
Evolving Structures for Electronic Dance Music
Arne Eigenfeldt

School for the Contemporary Arts
Simon Fraser University

Vancouver, Canada
arne_e@sfu.ca

Philippe Pasquier
School of Interactive Arts and Technology

Simon Fraser University
Surrey, Canada

pasquier@sfu.ca

ABSTRACT
We present GESMI (Generative Electronica Statistical Modeling
Instrument), a software system that generates Electronic Dance
Music (EDM) using evolutionary methods. While using machine
learning, GESMI rests on a corpus analysed and transcribed by
domain experts. We describe a method for generating the overall
form of a piece and individual parts, including specific patterns
sequences, using evolutionary algorithms. Lastly, we describe
how the user can use contextually-relevant target features to query
the generated database of strong individual patterns. As our main
focus is upon artistic results, our methods themselves use an
iterative, somewhat evolutionary, design process based upon our
reaction to results.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Methodologies and
techniques.

General Terms
Design, Human Factors.

Keywords
Generative Music, Evolutionary Art, Electronic Dance Music.

1. INTRODUCTION AND MOTIVATIONS
Computational creativity, or metacreation [22] is the idea of
endowing machines with creative behavior. Metacreation, as the
contemporary approach to generative art, involves using tools and
techniques from artificial intelligence, artificial life, and machine
learning (themselves inspired by cognitive and life sciences) to
develop software systems that are creative on their own.

Musical metacreation can be broken down into a number of
canonical problems:

1. Composition – being the process of creating a series of
performance instructions for musical performers, (i.e. a
score);

2. Interpretation – being the process of performing a musical
composition and producing an audio rendering;

3. Improvisation – which combines (1) and (2) in real-time
performance;

4. Accompaniment – being the process of following a live
performer in an accompanying role, possibly performing pre-
composed music;

5. Continuation – being the process of continuing a given
musical input in the same style.

Metacreative systems can be corpus-based or being generating
from scratch, and inputs/outputs can be either raw audio signal or
symbolic notations (i.e. a musical score, MIDI file, a text file).
While human-competitive results have long been achieved for
corpus-based composition [5], interpretation is a significantly
harder problem. While artificial intelligence has been
tremendously successful at emulating cognitive operations (like
composition), human-level physical actions (such as playing an
instrument) is still out of reach. This is demonstrated by the
RENCON workshops1, in which computer systems attempt to
generate expressive musical performance from musical scores,
with only moderate success.

The vast majority of the literature on computational creativity is
looking at composition and often reaches a human-competitive
level for short excerpts. However, long-term dependencies and
overall structure are harder to capture. In this work, we tackle the
problem of generating complete pieces of EDM music using an
audio corpus that has been transformed into a symbolic corpus by
human experts. EDM music is an appropriate domain to tackle for
the purposes of musical metacreation, as the interpretation
problem is mitigated: EDM practitioners typically use machines
(software and hardware) to directly produce audio signals. This
simplifies the interpretation problem quite significantly.

We have employed experts to hand-transcribe 100 tracks in four
genres: Breaks, House, Dubstep, and Drum and Bass. Aspects of
transcription include musical details (drum beats, percussion
parts, bass lines, melodic parts), timbral descriptions of all parts
(i.e. “low synth kick, mid acoustic snare, tight noise closed
hihat”), signal processing (i.e. the use of delay, reverb,
compression and its alteration over time), and descriptions of
overall musical form. This information is then compiled in a
database, and analysed to produce data for generative purposes.

Applying generative procedures to electronic dance music is not
novel; in fact, it seems to be one of the most frequent projects
undertaken by nascent generative musician/programmers. EDM’s
repetitive nature, explicit forms, and clearly delimited style
suggest a parameterized approach. As with many cases of creative
modeling, initial success will tend to be encouraging to the artist:
generating beats, bass lines, and synth parts that resemble specific
dance genres is not that difficult. However, progressing to a stage
where complete pieces are generated that are indiscernible from
the model is another matter. In those cases, the “artistic voice”
argument tends to emerge: why spend the enormous effort
required to accurately emulate someone else’s music, when one
can easily insert algorithms that reflect one’s personal aesthetic? It
is indeed possible to generate music that is, in such cases, merely
influenced by the corpus. While this may prove more artistically

1 http://renconmusic.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright © 2013 ACM 978-1-4503-1963-8/13/07...$15.00.

