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ABSTRACT 
We present GESMI (Generative Electronica Statistical Modeling 
Instrument), a software system that generates Electronic Dance 
Music (EDM) using evolutionary methods. While using machine 
learning, GESMI rests on a corpus analysed and transcribed by 
domain experts. We describe a method for generating the overall 
form of a piece and individual parts, including specific patterns 
sequences, using evolutionary algorithms. Lastly, we describe 
how the user can use contextually-relevant target features to query 
the generated database of strong individual patterns. As our main 
focus is upon artistic results, our methods themselves use an 
iterative, somewhat evolutionary, design process based upon our 
reaction to results. 

Categories and Subject Descriptors 
H.5.5 [Sound and Music Computing]: Methodologies and 
techniques.  

General Terms 
Design, Human Factors. 

Keywords 
Generative Music, Evolutionary Art, Electronic Dance Music. 

1. INTRODUCTION AND MOTIVATIONS 
Computational creativity, or metacreation [22] is the idea of 
endowing machines with creative behavior. Metacreation, as the 
contemporary approach to generative art, involves using tools and 
techniques from artificial intelligence, artificial life, and machine 
learning (themselves inspired by cognitive and life sciences) to 
develop software systems that are creative on their own. 

Musical metacreation can be broken down into a number of 
canonical problems:  

1. Composition – being the process of creating a series of 
performance instructions for musical performers, (i.e. a 
score); 

2. Interpretation – being the process of performing a musical 
composition and producing an audio rendering;  

3. Improvisation – which combines (1) and (2) in real-time 
performance;  

4. Accompaniment – being the process of following a live 
performer in an accompanying role, possibly performing pre-
composed music; 

5. Continuation – being the process of continuing a given 
musical input in the same style. 

Metacreative systems can be corpus-based or being generating 
from scratch, and inputs/outputs can be either raw audio signal or 
symbolic notations (i.e. a musical score, MIDI file, a text file). 
While human-competitive results have long been achieved for 
corpus-based composition [5], interpretation is a significantly 
harder problem. While artificial intelligence has been 
tremendously successful at emulating cognitive operations (like 
composition), human-level physical actions (such as playing an 
instrument) is still out of reach. This is demonstrated by the 
RENCON workshops1, in which computer systems attempt to 
generate expressive musical performance from musical scores, 
with only moderate success.  

The vast majority of the literature on computational creativity is 
looking at composition and often reaches a human-competitive 
level for short excerpts. However, long-term dependencies and 
overall structure are harder to capture. In this work, we tackle the 
problem of generating complete pieces of EDM music using an 
audio corpus that has been transformed into a symbolic corpus by 
human experts. EDM music is an appropriate domain to tackle for 
the purposes of musical metacreation, as the interpretation 
problem is mitigated: EDM practitioners typically use machines 
(software and hardware) to directly produce audio signals. This 
simplifies the interpretation problem quite significantly. 

We have employed experts to hand-transcribe 100 tracks in four 
genres: Breaks, House, Dubstep, and Drum and Bass. Aspects of 
transcription include musical details (drum beats, percussion 
parts, bass lines, melodic parts), timbral descriptions of all parts 
(i.e. “low synth kick, mid acoustic snare, tight noise closed 
hihat”), signal processing (i.e. the use of delay, reverb, 
compression and its alteration over time), and descriptions of 
overall musical form. This information is then compiled in a 
database, and analysed to produce data for generative purposes. 

Applying generative procedures to electronic dance music is not 
novel; in fact, it seems to be one of the most frequent projects 
undertaken by nascent generative musician/programmers. EDM’s 
repetitive nature, explicit forms, and clearly delimited style 
suggest a parameterized approach. As with many cases of creative 
modeling, initial success will tend to be encouraging to the artist: 
generating beats, bass lines, and synth parts that resemble specific 
dance genres is not that difficult. However, progressing to a stage 
where complete pieces are generated that are indiscernible from 
the model is another matter. In those cases, the “artistic voice” 
argument tends to emerge: why spend the enormous effort 
required to accurately emulate someone else’s music, when one 
can easily insert algorithms that reflect one’s personal aesthetic? It 
is indeed possible to generate music that is, in such cases, merely 
influenced by the corpus. While this may prove more artistically 
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satisfying than emulation, we suggest that both are needed. The 
proposed system, GESMI (Generative Electronica Statistical 
Modeling Instrument), through user formulated high level queries, 
allows for the close emulation of the corpus as well as the 
exploration of its surroundings, thus allowing for potential 
unexpected directions in composition. 

