data is available for tuning purposes. Our
work on TuneR complements the recommendations from Arcuri and Fraser,
by providing more detailed advice on parameter tuning. Also, there is no
conflict between the two sets of recommendations, and it is possible (and
recommended) to combine our work with for example 10-fold cross validation.

Da Costa and Schoenauer also worked on parameter tuning in the field
of software testing. They developed the software environment GUIDE to help
practitioners use evolutionary computation to solve hard optimization prob-
lems [29]. GUIDE contains both an easy-to-use GUI, and support for pa-
rameter tuning. GUIDE has been applied to evolutionary software testing in
three companies including Daimler. However, the parameter tuning offered by
GUIDE is aimed for algorithms in the internal evolution engine, and not for
external tools.

Biggers et al. highlighted that there are few studies on how to tune tools for
feature location using text retrieval, and argue that it impedes deployment of
such tool support [14]. They conducted a comprehensive study on the effects
of different parameter settings when applying feature location using Latent
Dirichlet Allocation (LDA). Their study involved feature location from six
open source software systems, and they particularly discuss configurations
related to indexing the source code. Biggers et al. report that using default
LDA settings from the literature on natural language processing is suboptimal
in the context of source code retrieval.

Thomas et al. addressed tuning of automated SE tools for fault localiza-
tion [90]. They also emphasize the research gap considering tuning of tools,
and acknowledge the challenge of finding a feasible setting for a tool using
supervised learning. The paper reports from a large empirical study on 3,172
different classifier configurations, and show that the parameter settings have
a significant impact on the tool performance. Also, Thomas et al. shows that
ensemble learning, i.e., combining multiple classifiers, provides better perfor-
mance than the best individual classifiers. However, design choices related to
the combination of classifiers also introduce additional parameter settings [49].

Lohar et al. discussed different configurations for SE tools supporting trace
retrieval, i.e., automated creation and maintenance of trace links [61]. They
propose a machine learning approach, referred to as Dynamic Trace Configu-
ration (DTC), to search for the optimal configuration during runtime. Based
on experiments with data extracted from three different domains, they show
that DTC can significantly improve the accuracy of their tracing tool. Further-
more, the authors argue that DTC is easy to apply, thus supporting technology
transfer. However, in contrast to TuneR, DTC is specifically targeting SE tools
for trace retrieval.

ImpRec, the tool we use for the proof-of-concept evaluation of TuneR, is a
type of automated SE tool that presents output as a ranked list of recommen-
dations, analogous to well-known IR systems for web search. Modern search
engines apply ranking functions that match the user and his query with web
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pages based on hundreds of features, e.g., location, time, search history, query
content, web page title, content, and domain [102]. To combine the features in
a way that yields relevant search hits among the top results, i.e., to tune the
feature weighting scheme, Learning-to-Rank (LtR) is typically used in state-
of-the-art web search [63]. LtR is a family of machine learning approaches to
obtain feasible tuning of IR systems [60]. Unfortunately, applying LtR to the
ranking function of ImpRec is not straightforward. The success of learning-
to-rank in web search is enabled by enormous amounts of training data [85],
manually annotated for relevance by human raters [95]. As such amounts of
manually annotated training data is not available for ImpRec, and probably
not for other automated SE tools either, TuneR is instead based on empirical
experimentation. However, LtR is gaining attention also in SE, as showed by
a recent position paper by Binkley and Lawrie [15].

4 ImpRec: An RSSE for Automated Change Impact Analysis

ImpRec is an SE tool that supports navigation among software artifacts [19],
tailored for a development organization in the power and automation sector.
The development context is safety-critical embedded development in the do-
main of industrial control systems, governed by IEC 61511 [46] and certified
to a Safety Integrity Level (SIL) of 2 as defined by IEC 61508 [47]. The target
system has evolved over a long time, the oldest source code was developed in
the 1980s. A typical development project in the organization has a duration of
12-18 months and follows an iterative stage-gate project management model.
The number of developers is in the magnitude of hundreds, distributed across
sites in Europe, Asia and North America.

As specified in IEC 61511, the impact of proposed software changes should
be analyzed before implementation. In the case company, the impact analysis
process is integrated in the issue repository. Before a corrective change is made
to resolve an issue report, the developer must store an impact analysis report
as an attachment to the corresponding issue report. As part of the impact
analysis, engineers are required to investigate the impact of a change, and
document their findings in an impact analysis report according to a project
specific template. The template is validated by an external certifying agency,
and the impact analysis reports are internally reviewed and externally assessed
during safety audits.

Several questions explicitly ask for trace links [17], i.e., “a specified associ-
ation between a pair of artifacts” [39]. The engineer must specify source code
that will be modified (with a file-level granularity), and also which related
software artifacts need to be updated to reflect the changes, e.g., requirement
specifications, design documents, test case descriptions, test scripts and user
manuals. Furthermore, the impact analysis should specify which high-level
system requirements cover the involved features, and which test cases should
be executed to verify that the changes are correct, once implemented in the
system. In the target software system, the extensive evolution has created a
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complex dependency web of software artifacts, thus the impact analysis is a
daunting work task.

ImpRec is an RSSE that enables reuse of knowledge captured from previous
impact analyses [17]. Using history mining in the issue repository, a collabo-
ratively created trace link network is established, referred to as the knowledge
base. ImpRec then calculates the centrality measure of each artifact in the
knowledge base. When a developer requests impact recommendations for an
issue report, ImpRec combines IR and network analysis to identify candidate
impact. First, Apache Lucene [67] is used to search for issue reports in the issue
repository that are textually similar. Then, originating from the most similar
issue reports, trace links are followed both to related issue reports and to ar-
tifacts that were previously reported as impacted. When a set of candidate
impact has been identified, they are ranked according to a ranking function,
and presented to developers in a ranked list in the ImpRec GUI. For further
details on ImpRec, we refer to our previous publications [19,23].

Fig. 2 Identification of candidate impact using ImpRec. Two related parameters (with an
example setting) are targeted for tuning: 1) The number of starting points identified using
Apache Lucene (START ), and 2) the maximum number of issue-issue links followed to
identify impacted artifacts (LEV EL).

This paper presents our efforts to tune four ImpRec parameters, two re-
lated to candidate impact identification, and two dealing with ranking of the
candidate impact. Fig. 2 presents an overview of how ImpRec identifies candi-
date impact, and introduces the parameters START and LEV EL. By setting
the two parameters to high values, ImpRec identifies a large set of candidate
impact. To avoid overwhelming the user with irrelevant recommendations, the
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artifacts in the set are ranked. ImpRec assigns all artifacts a weight according
to the following ranking function, introducing the other two parameters:

Weight =
ALPHA ∗ text sim+ (1−ALPHA) ∗ node cent

1 + links ∗ PENALTY
(1)

where PENALTY is used to penalize distant artifacts and ALPHA is used
to set the relative importance of textual similarity and the centrality measure.
text sim is the similarity score of the corresponding starting point provided
by Apache Lucene, node cent is the centrality measure of the artifact in the
knowledge base, and links is the number of issue-issue links followed to identify
the artifact (no more than LEV EL−1). The rest of this paper presents TuneR,
and how we used it to tune START , LEV EL, PENALTY , and ALPHA.

5 TuneR: An Experiment Framework and A Hands-on Example

This section describes the three phases of TuneR, covering 11 steps. For each
step in our framework, we first describe TuneR in general terms, and then
we present a hands-on example of how we tuned ImpRec. Figure 3 shows an
overview of the steps in TuneR.

Fig. 3 Overview of TuneR. The three phases are depicted in gray boxes. Dotted arrows
show optional paths.
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5.1 Phase 1: Prepare Experiments

Successful experimentation relies on careful planning. The first phase of TuneR
consists of four steps: A) Collect Tuning Dataset, B) Choose Response Metric,
C) Identify Parameters and Ranges, and D) Aggregate Pre-Understanding. All
four steps are prerequisites for the subsequent Screening phase.

5.1.1 A) Collect Tuning Dataset

Before any tuning can commence, a dataset that properly represents the target
environment must be collected. The content validity of the dataset refers to
the representativeness of the sample in relation to all data in the target envi-
ronment [94]. Thus, to ensure high content validity in tuning experiments, the
experimenter must carefully select the dataset, and possibly also sample from
it appropriately, as discussed by Seiffert et al. [86]. Important decisions that
have to be made at this stage include how old data can be considered valid and
whether the data should be pre-processed in any way. While a complete discus-
sion on data collection is beyond the scope of TuneR, we capture some of the
many discussions on how SE datasets should be sampled and pre-processed in
this section.