319

satisfying than emulation, we suggest that both are needed. The
proposed system, GESMI (Generative Electronica Statistical
Modeling Instrument), through user formulated high level queries,
allows for the close emulation of the corpus as well as the
exploration of its surroundings, thus allowing for potential
unexpected directions in composition.

The work described in this paper is part of the effort of a research
group2 that is actively investigating computational creativity. Our
goal is both scientific and artistic: can we produce complete
musical pieces that are modeled on a corpus, and indistinguishable
from that corpus’ style? While minimizing human/artistic
intervention, can we extract formal procedures from the corpus
and use this data to generate all compositional aspects of the
music so that a perspicacious listener of the genre will find it
acceptable? We have already undertaken empirical validation
studies of other styles of generative music [9], and now turn to
EDM.

It is, however, the artistic purpose that dominates our motivation
around GESMI. As the authors are also composers, we are not
merely interested in creating test examples that validate methods.
Instead, the goals remain artistic: can we generate EDM tracks
and produce a full-evening event that is artistically satisfying, yet
entertaining for the participants?

In the following, we describe the use of evolutionary algorithms
(EA) to generate the overall form of complete pieces (Sections 3
and 3.1), specifically the generation of form-states, which are the
states of specific parts within that form (Section 3.2), the
determination of how form-states become specific patterns
(Section 3.2.3), and a description of how patterns, both formal and
part-specific, are selected from a population of pre-evolved forms
and patterns (Section 4). Figure 1 presents the overall structure of
the program. GESMI starts by generating an overall form for the
piece, and then determines form-states for each part, after which it
generates a database of valid patterns and assembles these based
on the user preferences. As such, GESMI has a hybrid architecture
that behave in both top-down and bottom-up fashion.

Figure 1. Program structure. The corpus is directly used in
the generation of form, form-states, pattern-locations, and

individual part patterns (not described here).

2. BACKGROUND AND RELATED WORK
Evolutionary computation has been used within music for over
two decades in various ways. Todd and Werner [19] provide a
good overview of the earlier musical explorations using such

2 Generative Electronica Research Project: www.metacreation.net

approaches, while Miranda and Biles [17] provide a more recent
survey. Very few of these approaches have been compositional in
nature; instead, their foci have tended to be studies, while ours are
the generation of complete musical compositions.

Several real-time applications of GAs have been used, including
[21], which selected individuals from an Interactive Genetic
Algorithm (IGA) suitable for the immediate situation within a
real-time improvisation. Another approach was by Beyls [1] in
which the fitness function sought either similar individuals or
contrasting individuals to an immediate situation within an
improvisation.

Thywissen [18] describes a system that allows composers to
evolve musical structures interactively. Of note is the
consideration of higher-level musical structures (i.e. Form), which
he calls meta-compositional grammars.

Waschka [20] used a GA to generate contemporary art music. His
explanation of the relationship of time within music is
fundamental to understanding the potential for evolutionary
algorithms within art-music: “unlike material objects, including
some works of art, music is time-based. The changes heard in a
piece over its duration and how those changes are handled can be
the most important aspect of a work.” Waschka’s GenDash has
several important attributes, a number of which are unusual: an
individual is a measure of music; all individuals in all generations
are performed; the fitness function is random, leading to random
selection; the composer chooses the initial population. Of note is
the second stated attribute, the result of which is that “the
evolutionary process itself, not the result of a particular number of
iterations, constituted the music”. Waschka provides some
justifications for his heuristic choices, suggesting that while they
may not be observed in real-world compositional process, they do
provide imusically useful results.

Eigenfeldt and Pasquier [7] describe a system in which a
population of rhythms is evolved, and the successive generations
serve as the unfolding of musical motives. A second population of
forms is evolved, which determines how separate rhythmic
motives are interconnected.

In summary, EAs have been used successfully in experimental
music [1, 8, 10, 16 20] and improvisation [2, 3, 21] for several
years. In most cases, researchers and artists have been able to
overcome the main difficulty in applying such techniques to
music – namely the difficulty of formulating an effective aesthetic
fitness function – through a variety of heuristic methods. One
particularly attractive feature of EAs to composers relates to the
notion of musical development – the evolution of musical ideas
over time – and its relationship to biological evolution. As music
is a time-based art, the presentation of successive generations –
rather than only the final generation – allows for the aural
exposition of evolving musical ideas.