The work described in this paper is part of the effort of a research 
group2 that is actively investigating computational creativity. Our 
goal is both scientific and artistic: can we produce complete 
musical pieces that are modeled on a corpus, and indistinguishable 
from that corpus’ style? While minimizing human/artistic 
intervention, can we extract formal procedures from the corpus 
and use this data to generate all compositional aspects of the 
music so that a perspicacious listener of the genre will find it 
acceptable? We have already undertaken empirical validation 
studies of other styles of generative music [9], and now turn to 
EDM.  

It is, however, the artistic purpose that dominates our motivation 
around GESMI. As the authors are also composers, we are not 
merely interested in creating test examples that validate methods. 
Instead, the goals remain artistic: can we generate EDM tracks 
and produce a full-evening event that is artistically satisfying, yet 
entertaining for the participants? 

In the following, we describe the use of evolutionary algorithms 
(EA) to generate the overall form of complete pieces (Sections 3 
and 3.1), specifically the generation of form-states, which are the 
states of specific parts within that form (Section 3.2), the 
determination of how form-states become specific patterns 
(Section 3.2.3), and a description of how patterns, both formal and 
part-specific, are selected from a population of pre-evolved forms 
and patterns (Section 4). Figure 1 presents the overall structure of 
the program. GESMI starts by generating an overall form for the 
piece, and then determines form-states for each part, after which it 
generates a database of valid patterns and assembles these based 
on the user preferences. As such, GESMI has a hybrid architecture 
that behave in both top-down and bottom-up fashion.  
 

 
Figure 1. Program structure. The corpus is directly used in 
the generation of form, form-states, pattern-locations, and 

individual part patterns (not described here).  
 

2. BACKGROUND AND RELATED WORK 
Evolutionary computation has been used within music for over 
two decades in various ways. Todd and Werner [19] provide a 
good overview of the earlier musical explorations using such 

                                                                 
2 Generative Electronica Research Project: www.metacreation.net  

approaches, while Miranda and Biles [17] provide a more recent 
survey. Very few of these approaches have been compositional in 
nature; instead, their foci have tended to be studies, while ours are 
the generation of complete musical compositions.   

Several real-time applications of GAs have been used, including 
[21], which selected individuals from an Interactive Genetic 
Algorithm (IGA) suitable for the immediate situation within a 
real-time improvisation. Another approach was by Beyls [1] in 
which the fitness function sought either similar individuals or 
contrasting individuals to an immediate situation within an 
improvisation. 

Thywissen [18] describes a system that allows composers to 
evolve musical structures interactively. Of note is the 
consideration of higher-level musical structures (i.e. Form), which 
he calls meta-compositional grammars. 

Waschka [20] used a GA to generate contemporary art music. His 
explanation of the relationship of time within music is 
fundamental to understanding the potential for evolutionary 
algorithms within art-music: “unlike material objects, including 
some works of art, music is time-based. The changes heard in a 
piece over its duration and how those changes are handled can be 
the most important aspect of a work.” Waschka’s GenDash has 
several important attributes, a number of which are unusual: an 
individual is a measure of music; all individuals in all generations 
are performed; the fitness function is random, leading to random 
selection; the composer chooses the initial population. Of note is 
the second stated attribute, the result of which is that “the 
evolutionary process itself, not the result of a particular number of 
iterations, constituted the music”. Waschka provides some 
justifications for his heuristic choices, suggesting that while they 
may not be observed in real-world compositional process, they do 
provide imusically useful results. 

Eigenfeldt and Pasquier [7] describe a system in which a 
population of rhythms is evolved, and the successive generations 
serve as the unfolding of musical motives. A second population of 
forms is evolved, which determines how separate rhythmic 
motives are interconnected. 

In summary, EAs have been used successfully in experimental 
music [1, 8, 10, 16 20] and improvisation [2, 3, 21] for several 
years. In most cases, researchers and artists have been able to 
overcome the main difficulty in applying such techniques to 
music – namely the difficulty of formulating an effective aesthetic 
fitness function – through a variety of heuristic methods. One 
particularly attractive feature of EAs to composers relates to the 
notion of musical development – the evolution of musical ideas 
over time – and its relationship to biological evolution. As music 
is a time-based art, the presentation of successive generations – 
rather than only the final generation – allows for the aural 
exposition of evolving musical ideas. 

