
List scheduling heuristics for virtual machine

mapping in cloud systems

Sergio Nesmachnow1, Santiago Iturriaga1, Bernabé Dorronsoro2,
El-Ghazali Talbi2, and Pascal Bouvry3

1 Universidad de la República, Uruguay
2 LIFL, University of Lille, France

3 University of Luxembourg, Luxembourg

Abstract This article introduces the formulation of the Virtual Machine
Planning Problem in cloud computing systems. It deals with the effi-
cient allocation of a set of virtual machine requests from customers into
the available pre-booked resources the broker has in a number of cloud
providers, maximizing the broker profit. Eight list scheduling heuristics
are proposed to solve the problem, by taking into account different crite-
ria for mapping request to available virtual machines. The experimental
evaluation analyzes the profit, makespan, and flowtime results of the
proposed methods over a set of 400 problem instances that account for
realistic workloads and scenarios using real data from cloud providers.

1 Introduction

Cloud computing [1,4] is, undoubtedly, one of the main existing computing
paradigms nowadays. In the last years, it raised the interest of both academic and
industrial worlds thanks to their interesting properties, such as elasticity, flexi-
bility, or computational power, among many others. Cloud computing provides
a stack composed of different cloud service provisioning models: Infrastructure
as a Service (IaaS), dealing with resources as servers, storage, or networks; Plat-
form as a Service (PaaS), which provide an operating system as well as a set
of tools and services to the user; or Software as a Service (SaaS), that allows
providers to grant customers with access to licensed software.

Many different public and private clouds are arising in the last years [13].
They all have distinct features, and it makes difficult for users to find the best
choice among all the existing offers. The figure of cloud broker [5] arises as an
intermediary entity between cloud providers and users to help the latter ones in
that process. There are different services that cloud brokers can provide, from
simply finding the best deals among a set of clouds for the user requirements to
defining the best possible design to deploy the user’s application in the cloud [5].

One of the salient features of cloud computing is the elasticity and the seem-
ingly infinity of resources they provide. This is achieved by using virtual machines
(VMs), that can be dynamically allocated and deallocated to the resources ac-
cording to the demand and availability, and the possibility of consolidating a
number of VMs into the same physical server.

HPCLatAm 2013, pp. 37-48 (full paper)
Session: Evolutionary Computation & Scheduling

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

However, it may happen that the available resources are not enough for the
current demand at a given peak time, especially in the case of private clouds.
In these cases, the cloud bursting technique [10] is used to get on-demand VMs
(typically) from the public cloud, therefore extending the computing capacity of
the facility in a transparent way to the user.

In this paper, we focus on a recent business model in which the broker sublets
on demand cloud resources to his customers at low prices. The broker owns a
set of reserved VMs with different features, and probably from distinct cloud
providers. These VMs are offered to the customers as on-demand resources at
cheaper prices than those the customer would get if directly contacting a cloud
provider. This business model is feasible and profitable thanks to the large differ-
ence in price between reserved and on-demand VMs in the cloud [14]. Addition-
ally, in the case the broker does not have enough VMs to cope with the customers’
requests without violating the contracted service level agreement (SLA), he will
buy on-demand VMs to the cloud to satisfy the demand (as the cloud bursting
technique does in hybrid clouds). In this case, the profit of the broker will be
reduced. From now, we will refer the reserved VMs of the broker as reserved
instances (RI) to differentiate from the VMs the customers demand.

The considered model does not only benefit customers, but also cloud
providers, who have more information (thanks to the reserved instances by the
broker) to be able to forecast the resources that will be needed in the future.

The problem of efficiently allocating the customers VMs requests into the
available RI arises for the broker. All VMs should be allocated into RIs that
are offering at least the same performance requested by the customer, and some
quality of service (QoS) levels must be achieved by the solution. This is a re-
source allocation problem with additional constraints making it more complex.
Underutilization of the available reserved instances must be avoided, as well as
the overbooking, which might force the broker reserving on-demand VMs to the
cloud provider in order to offer the promised service, despite the money loss.
The resource allocation problem itself is NP-hard [15].

The main contributions of this work are: i) a formulation for the optimization
problem of allocating VM requests on a set of reserved instances to maximize the
broker profit is developed, ii) eight list scheduling heuristics to efficiently solve
the problem are evaluated, and iii) novel benchmark instances were generated
for the problem, which are publicly available.

The paper is structured as follows. Next section presents the formulation
of the optimization problem tackled in this work. Section 3 offers a review of
the main existing works about related brokering proposals for cloud computing.
The eight list scheduling heuristics proposed in this work to tackle the virtual
machine mapping problem are described in Section 4, just before presenting the
experimental evaluation over a set of realistic workloads and scenarios using real
data from actual cloud providers in Section 5. Finally, the conclusions and main
lines for future work are formulated in Section 6.

