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We present a method to tune software parameters using ideas from software testing and machine learning.

The method is based on the key observation that for many classes of instances, the software shows improved

performance if a few critical parameters have “good” values, although which parameters are critical depends

on the class of instances. Our method attempts to find good parameter values using a relatively small

number of optimization trials.

We present tests of our method on three MILP solvers: CPLEX, CBC, and GLPK. In these tests, our

method always finds parameter values that outperform the default values, in many cases by a significant

margin. The improvement in total run time over default performance was generally from 31–88%. We

also test similar instances that were not used for training and find similar improvements in run time. Our

implementation of the method, Selection Tool for Optimization Parameters (STOP), is available under a

free and open-source license.
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1. Introduction

Many OR software programs depend on parameters that must be set before the program is executed. The

performance of the software often depends significantly on the values chosen for these parameters. In this

paper, we present a method that can help users identify good parameter values for their instances. Our

research is motivated by Mixed Integer Linear Programming (MILP) solvers in particular, which have a

large number of parameters. In this paper, we consider three MILP solvers: GLPK 4.11, CBC 1.01 and

CPLEX 9.0. GLPK has 11 algorithmic parameters. CBC has more than 20 parameters, including a growing

1



number of cut parameters. There are dozens of algorithmic parameters in CPLEX 9.0, including 9 kinds of

cuts alone.

The number of possible parameter combinations for these solvers is very high. When we consider a subset

of just 6 important parameters for CPLEX—4 parameters with 3 values each and 2 parameters with 4 values

each—there are 1296 possible combinations. Considering a subset of 10 important parameters yields over

100000 possible combinations. CPLEX provides this great flexibility because parameter settings that are

good for one type of instance may be bad for another type of instance. This flexibility is important because

it is impossible to find settings that perform well for every class of instances. Our experience is that for any

particular class of instances, there are generally settings better than the default settings.

The flexibility provided by having many parameters poses the significant challenge of identifying param-

eter values that are good for the instances that a user wants to solve. We present a method to help users

address this challenge. Our method tries a number of settings on representative instances and reports the

best setting observed. We implemented this method in a tool which we call Selection Tool for Optimization

Parameters (STOP).

Because it tries many settings, our method requires a significant investment of computer time, though

it requires very little of the user’s time. There are at least three scenarios when this initial investment of

computer time makes sense:

• The user may want to run hundreds of similar instances, so the initial investment of computer time

can be recovered from later time savings.

• The user may want to solve instances in “real time”, when time is critical. In this situation it may be

worth investing lots of “off-line” time with similar instances to better utilize the user’s “on-line” time.

• The user may be comparing alternative algorithmic ideas. In this case, he or she may want a fair

comparison where all the approaches have good parameter settings. In this case the time spent finding

good parameter values is not critical.

This paper is organized as follows: Section 2 describes the problem more formally. Section 3 discusses the

key observation that motivates our approaches. Our method and implementation are described in Section 4.

In Section 5 computational tests and results are considered. Section 6 presents conclusions.

2. Problem Statement

We first describe the terminology we use in this paper: A software program has several parameters controlling

its execution. Each parameter is assigned a particular parameter value. A set of parameter values—one for

each parameter—is a setting. Informally, our goal is to find a good setting.
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In order to use our method, the user specifies a set of instances to test. It is best to consider several

instances with different sizes in order to represent the instance type better and avoid over-fitting the pa-

rameters. The user also states the number of settings that may be tried along with an optional solver time

limit. These values depend on how much computer time the user is willing to use. The greater the number

of settings tried, the more likely it is that better settings will be found. The optional solver time limit is

the maximum time that each instance will be run with each setting; this limit avoids wasting a great deal of

time on a setting that is clearly bad.

The parameters, parameter values to consider, and metric for comparison are specified in a solver interface

file. The user may use an existing interface or may modify an interface to consider parameters and parameter

values he or she believes to be important. It is possible to use our method with different metrics, such as

solution time or solution quality. In this paper we use the metric of total solution time to prove optimality:

the sum of the solution times of the test instances.

Our method assumes that each parameter has a small discrete set of values. This is the case for the

MILP solvers we study. Another assumption is that good settings for the test instances will be good settings

for similar types of instances. In Section 5 we present computational tests supporting this assumption.