However, Electronic Dance Music (EDM), particularly its non-
experimental genres, does not offer the same leisurely exposition 
of multiple ideas as does contemporary concert music or jazz: 
there are fewer motives, and their presentation requires explicit 
control [4]. Although more heuristic methods are required in order 
to successfully generate EDM algorithmically, evolutionary 
algorithms still offer creative possibilities within the genre. 

In terms of EDM, Wooller and Brown describe a system for 
evolutionary morphing of EDM [23], in which transformation of 
stylistic material is user-defined through a system of weightings. 
Evolectronica, an online site, was active until 2010, and was a 
self-described effort at a “communal music making experience” in 
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which a community of users rated evolved individuals that 
consisted of audio loops, in an effort to create “eclectic electro 
house beats, laid-back deep house, future drum and bass, and 
brass/wind/strings/percussion”. This work eventually grew into 
DarwinTunes, described more fully in [15]. 

Although the use of EAs within the creation of EDM has been, so 
far, somewhat limited, the use of machine-learning within the 
field has been explored: see [6] for a good overview.  

Genetic Algorithms (GAs) have proven to be useful in situations 
where solutions may be known, but determining specific 
algorithms in order to achieve those solutions are difficult to 
conceive. This is the case in artistic situations, in which rules for 
aesthetic evaluation are often extremely difficult to formulate. For 
example, one of the specific requirements of our research is to 
generate individual states for instruments – whether an 
instrumental part is present during a phrase – within the overall 
formal structure of an EDM track. The complex relationships 
between the states of instrumental parts in EDM are intuitively 
understood as being “correct” by composers; however, this 
“correctness” cannot be easily translated into an algorithm. An EA 
proved to be particularly useful in providing a solution (see 
Section 3). 

An intriguing possibility for the application of an EA within 
music is the exploration of the building block hypothesis [12]: 
instead of attempting to directly generate a final complex solution 
– in our case a complete composition – it is possible to generate 
lower order, yet highly fit, schemata, and then using these 
schemata to assemble the larger composition. This approach 
already has been used to successfully generate music for string 
quartet in which the initial population was derived from a human-
composed corpus [10], and initialized individuals were already 
considered strong. Similarly, selection from a generated 
population of individual movements was used to assemble a larger 
multi-movement composition [7]. In the research presented here, 
we generate a large population of individuals for various musical 
requirements – forms and states; beat patterns, bass lines – and 
then select from these populations based upon the contextual 
requirements. Somewhat counter to most uses of evolutionary 
algorithms in music, in which structure may evolve organically, 
we use the products of EAs to assemble structures, which 
themselves have been generated using tightly controlled 
evolutionary algorithms. 

3. FORM GENERATION 
Although EAs have been used to generate beat patterns for EDM 
[13, 14], we believe that such goals can be accomplished through 
other methods more effectively. Within EDM, there is a great deal 
of constraint on what constitutes a successful beat – one that 
“grooves” [4]. Certain musical expectations must be met – for 
example, a snare on beats two and four – along with a variable 
amount of fluidity in all parts. Since the number of possible 
solutions is actually limited, many other, less complicated, 
techniques can be used. 

We have chosen instead to use probabilistic methods, including 
Markov chains, to generate actual beat patterns (see Section 4). 
The results have proven to be extremely successful – replicating 
the consistency required by EDM, yet offering the necessary 
originality to maintain interest.  

Form, or the unfolding of music in time, provides an opportunity 
to use EAs. The four EDM styles analysed use 8-bar phrases – 
comprised mainly of 2-bar patterns – to a very high degree of 
consistency: for example, less than 2% of the 621 phrases in the 

Breaks corpus are something other than 8 bars in length. 
Similarly, there is not a great deal of variation within the 
individual patterns: repetition, both at the macro- (form) and 
meso- (pattern) levels, is explicit (see Figure 2). For example, no 
part (i.e. instrument) in the Breaks corpus contained more than 
five unique patterns. The complexity of the music is at the micro-
level (subtle delays and accents of onsets) from which we 
appreciate the “groove” [4], as well as how the individual patterns 
interact, and how these patterns are successively presented. This 
paper addresses the latter aspects: elements of “groove” are yet to 
be incorporated. 