In many software development projects, the characteristics of both the
system under development [68] and the development process itself [64] vary
considerably. If the SE tool is intended for such a dynamic target context,
then it is important that the dataset does not contain obsolete data. For
example, Shepperd et al. discuss the dangers of using old data when estimating
effort in software development, and the difficulties in knowing when data turns
obsolete [87]. Jonsson et al. show the practical significance on time locality in
automated issue assignment [49], i.e., how quickly the prediction accuracy
deteriorates with old training data for some projects.

Preprocessing operations, such as data filtering, influence the performance
of SE tools. Menzies et al. even warn that variation in preprocessing steps
might be a major cause of conclusion instability when evaluating SE tools [69].
Shepperd et al. discuss some considerations related to previous work on pub-
licly available NASA datasets, and conclude that the importance of preprocess-
ing in general has not been acknowledged enough [88]. Regarding filtering of
datasets, Lamkanfi and Demeyer show how filtering outliers can improve pre-
diction of issue resolution times [55], a finding that has also been confirmed
by AbdelMoez et al. [1]. Thus, if the SE tools will be applied to filtered data,
then the dataset used for the tuning experiment should be filtered as well.
Another threat to experimentation with tools implementing machine learning
is the dataset shift problem, i.e., the distribution of data in the training set
differs from the test set. Turhan discuss how dataset shift relate to conclusion
instability in software engineering prediction models, and presents strategies
to alleviate it [93].

The tuning dataset does not only need to contain valid data, it also needs
to contain enough of it. A recurring approach in SE is to evaluate tools on
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surrogate data, e.g., studying OSS development and extrapolating findings to
proprietary contexts. Sometimes it is a valid approach, as Robinson and Fran-
cis have shown in a comparative study of 24 OSS systems and 21 proprietary
software systems [82]. They conclude that the variation among the two cat-
egories is as big as between them, and, at least for certain software metrics,
that there often exist OSS systems with characteristics that match propri-
etary systems. Several SE experiments use students as subjects, and Höst et
al. show that it is a feasible approach under some circumstances [44]. However,
the validity of experimenting on data collected from student projects is less
clear, as discussed in our previous survey [22]. Another option is to combine
data from various sources, i.e., complementing proprietary data from different
contexts. Tsunoda and Ono recently highlighted some risks of this approach,
based on a cross-company software maintenance dataset as an example [92].
They performed a statistical analysis of the dataset, and exemplified how easy
it is to detect spurious relationships between totally independent data.

As ImpRec was developed in close collaboration with industry, and is a tool
tailored for a specific context, the data used for tuning must originate from the
same environment. We extracted all issue reports from the issue repository,
representing 12 years of software evolution in the target organization [19]. As
the issue reports are not independent, the internal order must be kept and we
cannot use an experimental design based on cross-validation. Thus, as stan-
dard practise in machine learning evaluation, and emphasized by Arcuri and
Fraser [5], we split the ordered data into non-overlapping training and test
sets, as presented in Fig. 4. Instead, the training set was used to establish the
knowledge base, and the test set was used to measure the ImpRec performance.
The experimental design used to tune ImpRec is an example of simulation as
presented by Walker and Holmes [98], i.e., we simulate the historical inflow of
issue reports to measure the ImpRec response. Before commencing the tun-
ing experiments, we analyzed whether the content of the issue reports had
changed significantly over time. Also, we discussed the evolution of both the
software under development, and the development processes, with engineers
in the organization. We concluded that we could use the full dataset for our
experiments, and we chose to not filter the dataset in any way.

5.1.2 B) Choose Response Metric

The next step in TuneR is to choose what metric to base the tuning on. TuneR
is used to optimize a response with regard to a single metric, as it relies on
traditional RSM, thus the response metric needs to be chosen carefully. Despite
mature guidelines like the Goal-Question-Metric framework [9], the dangers
of software measurements have been emphasized by several researchers [31,50,
26]. However, we argue that selecting a metric for the response of an SE tool
is a far more reasonable task than measuring the entire software development
process based on a single metric. A developer of an SE tool probably already
knows the precise goal of the tool, and thus should be able to choose or invent a
feasible metric. Moreover, if more than one metric is important to the response,
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Fig. 4 Composition of the ImpRec tuning dataset into training and test sets. The knowledge
base is established using issue reports from Jan 2000 to Jul 2010. The subsequent issue
reports are used to simulate the ImpRec response, measured in Rc@20.

the experimenter can introduce a compound metric, i.e., a combination of
individual metrics. On the other hand, no matter what metric is selected,
there is a risk that naively tuning with regard to the specific metric leads to
a sub-optimal outcome, a threat further discussed in Section 5.4.

Regarding the tuning of ImpRec, we rely on the comprehensive research
available on quantitative IR evaluation, e.g., the TREC conference series and
the Cranfield experiments [97]. In line with general purpose search systems,
ImpRec presents a ranked list of candidates for the user to consider. Conse-
quently, it is convenient to measure the quality of the output using established
IR measures for ranked retrieval. The most common way to evaluate the ef-
fectiveness of an IR system is to measure precision and recall. Precision is the
fraction of retrieved documents that are relevant, while recall is the fraction of
relevant documents that are retrieved. As there is a trade-off between precision
and recall, they are often reported pairwise. The pairs are typically considered
at fixed recall levels (e.g., 0.1 ... 1.0), or at specific cut-offs of the ranked list
(e.g., the top 5, 10, or 20 items) [66].

We assume that a developer is unlikely to browse too many recommenda-
tions from ImpRec. Consequently, we use a cut-off point of 20 to disregard all
recommendations below that rank. While it is twice as many as the standard-
ized page-worth output from search engines, CIA is a challenging task in which
practitioners request additional tool support [30,23], and thus we assume that
engineers are willing to browse additional search hits. Also, we think that en-
gineers can quickly filter out the interesting recommendations among the top
20 hits.

Several other measures for evaluating the performance of IR systems have
been defined. A frequent compound measure is the F-score, a harmonized mean
of precision and recall. Other more sophisticated metrics include Mean Average
Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG) [66].
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However, for the tuning experiments in this paper, we decided to optimize the
response wrt. recall considering the top-20 results (Rc@20).

5.1.3 C) Identify Parameters and Specify Ranges for Normal Operation

The third step of Phase 1 in TuneR concerns identification of parameters to
vary during the tuning experiments. While some parameters might be obvious,
maybe as explicit in settings dialogs or configuration files, other parameters
can be harder to identify. Important variation points may be hidden in the
implementation of the SE tool, thus identifying what actually constitutes a
meaningful parameter can be challenging.

Once the parameters have been identified, the experimenter needs to de-
cide what levels should be used. A first step is, in line with standard DoE
practise [32, pp. 213], to identify what range represents “normal operation”
of each parameter. Parameter variations within such a range should be large
enough to cause changes in the response, but the range should not cover so
distant values that the fundamental characteristics of the tool are altered. For
some parameters, identification of the normal range is straightforward because
of well-defined bounds, e.g., a real value between 0 and 1 or positive integers
between 1 and 10. For other parameters, however, it is possible that neither
the bounds nor even the sign is known. Parameters can also be binary or
categorical, taking discrete values [32, pp. 208].

Regarding ImpRec, Section 4 already presented the four parametersALPHA,
PENALTY , START , and LEV EL. However, also the search engine library
Apache Lucene is highly configurable. But as configuring Lucene is complex,
see for example McCandless et al. [67, Ch. 2], and since the default setting
yielded useful results in our previous work on issue reports [21], we choose to
consider it as a black box with fixed parameters in this study, i.e., we use the
default setting. The other four parameters of ImpRec on the other hand, do
not have any default values, thus we must continue by specifying ranges for
normal operation.

Table 5.1.3 shows how we specify the ranges for normal operation for the
four parameters. ALPHA represents the relative importance between textual
similarities and centrality measures, i.e., it is a bounded real value between 0
and 1, and we consider the full range normal. START is a positive integer,
there must be at least one starting point, but there is no strict upper limit. We
consider 200 to be the upper limit under normal operation, as we suspect larger
values to generate imprecise recommendations and too long response times.
LEV EL and PENALTY both deal with following links between issue reports
in the knowledge base. Analogous to the argumentation regarding START , we
suspect that assigning LEV EL a too high value might be counter-productive.
LEV EL must be a positive integer, as 1 represents not following any issue-
issue links at all. We decide to consider [0, 10] as the range for LEV EL under
normal operation. PENALTY down-weights potential impact that has been
identified several steps away in the knowledge base, i.e., impact with a high
level. The parameter can be set to any non-negative number, but we assume
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Parameter Type of range Normal range
ALPHA Non-negative bounded continuous [0-1]
PENALTY Non-negative continuous [0-5]
START Positive discrete [1-200]
LEV EL Positive discrete [1-10]

Table 1 The four parameters studied in the tuning experiment, and the values that repre-
sent their range for normal operation.

that a value between 0 and 5 represents normal operation. Already the level
5 would make the contribution of distant issue reports practically zero, see
Equation 1.