HPCLatAm 2013 - Page 38

2 The Virtual Machine Mapping Problem

We consider that the broker owns a number of pre-booked VMs (that we call
reserved instances—RI) on one or more cloud providers, and that it receives a set
of VM requests from its customers, all of them having specific hardware demands
and execution deadline. The Virtual Machine Mapping Problem (VMMP) is
to assign all VM requests to the available RIs such that the broker’s profit is
maximized. In case some user requests cannot be handled with the available RIs,
the broker must book on-demand VMs in the cloud for them to keep a high QoS,
with the resultant profit reduction. The VMMP is formalized next. Given:

– A set of virtual machine requests VM = {v1, . . . , vn}, each one to be exe-
cuted for a given time T (vi), as it is normally considered in cloud systems.

– Each VM has specific hardware demands, including processor speed P (vi),
memory M(vi), storage S(vi), and number of cores nc(vi).

– Virtual machine requests arrive in batches (i.e., hourly, diary). Arrival times
Ai follow a stochastic homogeneous Poisson process with parameter λ.

– The execution of any VM must start before its deadline D(vi).
– A set of cloud resource instances pre-booked by the broker B = {b1, . . . , bm},

m ≪ n, with specific features including processor speed P (bj), memory
M(bj), and storage S(bj), according to a predefined list of instance types.

– A cost function C for pre-booked cloud resource instances, and a cost func-
tion COD for on-demand instances, with C(bj) ≪ COD(bj). Both cost func-
tions are given in an hourly basis.

– A pricing function p(bj) that defines the price the broker charges to the
customers per hour for the RI bj . In order to attract customers, the broker
should charge for a VM bj a lower cost than the on-demand pricing for that
VM, i.e., p(bj) < COD(bj). Moreover, if the cheapest offered RI that can
allocate a request vi by the user, for instance bk, is not available, the broker
can assign the request to another RI of higher capacity, but charging the
same amount as for bk. This will decrease the profit, but it will prevent the
broker from loosing customers, who at the same time will benefit from the
better performance offered.

The VMMP consists in finding a mapping function f : VM → B for the VM
requests in the available RIs that maximizes the broker profit, according to the
following optimization problem (ST (vi) is the starting time of vi, based on f):

max

j=m
∑

j=1





∑

i:f(vi)=bj

(p(BF (vi))− C(bj))× T (vi)



+

∑

h:ST (vh)>D(vh)

(p(BF (vh))− COD(BF (vh)))× T (vh)

subject to M(vi) ≤ M(bj) P (vi) ≤ P (bj)

S(vi) ≤ S(bj), nc(vi) ≤ nc(bj)

where the BF (vk) function gives the less expensive instance

capable of executing the request vk

(1)

HPCLatAm 2013 - Page 39

In the previous problem model, deadlines are considered as hard constraints.
In case the broker cannot accommodate the VM request to start execution by
the specified deadline, it must either use a larger RI offering more resources than
those requested (but at the cost of the one requested by the user) or buy an on-
demand instance to fulfill the request. Both solutions obviously accounting for
a negative impact in the total cost of the schedule.

The first summation in the objective function accounts for the total profit of
the broker thanks to the RIs booked by the customers. The second summation
accounts for the additional and the second is the cost that suppose avoiding the
violation of the deadline constraints.

Data transmission for VM requests are not considered for the objective func-
tion: the model assumes that the broker directly transfers the data transmission
costs to the user, thus no economic profit is gained from data transmission.

3 Literature review

Cloud brokering [5] typically deals with the problems of finding the cloud
providers whose offer better suits the customer needs (both technically and in
terms of cost) [2,16], or providing the customer with the best possible way to
deploy his/her application in the cloud [8].

The literature review indicates that there are a number of works proposing
methods for scheduling applications in private resources using cloud bursting
technique [3]. These works enhance the local schedulers with the capability of
using VMs from the public cloud when additional resources are required. This is
a similar concept to the one addressed in this paper, since when all RIs are used
and a request cannot start before its deadline, then the broker will buy an on-
demand instance from the cloud to execute it. However, we do not address the
resource provisioning problem, since the broker is an intermediate entity which
always works with VMs (either reserved or on-demand) from the public cloud.

Closer to the problem we consider in this article, Wu et al. [17] proposed a
mechanism to encourage customers to provide realistic likelihood that they will
purchase a given resource, at the reward of price reductions. This mechanism
allows the provider to efficiently forecast the required resources, minimizing this
way the underutilization and/or overbooking of the available resources, and it
will benefit the customer too, who will have the service at a low price. This
mechanism was adopted in [14] for the case of a cloud broker subletting reserved
VMs to his customers. Then, the broker will use the information given by the
customers to decide whether to invest in buying more resources or not, and what
kind of resources should be bought. This technique is shown to provide up to
44% increase in the profit of the broker.

In this paper, we investigate how the broker can optimally manage his VMs
for obtaining the optimum profit while providing acceptable QoS, by allowing
the use of on-demand instances to satisfy the needs of users that cannot be
satisfied with the current resources, despite the money loss.

HPCLatAm 2013 - Page 40

4 List scheduling heuristics for the VMPP

This section introduces the class of list scheduling heuristics and describes the
new scheduling heuristics proposed for the VMPP.