Previous work on automated parameter tuning has often focused on parameters for particular algorithms

using methods that do not generalize to the MILP branch-and-cut algorithms that motivate us. Examples

of such work include Achard and De Schutter (2006), Haas et al. (2005), and Kohavi and John (1995). Of

these, the most general is Kohavi and John (1995), which uses an idea similar to local search, testing settings

in a neighborhood of the current setting. Audet and Orban (2006) provide a more general framework for

parameter tuning, using mesh adaptive direct search to search through the space of settings. Both of these

methods require a notion of parameter values that are “close” to one another, such as numeric parameter

values, and the tuning is done by moving through the space of settings. In contrast, the MILP solvers we

consider have many parameters that take discrete values with no clear order or relationship, so that moving

through the space of settings does not seem natural. Our approach is instead based on an intelligent sampling

of settings throughout the space.

3. Key Observation

In preliminary tests we found that there are typically a small number of parameters that significantly change

the solution time of instances. However, which parameters are important depends on the instance class. If

we can find good values for these few parameters, the solution time is relatively short. Our goal is to find

a setting for which the critical parameter values are good, even though we may not know which parameters

are critical.
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Table 1: Key CPLEX parameters for circuit instances.

Settings
CPLEX (circuit) 1 2 3 4 5 Default
MIP emphasis 1 1 1 1 0 0
Node selection 0 0 0 2 2 0
Branching var. sel. 0 0 1 2 1 0
Dive type 1 0 0 3 3 0
Fractional cuts 0 0 0 0 0 1
MIR cuts 0 1 1 0 2 1
Time (s) 63.41 63.42 63.72 72.21 96.49 98.84

To demonstrate this idea, we present Table 1, which shows results for a set of related instances on

CPLEX with six different parameter settings based on six parameters. The six parameters considered are

MIP emphasis, node selection, branching variable selection, dive type, fractional cut generation (Gomory

fractional cuts), and MIR cut generation. The exact purpose of these parameters is not important for this

example. More information about them can be found in the CPLEX user documentation. The instances

considered are from a circuit problem investigated by several of the authors.

As can be seen from the table, when we have the correct combination of the parameter values 1 (feasibility)

for MIP emphasis, 0 (best-bound) for Node Selection and 0 (off) for Fractional Cuts, the solution time is

low. When any of these three is not at its best value, the solution time is longer. When two of them or all

three of them are not at their best value, the solution time is even longer.

Similarly, Table 2 shows results for a different set of instances on CBC. The seven parameters we ex-

plored are strong branching, cost strategy, Gomory cut generation, MIR cut generation, probing, clique cut

generation, and feasibility pump. The instances are a subset of the ‘p’ instances from MIPLIB 3.0. In this

case, cost strategy, Gomory cut generation, and feasibility pump are the three critical parameters that affect

the solution time. The solution time is low for settings 1, 2 and 3 in Table 2 since the key parameters are

at their best values. On the other hand, Gomory cut generation for setting 4, Gomory cut generation and

feasibility pump for setting 5, and all three of the critical parameters for the default setting are not at their

best values.

If the critical parameters (for an instance class) have good values, then the non-critical parameters may

take any value and the resulting setting will be “good”. If the number of critical parameters is small, then

this means that there are many “good” settings. Our goal is to find one of these settings without too many

trials. Note, however, that we do not necessarily expect to determine which parameters are critical for the

instance class, since that is not our primary goal.
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Table 2: Key CBC parameters for p instances.

Settings
CBC (p) 1 2 3 4 5 Default
Strong Branching 0 2 1 2 1 1
Cost strategy 1 1 1 1 1 3
Gomory cuts 0 0 0 1 3 3
MIR cuts 0 3 2 3 2 3
Probing 3 2 0 0 3 3
Clique cuts 3 1 3 1 3 3
Feasibility pump 0 0 0 0 1 1
Time (s) 5.78 5.84 6.43 14.02 17.56 22.46

4. Algorithm

Below is the general framework of our method:

1. Select initial settings to try.

2. Run the solver on those settings.

3. Use some form of machine learning to find additional settings.

4. Run the solver on additional settings.

5. Output the best setting observed.

The first step of the framework is the selection of initial settings. For this, we consider three options:

random, greedy heuristic and pairwise coverage. These are discussed in Section 4.1. The next step is to

run the solver on those initial settings and record the solution times (or other metrics). Steps 3 and 4 are

optional. In step 3, we use machine learning to guide our choice of additional settings based on the initial

data. We consider two options for machine learning: regression trees and artificial neural networks. These

are discussed in Section 4.2. At the end, we report the best setting observed.