 
Figure 2. Formal elements within EDM: patterns (1, 2, 4, or 8-
bars), phrases (8-bar collections of patterns), and sections (of 

a variable number of phrases). Shading indicates pattern 
changes between phrases. 

All of the tracks in all four genres within the corpus can be 
segmented into five distinct sections, which we label A-E: 

A- Lead-in: the initial section with often only a few parts present; 

B- Intro: a bridge between the Lead-in and the Verse. More 
instruments are present than the Lead-in, but not as full as the 
Verse; 

C- Verse: the main section of the track, in which all instruments 
are present, which can occur several times; 

D- Breakdown: a contrasting section to the verse in which the beat 
may drop out, or a filter may remove all mid– and high–
frequencies. It will tend to build tension, and lead back to the 
verse; 

E- Outro: the fade-out of the track. 

Furthermore, after close-listening to the tracks within the corpus, 
the following generalities were determined (for the specific tracks 
in their specific styles):  

– Every track begins with a Lead-in (A), and ends with an Outro 
(E); 

– Sixteen different instrumental parts were identified, including a 
main drum beat (MBeat), two additional auxiliary percussion 
parts (Aux1 and Aux2), two different bass parts (Bass and Bass2), 
two rhythmic synth parts, (RSyn1 and RSyn2), two melodic synth 
parts (MSyn1 and MSyn2), pads, keys, drone, atmospheric synth, 
and ancillary melodic parts (Axl, Axl2, Axl3) such as vocals and 
guitars. These are the total number of unique parts: no track 
exhibited all sixteen parts within it; 

– Parts enter or drop out at the start of any phrase. Phrases are 
constant in terms of their contents: parts rarely drop out or enter 
within a phrase: the exception being drum- and percussion-fills, 
and one-hits (single events that occur only once); 

– Each individual part may contain between 1 and 5 separate 
patterns over a single track; 

– Variety is introduced by one-hits and fills (not discussed here). 
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Figure 3. Complete Form-state (including pattern #) for Burma, by Lostep, Sasha Remix radio edit (Breaks corpus). Individual 
parts are listed above, phrases numbers indicated in the first column, and sections are indicated by letter names in the second 

column. 

In Figure 3, each row represents an 8-bar phrase; each column an 
instrumental part. Values in columns indicate pattern numbers 
(stored elsewhere). Zeros indicate the part being tacet (off). This 
representation thus contains the overall form – in this case, the 
first ten phrases are AABBBBDCCCC – the individual part’s 
patterns, and their location within the form. We refer to this 
representation, as shown in Figure 3, as a form-state, and the goal 
of our generative formal structure. 

3.1 Generating Form via Markov Model 
Form-states seem, at first glance, straightforward and intuitive. 
However, after some cursory analysis, it becomes quickly 
apparent that a successful form-state is based upon complex 
interactions between individual parts, and within the part itself. 
No heuristic solutions for algorithms presented themselves; 
however, as rules could be determined for successful individuals, 
we turned to an evolutionary algorithm. 

A genetic algorithm was created to generate a population of 
forms-states modeled on the corpus (see Section 3.2). The first 
step involves generating an overall form using a first-order 
Markov model operating in reverse: each section’s predecessor, 
rather than successor, was stored (see Table 1).  

Table 1. Markov transition table of a section’s predecessor,  
“Breaks” corpus. Sections at left are preceded by sections 

above with indicated probability 

 A B C D E 

A 1.0     

B 0.35 0.65    

C  0.04 0.76 0.2  

D  0.11 0.31 0.57 0.01 

E   0.26 0.02 0.72 

 
The user requests the total number of phrases (the mean number 
of phrases per piece for the “Breaks” corpus is 27), and the 
number of sections (the mean number of separate sections for the 
“Breaks” corpus is 7). A population of 100 individuals is 

generated, whose genotype consists of the five form values, A-E. 
Each individual is generated in reverse, beginning with E, using 
the Markov table for probabilistic continuations. When the 
generation arrives at A (the target), a test is run to determine if the 
length of the last section (A) is within a range of acceptability: a 
heuristically chosen value (0.05) around the corpus’ mean (0.102 
of the total length of the track). If the individual is within the 
acceptable range, the individual is reversed, and generation is 
complete; if not, generation continues. When 100 valid 
individuals are generated, they are individually rated using a 
distance function in relation to the user-specified values: the 
closest matched individual is then selected. As this single 
generation produces a musically valid and successful form, there 
is no need to further evolve the population. 