5.1.4 D) Aggregate Pre-Understanding

Successful tuning of an SE tool requires deep knowledge. The experimenter
will inevitably learn about the tool in the next two phases of TuneR, but
probably there are already insights before the experimentation commences. In
line with Gummesson’s view [40, pp. 75], we value this pre-understanding as
fundamental to reach deep understanding. The pre-understanding can provide
the experimenter with a shortcut to a feasible setting, as it might suggest
in what region the optimal setting is located. To emphasize this potential,
TuneR consists of a separate step aimed at recapitulating what has already
been experienced.

The development of ImpRec was inspired by test-driven development [12],
thus we tried numerous different parameter settings. By exploring different
settings in our trial runs during development, an initial parameter tuning
evolved as a by-product of the tool development. While we performed this
experimentation in an ad hoc fashion, we measured the output with regard to
Rc@20, and recorded the results in a structured manner. Recapitulating our
pre-understanding regarding the parameters provides the possibility to later
validate the outcome of the screening in Phase 2 of TuneR.

The ad hoc experiments during development contain results from about
100 trial runs. We explored ALPHA ranging from 0.1 to 0.9, obtaining the
best results for high values. START had been varied between 3 and 20, and
again high values appeared to be a better choice. Finally, we had explored
LEVEL between 3 and 10, and PENALTY between 0 and 8. Using a high
LEVEL and low PENALTY yielded the best results. Based on our experi-
ences, we deployed ImpRec in the organization using the following default
setting: ALPHA = 0.83, START = 17, LEV EL = 7, PENALTY = 0.2 (dis-
cussed in depth in another paper [23]). The default setting yield a response
of Rc@20=0.41875, i.e., about 40% of the true impact is delivered among the
top-20 recommendations. We summarize our expectations as follows:

– The ranking function should give higher weights to centrality measures
than textual similarity (0.75 < ALPHA < 1)

– Many starting points benefit the identification of impact (START > 15)
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– Following related cases several steps away from the starting point improves
results (LEV EL > 5)

– We expect an interaction between LEV EL and PENALTY , i.e., that
increasing the number of levels to follow would make penalizing distant
artifacts more important

– Completing an experimental run takes about 10-30 s, depending mostly on
the value of START .

5.2 Phase 2: Conduct Screening Experiment

Phase 2 in TuneR constitutes three steps related to screening. Screening exper-
iments are conducted to identify the most important parameters in a specific
context [73, pp. 6] [32, pp. 240]. Traditional DoE uses 2k factorial design for
screening, using broad values (i.e., high and low values within the range of
normal operation) to calculate main effects and interaction effects. However,
as explained in Section 2.3, space-filling design should be applied when tun-
ing SE tools. The three screening steps in TuneR are: A) Design Space-Filling
Experiment, B) Run Experiment, and C) Fit Low-Order Models. Phase 2 con-
cludes by identifying a promising region, i.e., a setting that appears to yield a
good response, a region that is used as input to Phase 3.

5.2.1 A) Design a space-filling experiment

The first step in Phase 2 in TuneR deals with designing a space-filling screen-
ing experiment. The intention of the screening is not to fully analyze how
the parameters affect the response, but to complement the less formal pre-
understanding. Still, the screening experiment will consist of multiple runs.
As a rule of thumb, Levy and Steinberg approximate that the number of
experimental runs needed in a DoCE screening is ten times the number of
parameters involved [58].

Several aspects influence the details of the space-filling design, and we
discuss four considerations below. First, parameters of different types (as dis-
cussed in Phase 1, Step 2) require different experimental settings. The space
of categorical parameters can only be explored by trying all levels. Bounded
parameters on the other hand can be explored using uniform space-filling de-
signs as presented in Section 2.2. Unbounded parameters however, at least
when the range of normal operation is unknown, requires the experimenter
to select values using other approaches. Second, our pre-understanding from
Phase 1, Step 4 might suggest that some parameters are worth to study using
more fine-granular values than others. In such cases, the pre-understanding has
already contributed with a preliminary sensitivity analysis [83, pp. 189], and
the design should be adjusted accordingly. Third, the time needed to perform
the experiments limits the number of experimental runs, in line with discus-
sions on search budget in SBSE [42]. Certain parameter settings might require
longer execution times than others, and thus require a disproportional amount
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of the search budget. Fourth, there might be known constraints at play, forc-
ing the experimenter to avoid certain parameter values. This phenomenon is
in line with the discussion on non-safe settings in DoE [32, pp. 254].

Unless the considerations above suggest special treatment, we propose the
following rules-of-thumb as a starting point:

– Restrict the search budget for the screening experiment to a maximum of
48 h, i.e., it should not require more than a weekend to execute.

– Use the search budget to explore the parameters evenly, i.e., for an SE tool
with i parameters, and the search budget allows n experimental runs, use
i
√
n values for each parameter.

– Apply a uniform design for bounded parameters, i.e., spread the parameter
values evenly.

– Use a geometric series of values for unbounded parameters, e.g., for integer
parameters explore values 2i, i = 0, 1, 2, 4, 8 ...

When screening the parameters of ImpRec, we want to finish the experi-
mental runs between two workdays (4 PM to 8 AM, 16 h) to enable an analysis
of the results on the second day. Based on our pre-understanding, we predict
that on average four experimental runs can be completed per minute, thus
about 3,840 experimental runs can be completed within the 16 h search bud-
get. As we have four parameters, we can evaluate about 4

√
3, 840 ≈ 7.9 values

per parameter, i.e., 7 rounded down.
Table 5.2.1 shows the values we choose for screening the parameters of

ImpRec. ALPHA is a relative weighting parameter between 0 and 1. We use
a uniform design to screen ALPHA, but do not pick the boundary values to
avoid divisions by zero. PENALTY is a positive continuous variable with no
upper limit, and we decide to evaluate several magnitudes of values. A penalty
of 8 means that the contribution of distant artifacts to the ranking function is
close to zero, thus we do not need to try higher values. START and LEV EL
are both positive discrete parameters, both dealing with how many impact
candidates should be considered by the ranking function. Furthermore, our
pre-understanding shows that the running time is proportional to the value
of START . As we do not know how high values of START are feasible, we
choose to evaluate up to 512, a value that represents about 10% of the full
dataset. Exploring such high values for LEV EL does not make sense, as there
are no such long chains of issue reports. Consequently, we limit LEV EL to 64,
already a high number. In total, this experimental design, constituting 3,430
runs, appears to be within the available search budget.

5.2.2 B) Run Screening Experiment

When the design of the screening experiment is ready, the next step is to
run the experiment. To enable execution of thousands of experimental runs,
a stable experiment framework for automatic execution must be developed.
Several workbenches are available that enable reproducible experiments, e.g.,
frameworks such as Weka [36] and RapidMiner [43] for general purpose data
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Parameter #Levels Values
ALPHA 7 0.01, 0.17, 0.33, 0.5, 0.67, 0.83, 0.99
PENALTY 7 0.01, 0.1, 0.5, 1, 2, 4, 8
START 10 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
LEV EL 7 1, 2, 4, 8, 16, 32, 64

Table 2 Screening design for the four parameters ALPHA, PENALTY , START , and
LEV EL.

mining, and SE specific efforts such as the TraceLab workbench [51] for trace-
ability experiments, and the more general experimental Software Engineering
Environment (eSSE) [91]. Furthermore, the results should be automatically
documented as the experimental runs are completed, in a structured format
that supports subsequent analysis.

We implement a feature in an experimental version of ImpRec that allows
us to execute a sequence of experimental runs. Also, we implement an eval-
uator class that compares the ImpRec output to a ‘gold standard’ (see the
‘static validation’ in our parallel publication [23] for a detailed desctiption),
and calculates established IR measures, e.g., precision, recall, and MAP at
different cut-off levels. Finally, we print the results of each experimental run
as a separate row in a file of Comma Separated Values (CSV). Below we show
an excerpt of the resulting csv-file, generated from our screening experiment.
The first four columns show the parameter values, and the final column is the
response measured in Rc@20.