4.1. Selection of Settings

Based on the key observation from Section 3, we would like to have a good “spread” of settings. A motivating

idea for selecting settings comes from orthogonal arrays. An orthogonal array of strength t is an N×m matrix

in which the N rows represent settings with m parameters (one per column) such that for any t columns, all

possible combinations of parameter values appear equally often in the matrix (Wu and Hamada, 2000). In

our case this would mean that every combination of t parameter values appear equally often. Unfortunately,
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orthogonal arrays do not exist for every combination of parameter and parameter value cardinalities and

have not been well-studied in cases where parameters have different numbers of values.

We have tried three methods for selecting settings: pairwise coverage, a greedy heuristic, and random.

Pairwise coverage is related to orthogonal arrays. It is widely used in software testing for identifying pro-

gramming errors that are revealed when two parameter values interact. In our implementation, the goal

is to have all pairs of parameter values appear at least twice in settings. An algorithm is used to identify

settings that achieve this. If the number of settings needed is higher than the number the user has allowed,

then we consider the easier requirement that all pairs appear at least once. We implemented an algorithm

from Cohen et al. (1997) to generate the pairwise coverage test sets.

The second alternative is a greedy heuristic. The first setting is selected randomly. For each additional

setting, all possible settings are compared with the already selected settings. For each possible setting, we

consider the number of parameter values in common with each of the already-selected settings. We choose

the new setting that minimizes the maximum number in common. Ties are broken based on the sum over

the selected settings of the number of parameter values in common.

The final option for selecting settings is random selection. For each parameter, we select a value uniformly

at random. This method is easy to implement, but it may miss some parameter interactions.

4.2. Machine Learning

Machine learning is an optional part of the algorithm. The goal of machine learning for our method is to

extract useful information from the initial settings to guide our choice of additional settings by building

good probabilistic models. We try two machine learning alternatives: regression trees and artificial neural

networks.

4.2.1. Regression Trees

Regression trees are used as a non-parametric method (i.e., no assumptions are made about the distribution

of the data) for regression. They are developed as part of classification and regression trees (CART) in

Breiman et al. (1984). As in linear regression, regression trees are used to investigate the relationship

between a continuous dependent variable and independent variables. The independent variables can be

continuous or discrete.

Training data (xi, yi) ⊆ Rd×R is used to generate rules for assigning a new observation x ∈ Rd a value

y ∈ R. The regression tree algorithm recursively partitions data into observations with high y values and

observations with low y values. Each partition is based on a single attribute. The partitions are selected such

that the within-partition sums of squares is reduced the most; more precisely, a partition s places training
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observations in partitions tL and tH from partition t. The partition is selected such that

∆R(s, t) = R(t)−RtL
−RtH

is maximized, where R(t) = (1/nt)
nt∑

i=1

(yi − ȳ(t))2 is the within-partition sum of squares for partition t.

In addition to prediction, regression trees can also be used for feature selection. Attributes that define

partitions higher in the tree are likely to be important for determining whether an observation will have a

high or low value.

Regression trees for our implementation are generated using the rpart() function in the rpart package in

the R environment for statistical computing (R Development Core Team, 2007).

4.2.2. Artificial Neural Networks

Artificial neural networks use a simple model of multi-layered neurons as a basis for predicting the value of a

function. In our case, the function of interest takes the solver parameter values as inputs and gives the total

running time as output. The neural network is trained using a number of observed function values (total

running times) and then provides predicted running times for other inputs.

One method of training a neural network is the backpropagation algorithm (Werbos, 1974). The back-

propagation algorithm of a non-linear neural network essentially uses the concept of steepest gradient descent

to minimize the sum of squared deviations of the predicted (fitted) values from the actual values. The power

of the algorithm lies in its ability to produce a generic function form that can be evaluated at any given point.

It employs the notion of sigmoidal functions that allow such a generic representation. We next describe the

mathematics in some detail.

As before let (xi, yi) denote the ith piece of data. The neural network model consists of a graph with

three layers of nodes: the input layer, the hidden layer, and the output layer. The number of input nodes is

p—the number of optimization parameters—while the number of output nodes is one, since we are predicting

a single value. Let H denote the number of nodes in the hidden layer (in our implementation we use H = p).