3.2 Generating Part States via Genetic 
Algorithm 
Given a generated form (see Section 3.1), states (on or off) for 
each part can be generated now – the form-state. Initially, we are 
only generating on or off states, as the actual pattern numbers are 
generated later (see Section 3.2.3). 

3.2.1 Initializing with Strong Individuals 
Originally, a population of form-states was randomly generated 
for the 16 instrumental parts, with initial states being either off (0) 
or on (1); however, we now use more intelligent methods in order 
to initialize the population with stronger individuals. Using 
probabilities derived from the corpus, individual part states are 
generated that reflect the corpus for that specific part, in terms of 
probability of appearance in a specific section, likelihood entering 
in the first phrase of a section, etc. Given the representation of 
data shown in Figure 3, we consider the each part to have strong 
vertical relationships: consistent within themselves (as each part is 
displayed in a vertical column); however, horizontal relationships 
– that is, relationships between parts, and what we consider to be 
an important defining aspect of successful EDM – have not been 
considered. These relationships are evolved through the genetic 
algorithm. 
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3.2.2 A Multi-Objective Fitness Function 
A multi-objective fitness function evaluates each individual based 
upon the following criteria, comparing it to data derived from the 
corpus itself. “Density” refers to whether a part is on for a given 
phrase, relative to the other parts in a phrase, or to successive 
phrases within its own part: 

– F1: part density per section (i.e. the ratio of on to off states for 
parts within a specific section); 

– F2: density changes at section divisions (i.e. how many parts 
enter or exit at a section change, relative to the last phrase of the 
previous section); 

– F3: part changes at section divisions (i.e. which parts enter or 
exit at specific section beginnings); 

– F4-F13: specific individual part relationships (i.e. comparing the 
overall density of two parts within a section, as well as the 
percentile of both parts being active at the same time). The part 
relationships include MBeat-Aux1, Aux1-Aux2, Bass-Bass2, 
RSyn1-RSyn2, MSyn1-MSyn2, Pads-Keys, Pads-Drone, Drone-
Atmos, Axl-Axl2, Axl2-Axl3. 

Evaluations are made in comparison to coefficients derived from 
the analysis of the corpus. For example, a three-phrase section in 
which a part is off, on, and on (0 1 1) results in the coefficient 
0.67, for that part, in that section. All coefficients across all tracks 
for that section and part are collected from the corpus, and the 
mean and standard deviation calculated. If the generated part’s 
coefficient for the section is outside the range of Mean +- 
Standard deviation, the part is penalized. The overall fitness, F(x) 
for a given individual x reads as: 

F(x) 
i1

13

 i Fi(x)  

; where i are the weights used to prioritize the various objectives 
(the actual values are out of the scope of this paper) and Fi are the 
13 objective functions described above. 

Deriving the proper fitness functions was accomplished by 
comparing ratings of randomly generated form-states with ratings 
of the actual corpus. As individuals could be penalized for falling 
outside of a single standard deviation, outlying parts within the 
corpus would still be penalized. Some objectives beyond the 
thirteen described here were not used, despite their apparent 
usefulness. For example, comparing consistency within parts 
between section repetitions inside a track: while this seemed like a 
good musical aspect to test, no discernible difference could be 
found between the random generation and the corpus analysis, due 
to the wide deviation found within the corpus itself. 

Finally, an additional fitness adjustment was added to penalize 
null phrases – those that are completely silent.  

A tournament selection (of size two) is then made within the 
population of 100 individuals: for each tournament, winners (with 
duplicates removed) automatically pass to the next generation. 
This elitist selection is repeated until half of the next generation is 
generated. Individuals that win no tournaments are replaced with 
new individuals that are mated from parents that are both winning 
individuals. Mating is done using multi-point crossover: two 
randomly chosen parents’ complete sections are randomly 
combined, resulting in a single offspring. 

A maximum of 20 generations are evolved, with a potential exit if 
the highest rated individual’s score drops below a threshold. The 
threshold is set as the mean coefficient for each fitness criteria 

derived from the corpus analysis: once the evolution passes the 
evaluated state of the corpus, evolution is complete.  