Listing 1 screening.csv generated from the ImpRec screening experiment.

alpha, penalty, start, level, resp
0.01, 0.01, 1, 1, 0.059375
0.01, 0.01, 1, 2, 0.078125
0.01, 0.01, 1, 4, 0.1125
0.01, 0.01, 1, 8, 0.115625
0.01, 0.01, 1, 16, 0.115625
...
(3,420 additional rows)
...
0.99, 8, 512, 4, 0.346875
0.99, 8, 512, 8, 0.315625
0.99, 8, 512, 16, 0.31875
0.99, 8, 512, 32, 0.321875
0.99, 8, 512, 64, 0.328125

5.2.3 C) Fit Low-order Polynomial Models

The final step in Phase 2 of TuneR involves analyzing the results from the
screening experiment. A recurring observation in DoE is that only a few fac-
tors dominate the response, giving rise to well-known principles such as the
‘80-20 rule’ and ‘Occam’s razor’ [54, pp. 157]. In this step, the goal is to find the
simplest polynomial model that can be used to explain the observed response.
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If neither a first nor second-order polynomial model (i.e., linear and quadratic
effects plus two-way interactions) fits the observations from the screening ex-
periment, the response surface is complex. Modelling a complex response sur-
faces is beyond the scope of TuneR, as it requires advanced techniques such
as neural networks [73, pp. 446], splines, or kriging [48]. If low-order polyno-
mial models do not fit the response, TuneR instead relies on quasi-exhaustive
space-filling designs (see Fig. 3). We discuss this further in Section 6, where
we use exhaustive search to validate the result of the ImpRec tuning using
TuneR.

When a low-order polynomial model has been fit, it might be possible to
simplify it by removing parameters that do not influence the response much.
The idea is that removal of irrelevant and noisy variables should improve the
model. Note, however, that this process known as subset selection in linear
regression, has been widely debated among statisticians, referred to as “fish-
ing expeditions” and other derogatory terms (see for example discussions by
Lukacs et al. [62] and Miller [70, pp. 8]). Still, when tuning an SE tool with
a multitude of parameters, reducing the number of factors might be a nec-
essary step for computational reasons. Moreover, working with a reduced set
of parameters might reduce the risk of overfitting [3]. A standard approach
is stepwise backward elimination [80, pp. 336], i.e., to iteratively remove pa-
rameters until all that remain have a significant effect on the response. While
parameters with high p-values are candidates for removal [89, pp. 277], all such
operations should be done with careful consideration. We recommend visual-
izing the data (cf. Fig. 5 and 6), and trying to understand why the screening
experiment resulted in the response. Also, note that any parameter involved
in interaction or quadratic effects must be kept.

To fit low-order polynomial models for ImpRec’s response surface, we use
the R package rsm [57], and the package visreg [25] to visualize the results.
Assuming that screening.csv has been loaded to screening, Listing 2 and 3 fit
a first-order and second-order polynomial model, respectively.
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Listing 2 Fitting a first-order polynomial model with rsm [57]. The results are truncated.

1 > FO model <- rsm(resp ¬ FO(alpha, penalty, start, level), ...
data=screening)

2 > summary(FO model)
3
4 Call:
5 rsm(formula = resp ¬ FO(alpha, penalty, start, level), data = ...

screening)
6
7 Estimate Std. Error t value Pr(>|t |)
8 (Intercept) 2.4976e-01 4.2850e-03 58.2855 <2e-16 ***
9 alpha 4.9432e-02 5.7393e-03 8.6129 <2e-16 ***

10 penalty 8.8721e-04 7.0248e-04 1.2630 0.2067
11 start 1.2453e-04 1.2052e-05 10.3327 <2e-16 ***
12 level 6.9603e-05 8.8805e-05 0.7838 0.4332
13 ---
14 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ...

. 0.1 1
15
16 Multiple R-squared: 0.05076, Adjusted R-squared: 0.04965
17 F-statistic: 45.79 on 4 and 3425 DF, p-value: < 2.2e-16
18
19 Analysis of Variance Table
20
21 Response: resp
22 Df Sum Sq Mean Sq F value Pr(>F)
23 FO(alpha, penalty, start, level) 4 2.234 0.55859 45.789 < 2.2e-16
24 Residuals 3425 41.782 0.01220
25 Lack of fit 3425 41.782 0.01220
26 Pure error 0 0.000

The second order model fits the response better than the first order model;
the lack of fit sum of squares is 29.1841 versus 41.782 (cf. Listing 3:62 and List-
ing 2:25). Moreover, Listing 3:44-47 show that the parameters PENALTY ,
START , and LEV EL have a quadratic effect on the response. Also, in-
teraction effects are significant, as shown by alpha:start, penalty:start, and
start:level (cf. Listing 3:38-43). Fig. 5 visualizes2 how the second order model
fits the response, divided into the four parameters. As each data point rep-
resents an experimental run, we conclude that there is a large spread in the
response. For most individual parameter values, there are experimental runs
that yield an Rc@20 between approximately 0.1 and 0.4. Also, in line with
Listing 3, we see that increasing START appears to improve the response,
but the second order model does not fit particularly well.

2 R command: > visreg(SO model) etc.
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Listing 3 Fitting a second-order polynomial model with rsm [57]. The results are truncated.

27 > SO model <- rsm(resp ¬ SO(alpha, penalty, start, level), ...
data=screening)

28 > summary(SO model)
29 Call:
30 rsm(formula = resp ¬ SO(alpha, penalty, start, level), data = ...

screening)
31
32 Estimate Std. Error t value Pr(>|t |)
33 (Intercept) 2.1502e-01 6.1700e-03 34.8493 < 2.2e-16 ***
34 alpha 2.6868e-02 1.8997e-02 1.4143 0.1573604
35 penalty 4.1253e-03 2.4574e-03 1.6787 0.0932935 .
36 start 1.2814e-03 4.1704e-05 30.7247 < 2.2e-16 ***
37 level 1.2045e-03 3.2053e-04 3.7579 0.0001742 ***
38 alpha:penalty -4.5460e-04 1.7894e-03 -0.2541 0.7994640
39 alpha:start 3.3458e-04 3.0698e-05 10.8993 < 2.2e-16 ***
40 alpha:level 5.5608e-05 2.2620e-04 0.2458 0.8058257
41 penalty:start 3.3783e-06 3.7573e-06 0.8991 0.3686588
42 penalty:level 6.7390e-05 2.7687e-05 2.4340 0.0149839 *
43 start:level -4.9485e-06 4.7499e-07 -10.4182 < 2.2e-16 ***
44 alphaˆ2 -1.1659e-02 1.7181e-02 -0.6786 0.4974522
45 penaltyˆ2 -5.8485e-04 2.7071e-04 -2.1604 0.0308128 *
46 startˆ2 -2.5851e-06 7.3816e-08 -35.0212 < 2.2e-16 ***
47 levelˆ2 -1.2702e-05 4.4041e-06 -2.8840 0.0039508 **
48 ---
49 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ...

. 0.1 1
50
51 Multiple R-squared: 0.337, Adjusted R-squared: 0.3342
52 F-statistic: 124 on 14 and 3415 DF, p-value: < 2.2e-16
53
54 Analysis of Variance Table
55
56 Response: resp
57 Df Sum Sq Mean Sq F value ...

Pr(>F)
58 FO(alpha, penalty, start, level) 4 2.2343 0.55859 65.363 < ...

2.2e-16
59 TWI(alpha, penalty, start, level) 6 2.0014 0.33356 39.032 < ...

2.2e-16
60 PQ(alpha, penalty, start, level) 4 10.5963 2.64907 309.983 < ...

2.2e-16
61 Residuals 3415 29.1841 0.00855
62 Lack of fit 3415 29.1841 0.00855
63 Pure error 0 0.0000

Listing 3 suggests that all four parameters are important when modelling
the response surface. The statistical significance of the two parameters START
and LEV EL is stronger than for α and PENALTY . However, ALPHA is
involved in a highly significant interaction effect (alpha:start in Listing 3:39).
Also, the quadratic effect of PENALTY on the response is significant (penaltyˆ2
in Listing 3:45). Consequently, we do not simplify the second order model of
the ImpRec response by reducing the number of parameters.
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Fig. 5 Visualization of the second order model using visreg [25].

Fig. 6 displays boxplots of the response per parameter, generated with
ggplot23 [99]. Based on the boxplots, we decide that a promising region for
further tuning appears to involve high α values, START between 32 and 128,
and LEV EL = 4. The parameter value of PENALTY however, does not
matter much, as long as it is not too small, thus we consider values around
1 promising. An experimental run with the setting α = 0.9, PENALTY =
1, START = 64, LEV EL = 4 gives a response of Rc@20=0.46875, compared
to 0.41875 for the default setting. Thus, this 11.9% increase of the response
confirms the choice of a promising region.

We summarize the results from screening the ImpRec parameters as follows:

– Centrality values of artifacts are more important than textual similarity
when predicting impact (ALPHA close to 1). Thus, previously impacted
artifacts (i.e., artifacts with high centrality in the network) are likely to be
impacted again.