However, Electronic Dance Music (EDM), particularly its non-
experimental genres, does not offer the same leisurely exposition
of multiple ideas as does contemporary concert music or jazz:
there are fewer motives, and their presentation requires explicit
control [4]. Although more heuristic methods are required in order
to successfully generate EDM algorithmically, evolutionary
algorithms still offer creative possibilities within the genre.

In terms of EDM, Wooller and Brown describe a system for
evolutionary morphing of EDM [23], in which transformation of
stylistic material is user-defined through a system of weightings.
Evolectronica, an online site, was active until 2010, and was a
self-described effort at a “communal music making experience” in

320

which a community of users rated evolved individuals that
consisted of audio loops, in an effort to create “eclectic electro
house beats, laid-back deep house, future drum and bass, and
brass/wind/strings/percussion”. This work eventually grew into
DarwinTunes, described more fully in [15].

Although the use of EAs within the creation of EDM has been, so
far, somewhat limited, the use of machine-learning within the
field has been explored: see [6] for a good overview.

Genetic Algorithms (GAs) have proven to be useful in situations
where solutions may be known, but determining specific
algorithms in order to achieve those solutions are difficult to
conceive. This is the case in artistic situations, in which rules for
aesthetic evaluation are often extremely difficult to formulate. For
example, one of the specific requirements of our research is to
generate individual states for instruments – whether an
instrumental part is present during a phrase – within the overall
formal structure of an EDM track. The complex relationships
between the states of instrumental parts in EDM are intuitively
understood as being “correct” by composers; however, this
“correctness” cannot be easily translated into an algorithm. An EA
proved to be particularly useful in providing a solution (see
Section 3).

An intriguing possibility for the application of an EA within
music is the exploration of the building block hypothesis [12]:
instead of attempting to directly generate a final complex solution
– in our case a complete composition – it is possible to generate
lower order, yet highly fit, schemata, and then using these
schemata to assemble the larger composition. This approach
already has been used to successfully generate music for string
quartet in which the initial population was derived from a human-
composed corpus [10], and initialized individuals were already
considered strong. Similarly, selection from a generated
population of individual movements was used to assemble a larger
multi-movement composition [7]. In the research presented here,
we generate a large population of individuals for various musical
requirements – forms and states; beat patterns, bass lines – and
then select from these populations based upon the contextual
requirements. Somewhat counter to most uses of evolutionary
algorithms in music, in which structure may evolve organically,
we use the products of EAs to assemble structures, which
themselves have been generated using tightly controlled
evolutionary algorithms.

3. FORM GENERATION
Although EAs have been used to generate beat patterns for EDM
[13, 14], we believe that such goals can be accomplished through
other methods more effectively. Within EDM, there is a great deal
of constraint on what constitutes a successful beat – one that
“grooves” [4]. Certain musical expectations must be met – for
example, a snare on beats two and four – along with a variable
amount of fluidity in all parts. Since the number of possible
solutions is actually limited, many other, less complicated,
techniques can be used.

We have chosen instead to use probabilistic methods, including
Markov chains, to generate actual beat patterns (see Section 4).
The results have proven to be extremely successful – replicating
the consistency required by EDM, yet offering the necessary
originality to maintain interest.

Form, or the unfolding of music in time, provides an opportunity
to use EAs. The four EDM styles analysed use 8-bar phrases –
comprised mainly of 2-bar patterns – to a very high degree of
consistency: for example, less than 2% of the 621 phrases in the

Breaks corpus are something other than 8 bars in length.
Similarly, there is not a great deal of variation within the
individual patterns: repetition, both at the macro- (form) and
meso- (pattern) levels, is explicit (see Figure 2). For example, no
part (i.e. instrument) in the Breaks corpus contained more than
five unique patterns. The complexity of the music is at the micro-
level (subtle delays and accents of onsets) from which we
appreciate the “groove” [4], as well as how the individual patterns
interact, and how these patterns are successively presented. This
paper addresses the latter aspects: elements of “groove” are yet to
be incorporated.

Figure 2. Formal elements within EDM: patterns (1, 2, 4, or 8-
bars), phrases (8-bar collections of patterns), and sections (of

a variable number of phrases). Shading indicates pattern
changes between phrases.