3.2.3 Determining Pattern Change Locations 
The fitness functions within the GA for the form-state generation 
are primarily concerned with sectional relationships through 
densities, as well as relationships between parts. The progression 
of individual parts via the introduction of new patterns is not 
considered. How patterns are distributed within a part is now 
discussed. 

Although the maximum number of patterns within a part could be 
derived through probabilities, a heuristic solution as to when and 
where these patterns should change was not apparent; therefore, 
more analysis of the corpus was required. First, the probability of 
a particular section having a pattern change contained within it 
was determined (see Table 2). A higher percentile of pattern 
changes occur in the Lead-in (A), as this section is generally used 
to introduce important parts. The remaining parts are often 
introduced in the Intro (B) section: in fact, it is the introduction of 
specific parts – such as the bass – that often will determine 
sectional divisions. The Verse (C) has to lowest amount of new 
pattern introductions, as it tends to be a section in which 
previously introduced individual patterns are combined. Finally, 
the Breakdown (D) often introduces new patterns in the 
synthesizer parts, while the drums and percussion drop out.  

Table 2. Probability of new beat patterns occurring in a 
section, for the “Breaks” corpus 

A 0.4 

B 0.15 

C 0.04 

D 0.12 

E 0.07 

 

A different method was used in generating the number of patterns 
needed per section, rather than a straightforward stochastic 
probability generation. It was found that there was a tremendous 
variation between tracks for the number of parts in a section, and 
using stochastic methods would tend to flatten out this data; 
instead, the actual values from the corpus are stored, and a 
random selection is made from these values: as such, we are 
sampling the corpus data directly. 

Table 3. Probability distributions for new patterns occurring 
in the first phrase of a section, in the second through 

penultimate phrases, or the last phrase, “Breaks” corpus. 

 
First 

phrase 
Middle 
phrases 

Final 
phrase 

A 0.9 0.1 0.0 

B 0.85 0.05 0.1 

C 0.93 0.03 0.04 

D 0.72 0.07 0.21 

E 0.415 0.17 0.415 

 

Once the total number of patterns within a track is distributed 
through the sections, the location of the pattern changes is 
determined within the section’s phrases. An array is calculated 
accumulating the number of pattern changes occurring in the 
corpus during a section’s first phrase, the second through 
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penultimate phrases, and the final phrase (see Table 3). Given the 
number of pattern changes that are required for the section, a 
roulette-wheel selection is made from the percentile to determine 
their location(s).  

3.2.4 A Population of Strong Individual Form-States 
Once the system was put into artistic practice, it became obvious 
that users desired some control over the generation of form. 
Rather than being forced to interact with the system in a Monte-
Carlo fashion – generate, accept the result, or generate again – it 
was found more useful to generate a large population of strong 
individuals, each the strongest of a separate evolution, and select 
from those based upon user-set conditions. Once this large 
(>2000) population is generated (which takes several hours), a 
user can select preferred parameter states – for example, the 
presence of two melodic synth parts, or the presence of the 
auxiliary percussion – and the system returns the individual form-
state that is rated closest, using a multi-dimensional Euclidian 
distance function (see Figure 4). 

 
Figure 4. Setting targets for selection from a population of 

form-states. As left, light-grey displays ranges from the 
population, green lines display mean values, dark grey show 

user selection. At right, weightings for selections are 
determined: in this case, only density, MSynth1 & 2, and Keys 

rating are used. 

4. PATTERN GENERATION AND 
SELECTION 
4.1 Beat Pattern Generation 
Pattern generation involves methods that cannot be described in 
detail here, for reasons of space. Only a cursory description is 
given here, while  a more thorough discussion can be found in a 
companion paper [11]. Three different methods are used to 
generate beat patterns, including: 

1. Generating individual subparts (Kick, Snare, Closed Hihat, 
and Open Hihat) via probabilities for a given onset occurring 
at a given time (beat); 

2. First-order Markov generation of individual subparts; 

3. First-order Markov generation of combined subparts. 

In the first case, probabilities are calculated for each subpart (see 
Figure 5). 

In the second case, data is stored as subdivisions of the quarter 
note, as simple on/off flags (i.e. 1 0 1 0) for each subpart. 
Continuations are considered across eight-bar phrases. As there is 
a great deal of repetition, certain patterns are clearly emphasized 
within the Markov table. 