– The low accuracy of the textual similarity is also reflected by the high
parameter value of START ; many starting points should be used as com-
pensation.

3 R commands for the START parameter:
> start box < − ggplot(screening, aes(factor(start), resp))
> start box + geom boxplot()
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Fig. 6 Value of the response for different parameter settings. Note that the x-axis is only
linear in the first plot (ALPHA).

– Regarding LEV EL and PENALTY we observe that following a handful
of issue-issue links is beneficial, trying even broader searches however is
not worthwhile.

– Also, severely penalizing distant artifacts does not benefit the approach,
i.e., most related issues are meaningful to consider.

– A promising region, i.e., a suitable start setting for Phase 3, appears to be
around ALPHA = 0.9, PENALTY = 1, START = 64, LEV EL = 4.

5.3 Phase 3: Apply Response Surface Methodology

The third phase in TuneR uses RSM to identify the optimal setting. The first
part of RSM is an iterative process. We use a factorial design to fit a first-order
model to the response surface, and then gradually modify the settings along
the most promising direction, i.e., the path of the steepest ascent. Then, once
further changes along that path do not yield improved responses, the intention
is to pin-point the optimal setting in the vicinity. The pin-pointing is based on
analyzing the stationary points of a second-order fit of that particular region
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of the response surface, determined by applying an experiment using CCD
(cf. Fig. 1). We describe Step 1 and 2 (i.e., the iterative part) together in the
following subsection, and present Step 3 and 4 in the subsequent subsections.

When applying RSM, an important aspect is to use an appropriate coding
transformation. The way the data are coded affects the results of the steepest
ascent analysis. If all coded variables in the experiment vary over the same
range, typically -1 and 1, each parameter gets an equal share in potentially
determining the steepest ascent path [57].

5.3.1 Step 1 and 2: Factorial designs, First-order Models, and Iteration

Iteration of the first two steps is intended to quickly move toward the optimum.
To find the direction, we design an experiment using 2k factorial design and
fit a first-order model of the response surface. The factorial design uses the
outcome from Phase 2 as the center point, and for each parameter, we select
a high value and a low value, referred to as the factorial range [32]. Selecting
a feasible factorial range is one of the major challenges in RSM, another one
is to select an appropriate step size.

Selecting a suitable factorial range for a computer experiment is a bit
different than for a physical experiment. In traditional DoE, a too narrow
range generates a factorial experiment dominated by noise. While noise is not
a threat in experiments aimed at tuning SE tools, a too narrow range will
instead not show any difference in the response at all. On the other hand, the
range can also be too broad, as the response surface might then be generalized
too much. Dunn reports that selecting extreme values is a common mistake in
DoE, and suggests selecting 25% of the extreme range as a rule-of-thumb [32].
Since the number of tuning experiments typically is not limited in the same
way as physical experiments, it is possible to gradually increase the factorial
range until there is a difference in the response.

The factorial experiment yields the direction of the steepest ascent, but the
next question is how much to adjust the setting in that direction, i.e., the step
size. Again we want the difference to be large enough to cause a change in the
response in a reasonable amount of experiments, but not so large that we move
over an optimum. A good decision relies on the experimenter’s understanding
of the parameters involved in the SE tool. Otherwise, a rule-of-thumb is to
choose a step size equal to the value of the largest coefficient describing the
direction of the steepest ascent [8].

For tuning ImpRec, we decide to fit a first-order model in the region:
ALPHA = 0.9 ± 0.05, PENALTY = 1 ± 0.5, START = 64 ± 4, LEV EL =
4±1. Our experience from the screening experiments suggests that these levels
should result in a measurable change in the response. Table 5.3.1 shows the
2k factorial design we apply, and the results from the 16 experimental runs.
We report the experimental runs in Yates’ standard order according to the
DoE convention, i.e., starting with low values, and then alternating the sign
of the first variable the fastest, and the last variable the slowest [71, pp. 237].
Finally, we store the table, except the coded variables, in rsm1 factorial.csv.
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Coded variables Natural variables
Exp. Run x1 x2 x3 x4 ALPHA PENALTY START LEVEL Resp.

1 -1 -1 -1 -1 0.85 0.8 60 3 0.468750
2 1 -1 -1 -1 0.95 0.8 60 3 0.481250
3 -1 1 -1 -1 0.85 1.2 60 3 0.468750
4 1 1 -1 -1 0.95 1.2 60 3 0.478125
5 -1 -1 1 -1 0.85 0.8 68 3 0.478125
6 1 -1 1 -1 0.95 0.8 68 3 0.484375
7 -1 1 1 -1 0.85 1.2 68 3 0.475000
8 1 1 1 -1 0.95 1.2 68 3 0.484375
9 -1 -1 -1 1 0.85 0.8 60 5 0.471875
10 1 -1 -1 1 0.95 0.8 60 5 0.478125
11 -1 1 -1 1 0.85 1.2 60 5 0.471875
12 1 1 -1 1 0.95 1.2 60 5 0.478125
13 -1 -1 1 1 0.85 0.8 68 5 0.468750
14 1 -1 1 1 0.95 0.8 68 5 0.484375
15 -1 1 1 1 0.85 1.2 68 5 0.468750
16 1 1 1 1 0.95 1.2 68 5 0.481250

Table 3 First RSM iteration, 2k factorial design for the four parameters ALPHA,
PENALTY, START, and LEVEL.

Listing 4 shows the analysis of the results, conducted in coded variables. The
standard coding transformation from a natural variable vN to a coded variable
vC in DoE is [32, pp. 245]:

vc =
vn − centerv

∆v/2
(2)

where ∆v is the factorial range of vn, and centerv its center point. For the
four parameters of ImpRec, the coding is presented in Listing 4 on line 2.

Listing 4 reveals that x1 and x3 (i.e., ALPHA and START in coded
values) affect the response the most. As visualizing the response surface in
more than two variables is difficult, Fig. 7 shows the contour plot4 wrt. x1
and x3, generated using visreg [25]. Our experiments show that higher re-
sponse can be achieved if we increase ALPHA and START , and decrease
PENALTY and LEV EL. We decide to use the step size provided by the
direction of the steepest ascent in original units, as it already constitutes ac-
tionable changes to the parameters (cf. Listing 4:95). Table 5.3.1 shows the
experimental results when gradually changing the ImpRec settings in the di-
rection: (+0.046,−0.0223,+1.338,−0.111). Note that START and LEV EL
are integer parameters and thus rounded off accordingly (highlighted in italic
font), and that ALPHA has a maximum value of 1 (or 0.99 for practical rea-
sons). We observe that the response continuously improves until step 10 (in
bold font in Table 5.3.1). Two additional steps in the same direction confirm
the decreased response.

4 R command: > visreg(rsm1 model, ”x1”, ”x3”)
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Fig. 7 Contour plot displaying the two most important parameters (ALPHA and START)
in coded variables, generated using visreg [25]. We have added an arrow showing the direction
of the steepest ascent.

Listing 4 Using rsm [57] to find the direction of the steepest ascent.

64 > rsm1 <- read.csv("rsm1 factorial.csv")
65 > rsm1 coded <- coded.data(rsm1, x1¬(alpha-0.9)/0.05, ...

x2¬(penalty-1)/0.2, x3¬(start-64)/4, x4¬(level-4)/1)
66 > rsm1 model <- rsm(resp¬FO(x1, x2, x3, x4), data=rsm1 coded)
67 > summary(rsm1 model)
68
69 Call:
70 rsm(formula = resp ¬ FO(x1, x2, x3, x4), data = rsm1 coded)
71
72 Estimate Std. Error t value Pr(>|t |)
73 (Intercept) 0.47636719 0.00069429 686.1210 < 2.2e-16 ***
74 x1 0.00488281 0.00069429 7.0328 2.175e-05 ***
75 x2 -0.00058594 0.00069429 -0.8439 0.41668
76 x3 0.00175781 0.00069429 2.5318 0.02788 *
77 x4 -0.00058594 0.00069429 -0.8439 0.41668
78 ---
79 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ...