The network is represented by scalar “weights,” which are associated with the links from the input nodes to

the hidden nodes and the links from the hidden nodes to the output node. The weight from the jth input

node to the hth hidden node will be denoted by w1(j, h) and that from the hth hidden node to the output

node by w2(h). We will assume that these weights are initialized to some arbitrary (usually small positive)

values. Then the predicted value for the ith data piece can be represented according to the neural-network

machinery as

oi = w2(0) +
H∑

h=1

w2(h)πi(h), for i = 1, 2, . . . , N where the sigmoidal functions are
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ρi(h) =
p∑

j=1

w1(j, h)xi(j) and πi(h) =
1

1 + exp(−ρi(h))
.

The neural network seeks to minimize, via the steepest descent method, the sum of squared errors, i.e.,

SSE =
N∑

i=1

(yi − oi)2.

The resulting gradient-descent algorithm, which is implemented in an iterative style, is as follows: For

j = 1, 2, . . . , p and h = 1, 2, . . . ,H,

w1(j, h)← w1(j, h) + µ

[
N∑

i=1

(yi − oi)w2(h)πi(h)(1− πi(h))xi(j)

]
,

w2(h)← w2(h) + µ

[
N∑

i=1

(yi − oi)πi(h)

]
, and w2(0)← w2(0) + µ

[
N∑

i=1

(yi − oi)

]
,

where µ denotes the step size.

For more details on artifical neural networks, see Mitchell (1997); Rumelhart et al. (1986). In our

implementation we use the free and open-source Fast Artificial Neural Network (FANN) library (Nissen,

2003).

4.3. Implementation Details

We have implemented our approach in a tool we call Selection Tool for Optimization Parameters, or STOP.

Given the framework presented at the beginning of Section 4, we now explain the details of our implemen-

tation. The solver interface is selected at compile time. It includes the parameters and parameter values to

consider as well as the metric to use (in this paper the metric is always total solution time).

At run time, the user specifies the instances to test, the method for selecting settings, the number of

initial settings to try, whether and what type of machine learning to use, and the number of additional

settings to try if machine learning is being used. There are also several optional arguments, including a time

limit on each solver run.

If pairwise coverage is the selection method, then the number of settings needed to cover every pair of

values twice is determined. If this number is not more than the number of initial settings, then these settings

are used. Otherwise, the number of settings needed to cover every pair of values just once is determined.

If this number is not more than the number of initial settings, then these settings are used. In either case,

additional settings are generated using the greedy heuristic to reach the specified number of initial settings.

If single pairwise coverage still required more than the allowed number of initial settings, then the greedy

heuristic is used for all of the initial settings. For example, assume that the pairwise coverage algorithm

determines that double coverage requires 23 settings. If the number of initial trials had been specified as 32,
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then these 23 settings would be used and 9 additional settings would be generated with the greedy heuristic.

On the other hand, if only 16 initial trials had been allowed, then the pairwise coverage algorithm would

reject double coverage and find settings for single coverage.

If a regression tree is used for machine learning, then the first two branches of the regression tree are

examined. These indicate the two most important parameters based on the initial trials. Additional tests

are restricted to the parameter values that the regression tree indicates in the “good” branch for these first

two branches. The choice of following the first two branches is arbitrary. It may be possible to improve this

choice in the algorithm.

If a neural network is used for machine learning, then metric values are predicted for all possible settings.

The top ten percent of predictions are made candidates for the additional tests. Again, the choice of ten

percent is arbitrary. Additional tests in this case must either be determined by the greedy heuristic or

randomly. It is not possible to use pairwise coverage to select the additional settings, since the pool of

candidates may not even have every pair present. If pairwise coverage was used for initial settings, then we

fall back to the greedy heuristic for the additional settings.

During execution, our implementation prints out the metric found for each test it does; therefore, the

user may analyze all of the data found if that is desired. At the end of execution, the best setting is reported

and its metric is compared with the metric for the default setting.

As a final option, the user may run a regression tree after all settings have been tested. This does

not serve a predictive purpose since no more tests will be done. Instead, the final regression tree provides

managerial insight by indicating what the most important parameters seem to be based on all of the settings

that have been tested.