All of the tracks in all four genres within the corpus can be
segmented into five distinct sections, which we label A-E:

A- Lead-in: the initial section with often only a few parts present;

B- Intro: a bridge between the Lead-in and the Verse. More
instruments are present than the Lead-in, but not as full as the
Verse;

C- Verse: the main section of the track, in which all instruments
are present, which can occur several times;

D- Breakdown: a contrasting section to the verse in which the beat
may drop out, or a filter may remove all mid– and high–
frequencies. It will tend to build tension, and lead back to the
verse;

E- Outro: the fade-out of the track.

Furthermore, after close-listening to the tracks within the corpus,
the following generalities were determined (for the specific tracks
in their specific styles):

– Every track begins with a Lead-in (A), and ends with an Outro
(E);

– Sixteen different instrumental parts were identified, including a
main drum beat (MBeat), two additional auxiliary percussion
parts (Aux1 and Aux2), two different bass parts (Bass and Bass2),
two rhythmic synth parts, (RSyn1 and RSyn2), two melodic synth
parts (MSyn1 and MSyn2), pads, keys, drone, atmospheric synth,
and ancillary melodic parts (Axl, Axl2, Axl3) such as vocals and
guitars. These are the total number of unique parts: no track
exhibited all sixteen parts within it;

– Parts enter or drop out at the start of any phrase. Phrases are
constant in terms of their contents: parts rarely drop out or enter
within a phrase: the exception being drum- and percussion-fills,
and one-hits (single events that occur only once);

– Each individual part may contain between 1 and 5 separate
patterns over a single track;

– Variety is introduced by one-hits and fills (not discussed here).

321

Figure 3. Complete Form-state (including pattern #) for Burma, by Lostep, Sasha Remix radio edit (Breaks corpus). Individual
parts are listed above, phrases numbers indicated in the first column, and sections are indicated by letter names in the second

column.

In Figure 3, each row represents an 8-bar phrase; each column an
instrumental part. Values in columns indicate pattern numbers
(stored elsewhere). Zeros indicate the part being tacet (off). This
representation thus contains the overall form – in this case, the
first ten phrases are AABBBBDCCCC – the individual part’s
patterns, and their location within the form. We refer to this
representation, as shown in Figure 3, as a form-state, and the goal
of our generative formal structure.

3.1 Generating Form via Markov Model
Form-states seem, at first glance, straightforward and intuitive.
However, after some cursory analysis, it becomes quickly
apparent that a successful form-state is based upon complex
interactions between individual parts, and within the part itself.
No heuristic solutions for algorithms presented themselves;
however, as rules could be determined for successful individuals,
we turned to an evolutionary algorithm.

A genetic algorithm was created to generate a population of
forms-states modeled on the corpus (see Section 3.2). The first
step involves generating an overall form using a first-order
Markov model operating in reverse: each section’s predecessor,
rather than successor, was stored (see Table 1).

Table 1. Markov transition table of a section’s predecessor,
“Breaks” corpus. Sections at left are preceded by sections

above with indicated probability

 A B C D E

A 1.0

B 0.35 0.65

C 0.04 0.76 0.2

D 0.11 0.31 0.57 0.01

E 0.26 0.02 0.72

The user requests the total number of phrases (the mean number
of phrases per piece for the “Breaks” corpus is 27), and the
number of sections (the mean number of separate sections for the
“Breaks” corpus is 7). A population of 100 individuals is

generated, whose genotype consists of the five form values, A-E.
Each individual is generated in reverse, beginning with E, using
the Markov table for probabilistic continuations. When the
generation arrives at A (the target), a test is run to determine if the
length of the last section (A) is within a range of acceptability: a
heuristically chosen value (0.05) around the corpus’ mean (0.102
of the total length of the track). If the individual is within the
acceptable range, the individual is reversed, and generation is
complete; if not, generation continues. When 100 valid
individuals are generated, they are individually rated using a
distance function in relation to the user-specified values: the
closest matched individual is then selected. As this single
generation produces a musically valid and successful form, there
is no need to further evolve the population.

3.2 Generating Part States via Genetic
Algorithm
Given a generated form (see Section 3.1), states (on or off) for
each part can be generated now – the form-state. Initially, we are
only generating on or off states, as the actual pattern numbers are
generated later (see Section 3.2.3).