. 0.1 1
80
81 Multiple R-squared: 0.8389, Adjusted R-squared: 0.7804
82 F-statistic: 14.32 on 4 and 11 DF, p-value: 0.0002442
83
84 Analysis of Variance Table
85
86 Response: resp
87 Df Sum Sq Mean Sq F value Pr(>F)
88 FO(x1, x2, x3, x4) 4 0.00044189 1.1047e-04 14.324 0.0002442
89 Residuals 11 0.00008484 7.7130e-06
90 Lack of fit 11 0.00008484 7.7130e-06
91 Pure error 0 0.00000000
92
93 Direction of steepest ascent (at radius 1):
94 x1 x2 x3 x4
95 0.9291177 -0.1114941 0.3344824 -0.1114941
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Step ALPHA PENALTY START LEV EL Resp.
0 0.9 1 64 4 0.46875
1 0.946456 0.977701 65.33793 3.888506 0.471875
2 0.992912 0.955402 66.67586 3.777012 0.4875
3 0.99 0.933104 68.01379 3.665518 0.4875
4 0.99 0.910805 69.35172 3.554024 0.4875
5 0.99 0.888506 70.68965 3.442529 0.490625
6 0.99 0.866207 72.02758 3.331035 0.49375
7 0.99 0.843908 73.36551 3.219541 0.5
8 0.99 0.821609 74.70344 3.108047 0.50625
9 0.99 0.799311 76.04137 2.996553 0.50625
10 0.99 0.777012 77.37929 2.885059 0.49375
11 0.99 0.754713 78.71722 2.773565 0.490625
12 0.99 0.732414 80.05515 2.662071 0.490625

Table 4 Iterative exploration along the direction of the steepest ascent. The tenth step,
presented in bold font, results in a decreased response. Values in italic font are rounded off
to the nearest integer value.

Coded variables Natural variables
Exp. Run x1 x2 x3 PENALTY START LEV EL Resp.

1 -1 -1 -1 0.76 76 2 0.465625
2 1 -1 -1 0.84 76 2 0.5
3 -1 1 -1 0.76 80 2 0.4625
4 1 1 -1 0.84 80 2 0.490625
5 -1 -1 1 0.76 76 4 0.465625
6 1 -1 1 0.84 76 4 0.5
7 -1 1 1 0.76 80 4 0.4625
8 1 1 1 0.84 80 4 0.490625

Table 5 Second RSM iteration, 2k factorial design for the three parameters PENALTY ,
START , and LEV EL.

96
97 Corresponding increment in original units:
98 alpha penalty start level
99 0.04645588 -0.02229882 1.33792946 -0.11149412

The second iteration starts where the first ended, i.e., using the tenth step
in Table 5.3.1 as its center point. The parameter ALPHA is already at its max-
imum value, thus we focus on PENALTY , START , and LEV EL. We decide
to use the following factorial ranges: PENALTY = 0.80 ± 0.04, START =
78± 2, and LEV EL = 3± 1. Table 5.3.1 shows the corresponding 2k factorial
experiment. We store the table, except the coded variables, in rsm2 factorial.csv.
Listing 5 shows the analysis of the results, including the coding transformation
of the parameters.
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Listing 5 Second RSM iteration, using rsm [57] to find a new direction of the steepest
ascent.

100 > rsm2 <- read.csv("rsm2 factorial.csv")
101 > rsm2 coded <- coded.data(rsm2, x2¬(penalty-0.80)/0.04, ...

x3¬(start-78)/2, x4¬(level-3)/1)
102 > rsm2 model <- rsm(resp¬FO(x2, x3, x4), data=rsm2 coded)
103 > summary(rsm2 model)
104
105 Call:
106 rsm(formula = resp ¬ FO(x2, x3, x4), data = rsm2 coded)
107
108 Estimate Std. Error t value Pr(>|t |)
109 (Intercept) 4.7969e-01 7.8125e-04 614 4.222e-11 ***
110 x2 6.7465e-18 7.8125e-04 0 1.00000
111 x3 -3.1250e-03 7.8125e-04 -4 0.01613 *
112 x4 1.5625e-02 7.8125e-04 20 3.688e-05 ***
113 ---
114 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ...

. 0.1 1
115
116 Multiple R-squared: 0.9905, Adjusted R-squared: 0.9833
117 F-statistic: 138.7 on 3 and 4 DF, p-value: 0.0001695
118
119 Analysis of Variance Table
120
121 Response: resp
122 Df Sum Sq Mean Sq F value Pr(>F)
123 FO(x2, x3, x4) 3 0.00203125 0.00067708 138.67 0.0001695
124 Residuals 4 0.00001953 0.00000488
125 Lack of fit 4 0.00001953 0.00000488
126 Pure error 0 0.00000000
127
128 Direction of steepest ascent (at radius 1):
129 x2 x3 x4
130 4.233906e-16 -1.961161e-01 9.805807e-01
131
132 Corresponding increment in original units:
133 penalty start level
134 0.0000000 -0.3922323 0.9805807

Listing 5 shows that the direction of the steepest ascent involves chang-
ing the value of START and LEV EL, but not PENALTY . We also know
that the setting (0.99, 0.80, 76, 3) yields 0.50625 (cf., step 9 in Table 5.3.1).
Table 5.3.1 shows the results from iteratively moving from this setting along
the direction of the steepest ascent. As we do not observe any increases in the
response when changing the two integer parameters START and LEV EL,
we conclude that this ImpRec setting is in the region of the maximum. In the
next TuneR step, the goal is to pin-point the exact position of the stationary
point.

5.3.2 Step 3: CCD and a second-order polynomial model

The final step in RSM is to fit a second-order polynomial model to the region
close to the maximum, and to locate the stationary point. The most popular
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Step ALPHA PENALTY START LEV EL Resp.
0 0.99 0.80 76 3 0.50625
1 0.99 0.80 75.60777 3.980581 0.5
2 0.99 0.80 75.21554 4.961161 0.5
3 0.99 0.80 74.8233 5.941742 0.48125
4 0.99 0.80 74.43107 6.922323 0.45625

Table 6 Iterative exploration along the new direction of the steepest ascent. No changes
result in an increased response, indicating that the current ImpRec setting is close to the
optimum. Values in italic font are rounded off to the nearest integer value.

Coded variables Natural variables
Exp. Run x3 x4 START LEV EL Resp.

1 -1 -1 72 2 0.453125
2 1 -1 80 2 0.4625
3 -1 1 72 4 0.490625
4 1 1 80 4 0.490625
5 0 0 76 3 0.50625
6 -1.414 0 70.344 3 0.490625
7 +1.414 0 81.656 3 0.48125
8 0 -1.414 76 4.414 0.5
9 0 +1.414 76 1.586 0.465625

Table 7 Central composite design for the two parameters START and LEV EL. Values in
italic font are rounded off to the nearest integer value.

design for fitting a second-order model is CCD [71, pp. 501]. In traditional
DoE, it is recommended to conduct three to five experimental runs at the
center point. When tuning an SE tool, we do not need more than one, thus
the only choice for the experimental design is the distance of the axial runs. As
presented in Fig. 1, we recommend a rotatable design, i.e., that all settings in
the tuning experiment should be at the same distance from the center point.

In the CCD experiment for tuning ImpRec, we focus on the two parameters
START and LEV EL. Listing 5:134 shows that these two parameters dwarf
PENALTY in this region. Furthermore, the parameter ALPHA is already
at its maximum value. Table 5.3.2 shows the CCD experiment and the corre-
sponding responses. We store the table, except the coded variables, in ccd.csv.
Listing 6 shows the analysis of the results, including the coding transformation
of the parameters. In the final step in Phase 3 of TuneR, the outcome of the
CCD experiment is analyzed.
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Listing 6 Using rsm [57] to fit a second-order model of the response surface in the vicinity
of the optimal response.

135 > ccd <- read.csv("ccd.csv")
136 > ccd coded <- coded.data(ccd, x3¬(start-76)/2, x4¬(level-3)/1)
137 > ccd model <- rsm(resp¬SO(x3, x4), data=ccd coded)
138 > summary(ccd model)
139
140 Call:
141 rsm(formula = resp ¬ SO(x3, x4), data = ccd coded)
142
143 Estimate Std. Error t value Pr(>|t |)
144 (Intercept) 0.50614821 0.00268418 188.5672 4.745e-09 ***
145 x3 -0.00027574 0.00068784 -0.4009 0.7090065
146 x4 0.01666667 0.00163740 10.1788 0.0005247 ***
147 x3:x4 -0.00117188 0.00100270 -1.1687 0.3074152
148 x3ˆ2 -0.00223432 0.00039648 -5.6354 0.0048794 **
149 x4ˆ2 -0.02310668 0.00268905 -8.5929 0.0010078 **
150 ---
151 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ...