5. Computational Tests

We performed tests with three MILP solvers, using a subset of parameters available in each. For some

parameters, our interfaces did not consider every possible parameter value. This is because the performance

of the algorithm seems to be more sensitive to the numbers of parameter values than to the number of

parameters. We do not explore this issue here, however, since the purpose of this paper is to demonstrate

the usefulness of the algorithm and not to explore in detail the relationship of its effectiveness to the number

of parameters and parameter values.

The exact parameters and parameter values are given below.

• CPLEX 9.0 with six parameters
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– mip emphasis (CPX PARAM MIPEMPHASIS): automatic, feasibility, optimality, moving best

bound

– node selection (CPX PARAM NODESEL): best-bound, best-estimate, alternative best-estimate

– branching variable (CPX PARAM VARSEL): automatic, pseudo costs, strong branching

– dive type (CPX PARAM DIVETYPE): automatic, traditional dive, probing dive, guided dive

– fractional cuts (CPX PARAM FRACCUTS): off, automatic, on

– MIR cuts (CPX PARAM MIRCUTS): off, automatic, on

• CPLEX 9.0 with ten parameters

– the six listed above

– disjunctive cuts (CPX PARAM DISJCUTS): off, automatic, on

– clique cuts (CPX PARAM CLIQUES): off, automatic, on

– node presolve selector (CPX PARAM PRESLVND): off, automatic, force

– probing (CPX PARAM PROBE): off, automatic, on

• CBC 1.01 with seven parameters

– strong branching (strong): 0, 5, 9

– cost strategy (cost): off, priorities

– gomory cuts (gomory): off, on, root, ifmove

– MIR cuts (mixed): off, on, root, ifmove

– probing (probing): off, on, root, ifmove

– clique cuts (clique): off, on, root, ifmove

– feasibility (feas): off, on

• GLPK 4.11 with six parameters

– scaling (LPX K SCALE): none, equilibration, geometric mean, geometric then equilibration

– pricing (LPX K PRICE): largest coefficient, steepest edge

– branching (LPX K BRANCH): first variable, last variable, drieback-tomlin, most fractional

– backtrack (LPX K BTRACK): depth first, breadth first, best projection, best bound

– lp presolve (LPX K PRESOL): off, on
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– method: old b&b (lpx integer), new b&b (lpx intopt), new b&b with cuts (lpx intopt and LPX K USECUTS)

We used 4 sets of instances: p and misc instances from MIPLIB 3.0 (Bixby et al., 1998), aircraft land-

ing instances from OR-Library (Beasley, 1990), and circuit instances from research that authors Baz and

Hunsaker are currently involved with. The circuit instances map an acyclic graph onto a particular imple-

mentation of an electronic fabric architecture.

• p instances: p0033, p0201, p0282

• misc instances: misc03, misc06, misc07

• aircraft landing instances:

– easy: airland2-R2, airland4-R4, airland7-R1

– medium: airland4-R2, airland5-R1, airland5-R2

• circuit instances: sobel, laplace, gsm

The primary purposes of this article are to demonstrate that our methods can find settings better than the

default settings for a variety of solvers and instance classes and to demonstrate that the resulting settings are

also good on other instances from the same instance classes. To this end, Section 5.3 compares the results

from STOP with those of the default settings on the tested instances. Section 5.4 looks at the question

of whether good settings for the test instances are good for related instances. Prior to those results, we

briefly consider two internal issues. Section 5.1 considers the effect of internal randomness in STOP, while

Section 5.2 compares some of the many options within STOP.

5.1. Randomness within STOP

For all methods of selecting settings, the first setting is selected randomly, and this selection affects the

remaining selections (except in the case that all settings are selected randomly). To investigate whether this

randomness has a strong effect on the results, we ran STOP 30 times for the misc instances with CBC and

CPLEX with a variety of configurations of STOP. This resulted in 630 final solution times for each solver.

For CBC, the settings found by STOP had total solution times ranging from 21–124 seconds, compared

to the default of 129 seconds. However, in fact the times fell into two intervals: 21–26 seconds and 115–124

seconds. Clearly, it is preferable to have a solution in the “good” interval of 21–26 seconds. Of the 630 trials,

82% of them were in this “good” interval. Although the percentage differs depending on the configuration

of STOP, even the worst configurations had 60% of their trials in this interval, while many configurations

had 90–100% of their trials in the the good interval. With CPLEX the results are not bimodal as they are
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Table 3: Best run time found by 21 different configurations of STOP for CPLEX on misc instances.