3.2.1 Initializing with Strong Individuals
Originally, a population of form-states was randomly generated
for the 16 instrumental parts, with initial states being either off (0)
or on (1); however, we now use more intelligent methods in order
to initialize the population with stronger individuals. Using
probabilities derived from the corpus, individual part states are
generated that reflect the corpus for that specific part, in terms of
probability of appearance in a specific section, likelihood entering
in the first phrase of a section, etc. Given the representation of
data shown in Figure 3, we consider the each part to have strong
vertical relationships: consistent within themselves (as each part is
displayed in a vertical column); however, horizontal relationships
– that is, relationships between parts, and what we consider to be
an important defining aspect of successful EDM – have not been
considered. These relationships are evolved through the genetic
algorithm.

322

3.2.2 A Multi-Objective Fitness Function
A multi-objective fitness function evaluates each individual based
upon the following criteria, comparing it to data derived from the
corpus itself. “Density” refers to whether a part is on for a given
phrase, relative to the other parts in a phrase, or to successive
phrases within its own part:

– F1: part density per section (i.e. the ratio of on to off states for
parts within a specific section);

– F2: density changes at section divisions (i.e. how many parts
enter or exit at a section change, relative to the last phrase of the
previous section);

– F3: part changes at section divisions (i.e. which parts enter or
exit at specific section beginnings);

– F4-F13: specific individual part relationships (i.e. comparing the
overall density of two parts within a section, as well as the
percentile of both parts being active at the same time). The part
relationships include MBeat-Aux1, Aux1-Aux2, Bass-Bass2,
RSyn1-RSyn2, MSyn1-MSyn2, Pads-Keys, Pads-Drone, Drone-
Atmos, Axl-Axl2, Axl2-Axl3.

Evaluations are made in comparison to coefficients derived from
the analysis of the corpus. For example, a three-phrase section in
which a part is off, on, and on (0 1 1) results in the coefficient
0.67, for that part, in that section. All coefficients across all tracks
for that section and part are collected from the corpus, and the
mean and standard deviation calculated. If the generated part’s
coefficient for the section is outside the range of Mean +-
Standard deviation, the part is penalized. The overall fitness, F(x)
for a given individual x reads as:

F(x)
i1

13

 i Fi(x)

; where i are the weights used to prioritize the various objectives
(the actual values are out of the scope of this paper) and Fi are the
13 objective functions described above.

Deriving the proper fitness functions was accomplished by
comparing ratings of randomly generated form-states with ratings
of the actual corpus. As individuals could be penalized for falling
outside of a single standard deviation, outlying parts within the
corpus would still be penalized. Some objectives beyond the
thirteen described here were not used, despite their apparent
usefulness. For example, comparing consistency within parts
between section repetitions inside a track: while this seemed like a
good musical aspect to test, no discernible difference could be
found between the random generation and the corpus analysis, due
to the wide deviation found within the corpus itself.

Finally, an additional fitness adjustment was added to penalize
null phrases – those that are completely silent.

A tournament selection (of size two) is then made within the
population of 100 individuals: for each tournament, winners (with
duplicates removed) automatically pass to the next generation.
This elitist selection is repeated until half of the next generation is
generated. Individuals that win no tournaments are replaced with
new individuals that are mated from parents that are both winning
individuals. Mating is done using multi-point crossover: two
randomly chosen parents’ complete sections are randomly
combined, resulting in a single offspring.

A maximum of 20 generations are evolved, with a potential exit if
the highest rated individual’s score drops below a threshold. The
threshold is set as the mean coefficient for each fitness criteria

derived from the corpus analysis: once the evolution passes the
evaluated state of the corpus, evolution is complete.

3.2.3 Determining Pattern Change Locations
The fitness functions within the GA for the form-state generation
are primarily concerned with sectional relationships through
densities, as well as relationships between parts. The progression
of individual parts via the introduction of new patterns is not
considered. How patterns are distributed within a part is now
discussed.

Although the maximum number of patterns within a part could be
derived through probabilities, a heuristic solution as to when and
where these patterns should change was not apparent; therefore,
more analysis of the corpus was required. First, the probability of
a particular section having a pattern change contained within it
was determined (see Table 2). A higher percentile of pattern
changes occur in the Lead-in (A), as this section is generally used
to introduce important parts. The remaining parts are often
introduced in the Intro (B) section: in fact, it is the introduction of
specific parts – such as the bass – that often will determine
sectional divisions. The Verse (C) has to lowest amount of new
pattern introductions, as it tends to be a section in which
previously introduced individual patterns are combined. Finally,
the Breakdown (D) often introduces new patterns in the
synthesizer parts, while the drums and percussion drop out.