. 0.1 1
152
153 Analysis of Variance Table
154
155 Response: resp
156 Df Sum Sq Mean Sq F value Pr(>F)
157 FO(x3, x4) 2 0.00166925 0.00083463 5.1884e+01 0.001378
158 TWI(x3, x4) 1 0.00002197 0.00002197 1.3659e+00 0.307415
159 PQ(x3, x4) 2 0.00137822 0.00068911 4.2838e+01 0.001990
160 Residuals 4 0.00006435 0.00001609
161 Lack of fit 3 0.00006435 0.00002145 4.4547e+29 1.101e-15
162 Pure error 1 0.00000000 0.00000000
163
164 Stationary point of response surface:
165 x3 x4
166 -0.1573278 0.3646356
167
168 Stationary point in original units:
169 start level
170 75.685344 3.364636
171
172 Eigenanalysis:
173 $values
174 [1] -0.002217888 -0.023123113
175
176 $vectors
177 [,1] [,2]
178 x3 -0.9996068 0.0280393
179 x4 0.0280393 0.9996068

5.3.3 Step 4: Evaluate stationary point

The purpose of the previous TuneR step was to locate a stationary point in
the vicinity of the optimal setting. The stationary point can either represent
a maximum response, a minimum response, or a saddle point. The nature of
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the stationary point is given by the signs of the eigenvalues: for a maximum
response all are negative, and for a minimum response all are positive. Thus,
if the eigenanalysis resulted in a maximum point, the tuning experiments have
resulted in a pin-pointed optimal setting for the SE tool. If the eigenvalues have
different signs on the other hand, then the CCD experiment located a saddle
point. The experimenter then should then perform ridge analysis [75], i.e.,
conducting additional experimental runs following the ridge in both directions.

Regarding the stationary point identified for the tuning of ImpRec, it is lo-
cated close to START = 76, LEV EL = 3 as shown in Listing 6:170. The eige-
nanalysis gives that it represents a maximum point (cf. Listing 6:174). Fig. 8
shows a visualization5 using visreg [25] of the response surface in this region. vi-
sualizes the response surface in this region, confirming that a setting represent-
ing a maximum response has been identified. Thus, we conclude the parameter
tuning of ImpRec as follows: ALPHA = 0.99, PENALTY = 0.80, START =
76, LEV EL = 3. Using the new parameter setting of ImpRec, we obtain
Rc@20 = 0.50625 compared to Rc@20 = 0.41875 using the default settings of
ImpRec (ALPHA = 0.83, PENALTY = 0.2, START = 17, LEV EL = 7).
Applying TuneR has thus improved the Rc@20 for ImpRec by 20.9% on this
particular dataset.

Fig. 8 Visualization of the response surface wrt. x3 and x4, i.e., START and LEV EL in
coded variables. ALPHA and PENALTY are fixed to 0.99 and 0.80, respectively.

5 R command: > visreg2d(ccdmodel, ”x3”, ”x4”, plot.type = ”persp”)
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5.4 Evaluate the setting

The final activity in TuneR is to perform an evaluation of the new param-
eter setting. Optimization based on a single response metric might result in
a far too naive perspective, thus a more holistic analysis must be employed
to determine the value of the new parameter setting. Numbers typically do
not cover all aspects of a studied phenomenon [65], and there is a risk that
the experimenter pushes the setting too much based on quantitative metrics,
squeezing percentages without considering overall values of the process the SE
tool is intended to support. The final activity of TuneR aims at taking a step
back, and consider the bigger picture.

Fig. 9 shows a comparison of the ImpRec evaluation using the default
setting (dashed line) and the tuned setting (solid line). The four subplots
show the cut-off, N, of the ranked output list on the x-axis, and the following
IR measures:

A: Precision, displaying the decrease that is characteristic to IR evalua-
tions [27].

B: Recall, including the target metric for the tuning experiments: Rc@20.
C: F1-score, the (balanced) harmonic mean of recall and precision.
D: MAP, an IR measure that combines recall with the performance of rank-

ing.

The evaluation reveals that while the tuning has resulted in increases with
regard to recall (cf. Fig. 9, subplot B), the improvements have been paid by
other metrics. Indeed, TuneR has increased the target metric Rc@20 by 20.9%.
Moreover, the response for higher N is even higher, reaching as high as 0.544
for Rc@43-50 (an increase by 27.0%). However, at low N the default setting
actually reaches a higher recall, and first at Rc@11 the tuned setting becomes
becomes better. To further add to the discussion, the three subplots A, C,
and D all show that the default setting outperforms the tuned setting. For
MAP@N, the difference between the default setting and the tuned setting
actually increases for large N.

The evaluation of the tuned parameter setting for ImpRec, and the identi-
fied trade-off, shows the importance of the final step in TuneR. It is not at all
clear from Fig. 9 whether the new parameter setting would benefit an engineer
working with ImpRec. While we have carefully selected the response metrics,
the trade-off appear to be bigger than expected. Not only is the trade-off be-
tween recall and precision evident, but also the trade-off within Rc@N; only
after the cut-off N=11 the recall benefits from the new setting. Our work is an
example of a purely quantitative in silico evaluation, conducted as computer
experiments without considering the full operational context of ImpRec [20].
To fully understand how switching between the two settings affect the util-
ity [6] of ImpRec, human engineers actually working with the tool must be
studied. We report from such an in situ study in another paper [23], in which
we deployed ImpRec in two development teams in industry, one with the de-
fault setting and one with the tuned setting.
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Fig. 9 Comparison of ImpRec output with default settings (dashed line) and tuned settings
(solid line). Subplots clockwise from the first quadrant: Recall@N, MAP@N, F1-score@N,
and Precision@N,

6 Tuning ImpRec using Exhaustive Search

If the screening experiments of TuneR (Phase 2) fails to identify actionable
regularities in the response surface, i.e., there is considerable lack of fit for both
first and second-order models, the experimenter might decide to design an
experiment of a more exhaustive nature. However, as an exhaustive amount of
experimental runs is likely to be computationally expensive, a first try should
be to investigate if a low-order polynomial model fit for the promising part
of the response surface. If that is the case, Phase 3 could still be applicable
in that region of the response surface. Otherwise, at least if the set of critical
parameters has been reduced, a more exhaustive space-filling design (i.e., a
brute force approach [76]) might be the remaining option to find a tuned
setting. The purpose of this section is twofold. First, we present the design
of a fine-granular space-filling design for tuning ImpRec. Second, the result of
the exhaustive search acts as a proof-of-concept of TuneR, as we compare the
results to the outcome from Phase 3.

For tuning of ImpRec, we design a uniform space-filling design. Table 8
shows the levels we explore in the experimental runs. The screening experiment
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Parameter #Levels Values
ALPHA 21 0.01, 0.05, 0.10, 0.15, ... , 0.95, 0.99
PENALTY 11 0.01, 0.5, 1, 1.5, ... , 5
START 90 1, 2, 3, ... , 90
LEV EL 9 1, 2, ... , 9

Table 8 Uniform space-filling design for exhaustive approach to tuning of ImpRec. The
design requires 187,110 experimental runs, compared to 3,430 in the screening experiment
(cf. Table 5.1.3).

Rc@20 #Settings
1 0.5375 12
2 0.534375 72
3 0.53125 60
4 0.528125 72
5 0.525 108
6 0.521875 238
7 0.51875 96
8 0.515625 120
9 0.5125 238
10 0.509375 83

Table 9 Top 10 results from the exhaustive experiment. The third column shows how many
different settings that yield the response.

described in Section 5.2 shows that ALPHA appears to be more important
than PENALTY , thus we study it with a finer granularity. START and
LEV EL are both positive integer parameters, and we choose to explore them
starting from their lowest possible values. As the nature of the issue-issue links
is unlikely to result in issue chains longer than five, setting the highest value
to 9 is already a conservative choice. The potential of large START on the
other hand is less clear, but Fig. 6 suggests that values between 16 and 128
result in the best Rc@20. However, large START require infeasible execution
times, thus we restrict the parameter to 90 for practical reasons.

Table 6 shows the best results from running the exhaustive tuning ex-
periments. In total, the experiments required 1,253 hours (about 52 days) to
complete on a desktop computer6, with an average of 24 s per experimental
run. The best result we obtain in the exhaustive experiments is Rc@20=0.5375,
a response we get from 12 different settings, a value that is 6.2% better than
what we found using the three main phases of TuneR (Rc@20=0.50625). By
looking at the 12 settings yielding Rc@20=0.5375, we note that START = 51
and LEV EL = 3 provide the best results. However, regarding the two remain-
ing parameters, the pattern is less clear; ALPHA varies from 0.6 to 0.99, and
PENALTY is either at low range (0.5 or 1.5) or at high range (4.5 or 5). Fig-
ure 10 summarizes the exhaustive experiment by presenting the distribution
of responses per setting, as well as the execution times.

6 Intel Core i5-2500K quad-core CPU 3.30 GHz with 8 GB RAM.



38 Markus Borg

Fig. 10 Distribution of results from the exhaustive experiment. The y-axes show the num-
ber of settings that resulted in the output. The left figure displays Rc@20, and the right
figure shows the execution time.