Random Pairwise Heuristic
No learning 64 41.36 41.37 39.95
Regression tree 48 + 16 37.94 38.27 36.16
Regression tree 32 + 32 37.02 38.02 36.05
Regression tree 16 + 48 39.75 37.62 36.51
Neural net 48 + 16 36.57 38.32 36.79
Neural net 32 + 32 37.57 35.26 35.86
Neural net 16 + 48 44.99 40.09 39.59

with CBC, but 64% of the times are in the range 34–35 seconds while the remaining 36% are in the range

42–69 seconds (compared to the default of 82 seconds).

Based on this preliminary analysis, we note that although randomness may have a significant impact on

the settings found, STOP generally has a good chance of finding “better” settings and even the “worse”

settings it finds are better than the default. For the remainder of our tests we consider only a single trial.

5.2. Comparing options within STOP

Based on the options for setting selection, machine learning, and number of settings to try, there are an

infinite number of ways to run STOP. In this section we informally compare 21 options for running STOP,

all of them based on testing a total of 64 settings. We have 3 options for selection of settings: random,

pairwise, heuristic. We tested 7 different options for machine learning: no machine learning with 64+0 (the

first number in the addition represents the number of initial settings, and the second one is the number of

additional settings using machine learning), regression trees with 48 + 16, with 32 + 32, with 16 + 48, neural

networks with 48 + 16, with 32 + 32, with 16 + 48.

Table 3 shows the solution times of the tests on misc instances with CPLEX with six parameters. This is

a single example for illustration and is not meant to be a conclusive comparison. The default setting takes

81.84 secs. On the other hand, the solution time for the true best setting is 34.00 secs. As can be seen from

the Table 3, the results of all 21 options are similar. The longest one takes 44.99 secs and the fastest one

35.26 secs. Results of random selection are generally worse than the other two selection options. We believe

the main reason for this is that random selection misses some parameter interaction. The best settings are

often found when heuristic option is used.

In general, we found similar behavior in our computational tests. There is not a large difference among the

options for selection of settings. However, the best settings are generally observed when pairwise coverage is

used. Table 4 shows how often each configuration of STOP found the best setting (out of the 21 configurations

for STOP). Out of 11 tests in which all 21 configurations were considered, pairwise coverage found the best
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Table 4: Number of times that each configuration was the best out of the 21 configurations.

Random Pairwise Heuristic
No learning 64 1 1
Regression tree 48 + 16
Regression tree 32 + 32
Regression tree 16 + 48 2
Neural net 48 + 16 2
Neural net 32 + 32 2 1
Neural net 16 + 48 1 1

setting in 6 of them. The random option found the best setting in 3 tests, whereas the heuristic option found

the best in 2 tests.

Machine learning helps to find the best setting. In 9 out of the 11 tests the best settings were observed

when one of the machine learning options is used. Neural networks were used when finding the best setting

in 7 tests, whereas regression trees were used when finding the best setting in 2 tests. For the remaining 2

tests the best setting is observed when machine learning is not used.

Based on this preliminary analysis, we focus our tests on two of the configurations, both using pairwise

coverage and a neural network. We refer to these as p32nn32 (for the 32 + 32 option) and p48nn16 (for the

48 + 16 option).

5.3. Comparison with default settings

In this section we compare the solution times of the settings obtained from STOP with the times of the

default settings of the MIP solvers. Based on the analysis from the previous section, we focus our attention

on two possible options for STOP: p32nn32 and p48nn16. The p refers to the choice of pairwise coverage,

the nn refers to the use of a neural network, while the first and second numbers indicate how many settings

are tested before and after machine learning is performed, respectively.

In Table 5, Table 6 and Table 7 we show the solution times for the default settings and percentage

improvement of STOP settings found with p32nn32 and p48nn16. In cases where we tested all 21 config-

urations for STOP, we also report the percentage improvement for the worst of the 21 configurations, and

the percentage improvement for the best of the 21 configurations. To demonstrate the potential usefulness

of STOP, however, we believe that it makes more sense to look at the performance of a single option, such

as p32nn32 or p48nn16, across all solvers and instance classes.