Table 2. Probability of new beat patterns occurring in a
section, for the “Breaks” corpus

A 0.4

B 0.15

C 0.04

D 0.12

E 0.07

A different method was used in generating the number of patterns
needed per section, rather than a straightforward stochastic
probability generation. It was found that there was a tremendous
variation between tracks for the number of parts in a section, and
using stochastic methods would tend to flatten out this data;
instead, the actual values from the corpus are stored, and a
random selection is made from these values: as such, we are
sampling the corpus data directly.

Table 3. Probability distributions for new patterns occurring
in the first phrase of a section, in the second through

penultimate phrases, or the last phrase, “Breaks” corpus.

First

phrase
Middle
phrases

Final
phrase

A 0.9 0.1 0.0

B 0.85 0.05 0.1

C 0.93 0.03 0.04

D 0.72 0.07 0.21

E 0.415 0.17 0.415

Once the total number of patterns within a track is distributed
through the sections, the location of the pattern changes is
determined within the section’s phrases. An array is calculated
accumulating the number of pattern changes occurring in the
corpus during a section’s first phrase, the second through

323

penultimate phrases, and the final phrase (see Table 3). Given the
number of pattern changes that are required for the section, a
roulette-wheel selection is made from the percentile to determine
their location(s).

3.2.4 A Population of Strong Individual Form-States
Once the system was put into artistic practice, it became obvious
that users desired some control over the generation of form.
Rather than being forced to interact with the system in a Monte-
Carlo fashion – generate, accept the result, or generate again – it
was found more useful to generate a large population of strong
individuals, each the strongest of a separate evolution, and select
from those based upon user-set conditions. Once this large
(>2000) population is generated (which takes several hours), a
user can select preferred parameter states – for example, the
presence of two melodic synth parts, or the presence of the
auxiliary percussion – and the system returns the individual form-
state that is rated closest, using a multi-dimensional Euclidian
distance function (see Figure 4).

Figure 4. Setting targets for selection from a population of

form-states. As left, light-grey displays ranges from the
population, green lines display mean values, dark grey show

user selection. At right, weightings for selections are
determined: in this case, only density, MSynth1 & 2, and Keys

rating are used.

4. PATTERN GENERATION AND
SELECTION
4.1 Beat Pattern Generation
Pattern generation involves methods that cannot be described in
detail here, for reasons of space. Only a cursory description is
given here, while a more thorough discussion can be found in a
companion paper [11]. Three different methods are used to
generate beat patterns, including:

1. Generating individual subparts (Kick, Snare, Closed Hihat,
and Open Hihat) via probabilities for a given onset occurring
at a given time (beat);

2. First-order Markov generation of individual subparts;

3. First-order Markov generation of combined subparts.

In the first case, probabilities are calculated for each subpart (see
Figure 5).

In the second case, data is stored as subdivisions of the quarter
note, as simple on/off flags (i.e. 1 0 1 0) for each subpart.
Continuations are considered across eight-bar phrases. As there is
a great deal of repetition, certain patterns are clearly emphasized
within the Markov table.

Figure 5. Onset probabilities for individual subparts, 1 bar
(sixteenth-note subdivisions), C section, “Breaks” corpus

In the third case, data is stored by beat as a 4 bit flag: bit 4 = Kick;
bit 3 = Snare; bit 2 = Closed Hihat; bit 1 = Open Hihat. This
method ensures that polyphonic relationships between parts are
encoded, as well as time-based relationships. This 4-bit
representation of beat patterns is used not only for drum patterns,
but the three auxiliary percussion parts as well (see Figure 6).

Figure 6. Representing the 4 drum subparts as 4-bit

cumulative values for one beat (sixteenth-note subdivision).

In all cases, the data used for generation is context dependent:
separate databases are maintained for separate sections. Thus,
when a beat pattern is required that first appears in section B, only
those patterns that appeared in section B of the corpus are used.
Note that this example describes the generation of beat patterns;
similar methods are used for the generation of all parts, including
pitched parts such as bass and synthesizers.