7 Discussion

Finding feasible parameter settings for SE tools is a challenging, but impor-
tant, activity. SE tools are often highly configurable through parameters, but
there is typically no silver bullet; there is not one default parameter setting
that is optimal for all contexts. However, often advanced approaches are imple-
mented in state-of-the-art SE tools. As a result of the tools’ inherent complex-
ity, academic researchers have published numerous papers on how to improve
tool output by trying different settings and tuning internal algorithms. Con-
sequently, SE tool developers cannot expect end users to understand all the
intricate details of their implementations. Instead we argue that applied re-
searchers need to provide guidelines to stimulate dissemination of SE tools
in industry, i.e., to support transfer of research prototypes from academia to
industry.

An established approach to improve processes is to use experiments. How-
ever, traditional DoE was developed for physical processes, much different from
the application of SE tools. In this paper we introduced TuneR, a framework
for tuning SE tools, using a combination of space-filling designs and RSM. Sev-
eral researchers have presented advice and guidelines on how to tune various
SE tools, but they typically address a specific family of tools, e.g., SBSE [5,
38], evolutionary software testing [29], LDA for feature location [14], and trace
retrieval [61]. TuneR is instead a general framework, that can be applied for
most types of SE tools.

As a proof-of-concept, and as a demonstration of TuneR’s ease of use, we
presented a detailed step-by-step tuning of the RSSE ImpRec. Using TuneR we
obtain a considerable increase in the response variable of ImpRec, even though
we considered the default setting already good enough for tool deployment in
industry (see our industrial case study for further details [23]). We selected
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the default setting7 based on ad hoc tuning during development of ImpRec,
but using TuneR resulted in a 20.9% higher response, i.e., an improvement
from Rc@20=0.41875 to Rc@20=0.50625. Thus, in contrast to the Arcuri and
Fraser’s inconclusive results from tuning an SBSE tool [5], we demonstrate
that RSM can be a component in successful tuning of SE tools.

Applying TuneR to tune an SE tool provides insights beyond what a fea-
sible parameter setting. Thanks to the screening phase, TuneR identifies the
most important parameters, both in terms of main effects and interaction ef-
fects. Especially interaction effects is missed when tuning tools using less struc-
tured experimental designs, e.g., COST analysis and ad hoc tuning. During
tuning of ImpRec, we found that two interactions were significant: 1) positive
interaction between ALPHA and START , and 2) negative interaction be-
tween START and LEV EL. Thus, if a high number of issue reports are used
as starting points, then the ranking function should give more weight to the
centrality measure than the textual similarity. Furthermore, if the number of
starting points is high, then the number of links to follow in the knowledge
base should be decreased.

Although resulting in a considerable improvement in the response, we found
that the tuned setting8 obtained from TuneR still was not optimal. Using ex-
haustive experiments, we identified settings that yield even higher responses,
reaching as high as Rc@20=0.5375. However, running exhaustive experiments
come at a high computational cost, and it is not certain that there is enough re-
turn on investment. In our example, we used more than 50 days of computation
time for the exhaustive experiments, in total conducting 187,110 experimental
runs, to find a 6.2% higher response (Rc@0=0.5375) compared to the TuneR
setting. Moreover, we explored only four parameters in the exhaustive exper-
iments. For other SE tools the number of parameters might be higher, and
the combinatorial explosion quickly leads to infeasible exhaustive experimen-
tal designs. To mitigate this problem, the screening phase of TuneR could be
used to identify the dominating parameters, in line with common practise in
traditional DoE [71,32].

The exhaustive experiments revealed 12 different settings yielding the top
response. A clear pattern in the 12 settings was found; to obtain the best re-
sults, START and LEV EL were set to 51 and 3, respectively. At the same
time however, ALPHA and PENALTY could be set to several different com-
binations of values. Based on the screening phase of TuneR, we concluded that
ALPHA should be set to high values, as “centrality values are more impor-
tant than textual similarity, i.e., previously impacted artifacts are likely to
be impacted again” (see Section 5.2.3). In hindsight, with the knowledge ob-
tained from the exhaustive experiment, it appears that early fixing ALPHA
to 0.99 was not necessarily the right decision, as high responses apparently
can be obtained for a range of ALPHA values. Experimentation is an itera-
tive process, and the experimenter’s knowledge gradually increases. Based on

7 Default setting: ALPHA = 0.83, START = 17, LEV EL = 7, PENALTY = 0.2
8 Tuned setting: ALPHA = 0.99, PENALTY = 0.80, START = 76, LEV EL = 3
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the updated understanding of ALPHA, a next step could be to do another
TuneR screening focusing on 0.6 ≤ ALPHA ≤ 0.99.

We acknowledge two main threats to the validity of the tuned ImpRec
setting we obtain through TuneR. First, there is always a threat that focus-
ing on a single response metric might be an oversimplification, as discussed in
Section 5.1.2. In Section 5.4, we show that while the tuned setting leads to
an improved response in Rc@20, with regard to most other metrics we apply
for the evaluation of the new setting, the output was better for the default
setting. Whether Rc@20 is the best target metric is not certain, even though
we posit that it reflects an important quality aspect of ImpRec, resulting in
maximization of true impact among a manageable amount of recommenda-
tions. An alternative response metric could be MAP@20, also reported in the
evaluation in Section 5.4, a metric that also considers the ranking of the true
output among the top-20 recommendations. We stress that it is important to
validate the response metric from the start, otherwise TuneR will move the
setting in a direction that does not bring value.

Second, while we carefully selected four parameters for the tuning exper-
iments, there might be additional important parameters at play. For example,
the IR approach we apply in ImpRec could be adjusted in numerous ways, yet
we consider the involved variation points as fixed. Apache Lucene, the inte-
grated IR solution, is highly configurable, but as we have successfully used it
for a similar task before (duplicate detection of issue reports [21]), we make
the assumption that it performs well out-of-the-box. Other potentially useful
approaches related to the IR, which we did not explore in this paper, is to
perform pre-processing, e.g., stop word removal, stemming, and dimensional-
ity reduction. However, as TuneR resulted in an increased response, also close
to what the exhaustive experiment yielded, we argue that our selection of
parameters was valid.

Furthermore, there are also some threats to the validity of the overall
TuneR framework. While our goal when developing TuneR was to present
a framework generally applicable to tuning of SE tools, the external valid-
ity [100] of the approach is still uncertain. We have only presented one single
proof-of-concept, i.e., the tuning of the RSSE ImpRec, thus we need to con-
duct additional tuning experiments, with other SE tools, to verify the general-
izability. We plan to continue evolving TuneR, and two involved activities we
particularly want to focus on improving are: 1) guidelines regarding parame-
ter subset selection when fitting low-order polynomial models during screening
(Section 5.2.3), and 2) the step size selection in the RSM phase (Section 5.3.1).
Finally, we argue that TuneR is easy to use, especially since we present hands-
on examples in R, but the only way to validate the usability is by letting others
try the framework.
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8 Conclusion

In this paper we have presented TuneR, an experimental framework for tun-
ing Software Engineering (SE) tools. TuneR build on methods from Design
of Experiments (DoE) and Design of Computer Experiments (DoCE), two es-
tablished fields with numerous successful applications in various engineering
disciplines [45]. However, both DoE and DoCE have been developed to address
experiments on phenomenon with a representation in the physical world, ei-
ther directly (DoE) or indirectly through computer models (DoCE). We have
discussed how tuning of SE tools is different from traditional experimentation,
and how TuneR combines space-filling designs and factorial designs to identify
a feasible parameter setting.

As a proof-of-concept, we applied TuneR to tune ImpRec, a recommenda-
tion system for change impact analysis, to a specific proprietary context. For
all TuneR steps, we have provided detailed instructions on how to analyze the
experimental output using various R packages. Using TuneR, we increased the
accuracy of the ImpRec recommendations by 20% with regard to recall among
the top-20 candidates. To validate the tuned setting, we also applied a more
exhaustive space-filling design, trying in total 187,110 parameter settings. We
found a parameter setting yielding a 6% higher response, but running the ex-
periment required more than 50 days of computation time. Thus, we consider
the proof-of-concept successful, as TuneR resulted in a similar response in a
fraction of the time.

A major threat when tuning an SE tool is that the selected response met-
ric, i.e., the target for optimization, does not fully capture the overall value
of the tool. Optimizing a response might come at a price; increases in one
metric might be paid by decreases in other metrics. The tuning of ImpRec is
an example of this trade-off, and we show how precision, F1-score, and mean
average precision decrease with the new tuned setting. Even recall at lower cut-
off points, i.e., when considering ten or fewer recommendations from ImpRec,
yields decreased results with the tuned parameter setting. From this observa-
tion, we stress the importance of carefully selecting the response metric, and
to properly evaluate the consequences of the tuned parameter setting, before
deploying the tuned SE tool.
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