For p and misc instances all 1296 (= 34 ∗ 42) settings were tested for CPLEX with six parameters to

find the true best solution time. For p instances, we also tested all 104976 settings for CPLEX with ten

parameters. We did these exhaustive tests in order to see how STOP compares to the true best.
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Table 5: Solution times comparison on CPLEX. Note that “Worst” and “Best” refer to the setting reported
by STOP with the worst and best of the 21 configurations.

STOP Methods (% improvement)
CPLEX Default (s) Worst p32nn32 p48nn16 Best True best

p 6 par. 0.6059 32.9% 34.3% 35.2% 35.2% 36.0%
10 par. 0.6109 33.0% 35.2% 36.2% 36.6% 41.6%

misc 6 par. 81.84 45.0% 56.9% 53.2% 56.9% 58.5%
10 par. 81.41 36.4% 40.7% 47.3% 58.5% unknown

circuit 6 par. 98.84 2.4% 35.4% 33.5% 35.9% unknown
aircraft-med 6 par. 505.79 60.7% 69.7% 66.2% 69.8% unknown
aircraft-easy 6 par. 1.62 35.2% 54.9% 54.3% 55.6% unknown

Table 6: Solution times comparison on CBC.

STOP Methods (% improvement)
CBC Default (s) Worst p32nn32 p48nn16 Best

p 22.57 74.1% 74.5% 74.3% 74.5%
misc 129.37 52.6% 77.9% 82.7% 82.7%

circuit 58.76 1.0% 1.0% 3.0% 3.3%
aircraft-easy 137.28 87.7% 88.2% 87.7% 88.2%

Table 7: Solution times comparison on GLPK. Because of long running times, only two configurations of
STOP were tested.

STOP Methods
(% improvement)

GLPK Default (s) p32nn32 p48nn16
p 3.08 45.8% 30.8%

misc 533.71 87.2% 87.2%
circuit 593.26 63.0% 63.1%

aircraft-easy 2024.35 99.5% 99.4%
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Table 8: CPLEX default settings and the suggested settings of STOP.

Parameter Default Circuit Aircraft-med
MIP emphasis automatic feasibility feasibility
Node selection best-bound best-bound best-bound
Branching var. sel. automatic automatic pseudo costs
Dive type automatic traditional dive traditional dive
Fractional cuts automatic off on
MIR cuts automatic off automatic

Table 9: CBC default settings and the suggested settings of STOP.

Parameter Default Circuit Aircraft-easy
Strong branching 5 0 0
Cost strategy off priorities priorities
Gomory cuts ifmove off root
MIR cuts ifmove ifmove root
Probing ifmove off on
Clique cuts ifmove on root
Feasibility pump on on off

As can be seen from Table 5, Table 6 and Table 7, STOP’s worst method’s settings are always better

than the default settings. Moreover, the reference configurations of p32nn32 and p48nn16 find settings that

are often much faster than the default settings. In only one case, circuit instances on CBC (Table 6), does

STOP fail to find a significant improvement over the default setting. However, the solution time for the

default setting is faster than the best method of CPLEX, 63.31 (Table 5). This indicates that the default

CBC setting is good for the circuit instances, which is why STOP was not able to find a much better setting.

5.4. Tests on Similar Instances

In Section 2 we stated that an assumption for our approach is that good settings for the test instances will

be good settings for similar type of instances. To test this assumption and to see how well STOP behaves,

we used the settings reported from STOP to test similar instances.

We considered three instances (sobel, laplace, adpcm-decoder) to find better parameter settings for the

circuit project and three instances (airland4-R2, airland5-R1, airland5-R2) for aircraft landing. The default

setting and the suggested setting of STOP can be seen in the Tables 8, 9, and 10. We did not perform

additional tests with p or misc instances since there are not many additional instances from those classes.

Tables 11, 12, and 13 show the solution times of the default settings, STOP’s suggested settings and the

percentage change in time over the default setting for the circuit instances. We performed these tests with

a one hour time limit. In every case for which an optimal solution was found, STOP’s settings lead to a
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Table 10: GLPK default settings and the suggested settings of STOP.

Parameter Default Circuit Aircraft-easy
Scaling equilibration equilibration equilibration
Pricing steepest edge steepest edge largest coeff
Branching driebeck-tomlin most fractional last var
Backtrack best projection best bound breadth first
LP presolve off on on
Method new b&b old b& b new b& b with cuts

Table 11: (CPLEX) The solution times comparison between the default settings and STOP’s settings for
the circuit project.