4.2 Pattern Selection from a Population
In actual usage, it was found that the third method produced the
most accurate re-creations of beat patterns found in the corpus, yet
the first method produced the most surprising, while maintaining
usability. Rather than selecting only a single method for beat
generation, it was decided that the three separate methods
provided distinct “flavors”; as such, all three methods were used
in the generation of a large (>2000) database of potential patterns.

As a track’s beat pattern influence the “feel” of the track, the user
can select general tendencies for the pattern as targets (see Figure
7).

For beat generation, these are separated between the kick/snare,
and hihats, and include:

– Density: a coefficient for the number of actual onsets over the
pattern divided by the possible number of onsets;

– Syncopation: the number of onsets that are not on the part’s
usual strong beats;

– Symmetry: the number of onsets in the second half of the
pattern that occur in the same location in the first half of the
pattern.

What we have found is that rather than attempting to influence
generation (which often led to continually generating and
rejecting patterns until an “interesting” pattern appeared), the
population of strong individuals can be created that contains a
great deal of diversity. The user can fine-tune the criteria in order
to influence the final selection.

324

Figure 7. User-set targets for selection from pattern

population.

Furthermore, target selection from a population provides an
additional benefit in the next stage of our research: successive
generations of entire compositions can be guaranteed to be
divergent by ensuring targets for parameters, such as beat
patterns, are different for each generation.

5. CONCLUSIONS AND FUTURE WORK
We have described our ongoing investigation into generating
EDM using population-based evolutionary methods, based upon
expert analysis and transcription of a corpus. We described a
method of generating and selecting overall forms, as well as
individual patterns, through both evolutionary and probabilistic
methods. Throughout this work, constraints and heuristics have
been used to maintain vertical and horizontal relationships as
found in the corpus. Note that our implementation of generative
methods for one-hits and fills, both integral elements of variety in
EDM, have not been discussed for reasons of brevity.

Future work includes expanding the potential targets for selection
from the populations, based upon user requests. Through extended
interaction with the system, users will fine-tune their targets,
rather than simply re-generating individuals hoping for a
successful result.

Two essential elements of EDM have not been discussed: (1) the
timbral selection of parts (i.e., instruments) and dynamic signal
processing (i.e. audio mixing and post-production techniques).
Although we are generating audio [24], the final product still
relies upon human selection for these aspects, both of which are
actively being researched.

Lastly, if one considers that the described system is a virtual EDM
Producer, we plan to develop a matching virtual DJ, one that
assembles existing tracks created by the Producer into hour-long
sets. Assemblage would involve signal analysis of every
generated track’s audio in order to determine critical audio
features; individual track selection would then be carried out
based upon a distance function between the track data and a
generated timeline, which may or may not be derived from
analysis of a given corpus consisting of DJ sets. This timeline
could be varied in performance based upon real-time data: for
example, movement analysis of the dance-floor could determine
the ongoing success of the selected tracks.

Our evaluation plan includes submitting our audio results to live
situations, such as upcoming algoraves3 – the system has been
accepted for performance at two festivals of Generative Art.
Audio output from our system can be found online [24].

3 http://algorave.com/

6. ACKNOWLEDGEMENTS
This research was funded by a grant from the Canada Council for
the Arts, and the Natural Sciences and Engineering Research
Council of Canada.

7. REFERENCES
[1] Beyls, P. 2009. Interactive Composing as the Expression of

Autonomous Machine Motivations. In: Proceedings of the
International Computer Music Conference (Montreal,
Canada, August 2009) 267–74.

[2] Biles, J. 2001. Autonomous GenJam: Eliminating the Fitness
Bottleneck by Eliminating Fitness. In: Proceedings of the
2001 Genetic and Evolutionary Computation Conference
Workshop Program, San Francisco.

[3] Blackwell, T, and Young, M. 2004. Swarm Granulator.
Applications of Evolutionary Computing. In: Proceedings of
EvoWorkshops 2004. Springer-Verlag, 399–408.

[4] Butler, M. 2006. Unlocking the Groove: Rhythm, Meter, and
Musical Design in Electronic Dance Music. Bloomington,
Indiana University Press.

[5] Cope, D. 2005. Computer Models of Musical Creativity.
Cambridge, MA: MIT Press.