Figure 5. Onset probabilities for individual subparts, 1 bar 
(sixteenth-note subdivisions), C section, “Breaks” corpus 

In the third case, data is stored by beat as a 4 bit flag: bit 4 = Kick; 
bit 3 = Snare; bit 2 = Closed Hihat; bit 1 = Open Hihat. This 
method ensures that polyphonic relationships between parts are 
encoded, as well as time-based relationships. This 4-bit 
representation of beat patterns is used not only for drum patterns, 
but the three auxiliary percussion parts as well (see Figure 6). 

 
Figure 6. Representing the 4 drum subparts as 4-bit 

cumulative values for one beat (sixteenth-note subdivision). 

In all cases, the data used for generation is context dependent: 
separate databases are maintained for separate sections. Thus, 
when a beat pattern is required that first appears in section B, only 
those patterns that appeared in section B of the corpus are used. 
Note that this example describes the generation of beat patterns; 
similar methods are used for the generation of all parts, including 
pitched parts such as bass and synthesizers. 

4.2 Pattern Selection from a Population 
In actual usage, it was found that the third method produced the 
most accurate re-creations of beat patterns found in the corpus, yet 
the first method produced the most surprising, while maintaining 
usability. Rather than selecting only a single method for beat 
generation, it was decided that the three separate methods 
provided distinct “flavors”; as such, all three methods were used 
in the generation of a large (>2000) database of potential patterns. 

As a track’s beat pattern influence the “feel” of the track, the user 
can select general tendencies for the pattern as targets (see Figure 
7). 

For beat generation, these are separated between the kick/snare, 
and hihats, and include: 

– Density: a coefficient for the number of actual onsets over the 
pattern divided by the possible number of onsets; 

– Syncopation: the number of onsets that are not on the part’s 
usual strong beats; 

– Symmetry: the number of onsets in the second half of the 
pattern that occur in the same location in the first half of the 
pattern. 

What we have found is that rather than attempting to influence 
generation (which often led to continually generating and 
rejecting patterns until an “interesting” pattern appeared), the 
population of strong individuals can be created that contains a 
great deal of diversity. The user can fine-tune the criteria in order 
to influence the final selection. 
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Figure 7. User-set targets for selection from pattern 

population. 

Furthermore, target selection from a population provides an 
additional benefit in the next stage of our research: successive 
generations of entire compositions can be guaranteed to be 
divergent by ensuring targets for parameters, such as beat 
patterns, are different for each generation. 

5. CONCLUSIONS AND FUTURE WORK 
We have described our ongoing investigation into generating 
EDM using population-based evolutionary methods, based upon 
expert analysis and transcription of a corpus. We described a 
method of generating and selecting overall forms, as well as 
individual patterns, through both evolutionary and probabilistic 
methods. Throughout this work, constraints and heuristics have 
been used to maintain vertical and horizontal relationships as 
found in the corpus. Note that our implementation of generative 
methods for one-hits and fills, both integral elements of variety in 
EDM, have not been discussed for reasons of brevity. 

Future work includes expanding the potential targets for selection 
from the populations, based upon user requests. Through extended 
interaction with the system, users will fine-tune their targets, 
rather than simply re-generating individuals hoping for a 
successful result.  

Two essential elements of EDM have not been discussed: (1) the 
timbral selection of parts (i.e., instruments) and dynamic signal 
processing (i.e. audio mixing and post-production techniques). 
Although we are generating audio [24], the final product still 
relies upon human selection for these aspects, both of which are 
actively being researched.  

Lastly, if one considers that the described system is a virtual EDM 
Producer, we plan to develop a matching virtual DJ, one that 
assembles existing tracks created by the Producer into hour-long 
sets. Assemblage would involve signal analysis of every 
generated track’s audio in order to determine critical audio 
features; individual track selection would then be carried out 
based upon a distance function between the track data and a 
generated timeline, which may or may not be derived from 
analysis of a given corpus consisting of DJ sets. This timeline 
could be varied in performance based upon real-time data: for 
example, movement analysis of the dance-floor could determine 
the ongoing success of the selected tracks. 

Our evaluation plan includes submitting our audio results to live 
situations, such as upcoming algoraves3 – the system has been 
accepted for performance at two festivals of Generative Art. 
Audio output from our system can be found online [24].  

                                                                 
3 http://algorave.com/  
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