Instance Default STOP % Change
gsm 168.17 81.64 51.45
idctcol 578.57 358.24 38.08
idctrow 238.41 152.70 35.95
adpcm-coder 386.90 243.62 37.03

shorter solution time.

Tables 14, 15, and 16 show the solution times comparison between the default settings and STOP’s

settings for the aircraft landing instances. In only two cases did instances have longer solution times with

the STOP settings, and in both these cases the difference is less than two seconds. In many cases, however,

the improvement by STOP is also insignificant. However, when the difference is significant STOP does

significantly better, such as with airland8-R2 with CPLEX and airland6-R2 with GLPK. The results for

CBC are the least impressive, though even in this case the setting recommended by STOP is slightly better

than the default.

6. Conclusion

We have presented a method to tune software parameters using ideas from software testing and machine

learning. The method is based on the key observation that for many classes of instances, results will be good

Table 12: (CBC) The solution times comparison between the default settings and STOP’s settings for the
circuit project.

Instance Default STOP % Change
gsm 33.09 31.34 5.28
idctcol 3600 3600 0.00
idctrow 3456.58 2466.63 28.63
adpcm-coder 277.67 16.61 94.01
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Table 13: (GLPK) The solution times comparison between the default settings and STOP’s settings for the
circuit project.

Instance Default STOP % Change
gsm 1568 661.61 57.80
idctcol 3600 3600 0.00
idctrow 891.33 696.81 21.82
adpcm-coder 3600 3600 0.00

Table 14: (CPLEX) The solution times comparison between the default settings and STOP’s settings for
the aircraft landing.

Instance Default STOP % Change
airland1-R1 0.05 0.04 20.00
airland2-R3 0.21 0.17 19.05
airland3-R2 0.61 1.44 -136.07
airland4-R3 64.38 59.34 7.83
airland5-R3 93.52 76.63 18.06
airland6-R2 4.51 2.39 47.01
airland7-R1 0.58 0.56 3.45
airland8-R1 2.83 2.83 0.00
airland8-R2 14268.83 3372.61 76.36
airland8-R3 11.56 8.55 26.04

Table 15: (CBC) The solution times comparison between the default settings and STOP’s settings for the
aircraft landing.

Instance Default STOP % Change
airland1-R1 0.30 0.26 13.33
airland2-R3 9.96 4.34 56.42
airland3-R2 5.27 4.88 7.40
airland4-R3 3600 3600 0.00
airland5-R3 3600 3600 0.00
airland6-R2 11.16 12.70 -13.79
airland7-R1 0.77 0.74 3.89
airland8-R1 453.44 393.38 13.24
airland8-R2 3600 3600 0.00
airland8-R3 3600 3600 0.00
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Table 16: (GLPK) The solution times comparison between the default settings and STOP’s settings for the
aircraft landing.

Instance Default STOP % Change
airland1-R1 0.43 0.18 58.13
airland2-R3 1.48 0.86 41.89
airland3-R2 3600 4.23 ≥99.88
airland4-R3 3600 3600 0.00
airland5-R3 3600 3600 0.00
airland6-R2 3600 551.11 ≥ 84.69
airland7-R1 69.48 5.46 92.14
airland8-R1 3600 3600 0.00
airland8-R2 3600 3600 0.00
airland8-R3 620.05 505.99 18.39

if a few critical parameters have good values, though the set of critical parameters depends on the class of

instances.

In our computational tests of MILP solvers, the worst result our implementation reported out of 21

configurations is always better than the solution time of the default setting. Moreover, the solution times

achieved by two reference configurations are often much faster than the solution time of the default setting.

Our tests of related instances supports the assumption that good settings for the test instances will also be

good for similar instances.

We leave to future work a careful study of configuring STOP itself, including the possibility of a more

sophisticated use of machine learning. Based on the tests for this paper, we felt that none of the three options

for selecting settings appears to dominate the others, but the best settings are often observed when pairwise

coverage is used. Machine learning certainly helps to find the best setting. The two reference configurations

of p32nn32 and p48nn16 appear to be good choices.

Although developed for MILP solvers, our method is flexible and may be applicable to other algorithms

for which the key observation is valid. In addition, the method can be easily extended and may be useful

with different metrics, such as the maximum time for several instances, the percent gap after a fixed amount

of time, or the solution quality for a heuristic algorithm.

Our implementation of the method, STOP, has been released under a free and open-source license.
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