[6] Diakopoulos, D., Vallis, O., Hochenbaum, J., Murphy, J.,
and Kapur, A. 2009. 21st Century Electronica: MIR
Techniques for Classification and Performance. In:
Proceedings of the International Society for Music
Information Retrieval Confence (ISMIR), Kobe, 465–469.

[7] Eigenfeldt, A., and Pasquier, P. 2012a. Populations of
Populations - Composing with Multiple Evolutionary
Algorithms, P. Machado, J. Romero, and A. Carballal (Eds.).
In: EvoMUSART 2012, LNCS 7247, 72–83. Springer,
Heidelberg.

[8] Eigenfeldt, A., and Pasquier, P. 2012b. Creative Agents,
Curatorial Agents, and Human-Agent Interaction in Coming
Together. In: Proceedings of the 9th Sound and Music
Computing Conference, Copenhagen, 181–186.

[9] Eigenfeldt, A., Pasquier, P., and Burnett, A. 2012. Evaluating
Musical Metacreation. In: International Conference of
Computational Creativity, Dublin, 140–144.

[10] Eigenfeldt, A. 2012. “Corpus-based recombinant
composition using a genetic algorithm” Soft Computing - A
Fusion of Foundations, Methodologies and Applications,
16(12), 2049–2056.

[11] Eigenfeldt, A., and Pasquier, P. 2013. Considering Vertical
and Horizontal Context in Corpus-based Generative
Electronic Dance Music. Submitted to: International
Conference of Computational Creativity, Sydney.

[12] Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, MA:
Addison-Wesley Professional.

[13] Kaliakatsos-Papakostas, M., Floros, A., Kanellopoulos, N.,
and Vrahatis, M.N. 2012. Genetic Evolution of L and FL-
systems for the Production of Rhythmic Sequences. In:
Proceedings of the 2nd Workshop in Evolutionary Music
held during the 21st International Conference on Genetic
Algorithms and the 17th Annual Genetic Programming
Conference (GP) (GECCO 2012), 461–468.

[14] Kaliakatsos-Papakostas, M., Floros, A., and Vrahatis, M.N.
2013. EvoDrummer: Deriving rhythmic patterns through

325

interactive genetic algorithms. In: Proceedings of EvoMusArt
Conference 2013, Vienna (to appear).

[15] MacCallum, R., Mauch, M., Burt, A., and Leroi, A. 2012.
Evolution of music by public choice. In: Proceedings of the
National Academy of Sciences, 109(30), 12081–12086.

[16] McCormack, J. 2001. Eden: An Evolutionary Sonic Eco-
System. In: Advances In Artificial Life, LNCS. Springer,
133–142.

[17] Miranda, E., and J. Biles, eds. 2007. Evolutionary Computer
Music. London: Springer.

[18] Thywissen, K. 1996. GeNotator: An environment for
investigation the application of genetic algorithms in
computer assisted composition. In: Proceedings of the 1996
International Computer Music Conference, San Francisco,
274–277.

[19] Todd, P., Werner, G.1999. Frankensteinian methods for
evolutionary music composition. In: Musical networks:
Parallel distributed perception and performance, Griffith,

N., Todd, P., eds., Cambridge, MA: MIT Press/Bradford
Books, 313–339.

[20] Waschka, R. 2007. Composing with Genetic Algorithms:
GenDash. In: Evolutionary Computer Music, Springer,
London, 117–136.

[21] Weinberg, G., Godfrey, M., Rae, A., and Rhoads, J. 2008. A
Real-Time Genetic Algorithm in Human-Robot Musical
Improvisation. In: Computer Music Modeling and Retrieval,
Sense of Sounds, Springer, Berlin, 351–359.

[22] Whitelaw, M. 2004. Metacreation. Art and Artificial Life.
Cambridge, MA: MIT Press.

[23] Wooller, R., and Brown, A. 2009. TraSe algorithm:
automatic evolutionary morphing of electronic dance music.
In: Improvisation: Australasian Computer Music
Conference. Australasian Computer Music Association, 64–
71.

[24] http://soundcloud.com/loadbang. Accessed April 8, 2013.

326

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 46.30, 482.64 Width 184.54 Height 24.16 points
 Origin: bottom left

 1
 0
 BL

 3
 CurrentPage
 49

 CurrentAVDoc

 46.3033 482.64 184.5423 24.1583

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 1

 1

 HistoryList_V1
 qi2base