4.1 List scheduling heuristics

The class of list scheduling heuristics [7] comprises many deterministic scheduling
methods that work by assigning priorities to tasks based on a particular criterion.
After that, the list of tasks is sorted in decreasing priority and each task is
assigned to a processor, regarding the task priority and the processor availability.

Since the pioneering work by Ibarra and Kim [6], where the first list schedul-
ing algorithms were introduced, many list scheduling techniques have been pro-
posed to provide easy methods for tasks-to-machines scheduling. This class of
methods has also often been employed in hybrid algorithms, with the objective
of improving the search of metaheuristic approaches applied to solve scheduling
problems in heterogeneous computing systems [11,12].

4.2 List scheduling heuristics for the VMPP

In this work, eight list scheduling heuristics are introduced to provide different
approaches to solve the VMPP, by using diverse criteria for assigning priorities
to VM requests. The new heuristics take into account the VMMP objective of
maximizing the profit, but also reducing makespan metric (defined as the differ-
ence between the start and finish time of a given batch of tasks), since obtaining
balanced schedules implies a better utilization of the available resources.

The new list scheduling heuristics include:

– Best Fit Resource (BFR). This heuristic assigns each VM request to its
best fit RI, disregarding the deadline values. The best fit is defined as a RI
with the same number of cores than requested, and the closest amount of
memory to the requested value. The approach used in this heuristic intends
to take advantage of assigning the requests to those RIs that fit the most,
making room for most restrictive requests to be executed in larger RIs.

– Earliest Finish Time (EFT). This heuristic gives priority to those VM
requests that can be finished the soonest. The availability of each suitable
booked instance for the request is considered to compute the finish time.
The main idea behind this heuristic is to take advantage of executing the
fastest (i.e., shortest) requests to increase the availability of RIs.

– Lower Gap First (EGF). This heuristics prioritizes those VM requests
with tightest deadlines, taking into account the arrival time. The tightness
is evaluated by the gap metric, defined as the difference between the deadline
and the arrival time of each VM request. Once the tightest request is found, it
is assigned to the booked instance with the earliest availability. This heuristic
tries to avoid penalizations due to buying on-demand instances by attending
first those requests with the smaller room to execute before its deadline.

HPCLatAm 2013 - Page 41

– Shortest Task First (STF). It gives priority to VMs with shorter execu-
tion times, following the idea of the STF method for makespan minimization.
The heuristic searches for the shortest unattended VM request, and then it
is assigned to the lowest-cost RI that satisfies its hardware requests.

– Earliest Deadline First (EDF). This heuristic gives priority to those VM
requests with the earliest deadlines (without taking into account the arrival
time), and assigns each request to the suitable booked instance with the
earliest availability. The main idea behind this heuristic is to take advantage
of fast execution of restrictive requests, to avoid the penalization of buying
on-demand instances due to deadline violations.

– Cheapest Instance (CI). This heuristic sorts the VM requests by arrival
time and selects the cheapest RI that allows the execution of each request,
applying a First Come First Served strategy. This heuristic is intended to
reduce the average waiting time of VM requests on the cloud system.

– MaxProfit (MaxP). It is a greedy profit-oriented list scheduling heuristic
that uses the contribution of each request to the global profit objective func-
tion used in the VMPP formulation. After that, the request that contributes
the most to the global profit is assigned to execute in the cheapest reserved
instance that fulfill the VM hardware requirements.

– Shortest Request to Cheapest Instance (SRCI). This heuristic works
by sorting the VM requests by duration and selecting the cheapest instance
that allows the execution of each request, in a similar way than the well-
known Shortest Job to the Fastest Resource (SJFR) heuristic for makespan
optimization. As SJFR, the SRCI heuristic is intended to maximize the bro-
ker profit, as well as to minimize the response time perceived by the user
of the cloud infrastructure: since shortest requests are assigned to execute
first, they will finish earlier and users with short computing time demands
will find that their requests are completed very fast.

5 Experimental analysis

This section presents the experimental evaluation of the proposed list scheduling
heuristics over a realistic set of VMMP intances.

5.1 Problem instances

In this work, we developed a set of VMMP instances by following a specific
methodology and using real data gathered from public reports, webpages, and
nowadays real cloud infrastructures.

The problem instances are defined by a workload file and a scenario file,
with the information about VM requests and RIs, respectively. Each workload
defines the requirements for a batch of VM requests, including: memory and
storage needed, processor speed required, and number of cores requested. Each
scenario file describes the features for the set of RI already pre-booked by the

HPCLatAm 2013 - Page 42

broker, including: available memory, available storage, processor speed, number
of cores, and the cost (both pre-booked and on-demand) and pricing values.

A total number of 400 problem instances are solved in the experimental
analysis, by combining workloads and scenarios with diverse characteristics. We
consider batches of 50, 100, 200, and 400 VM requests with different durations
(ranging from 10 to 200 time units), arriving according to a Poisson process. The
considered scenarios built a pre-booked cloud computing infrastructure with 10,
20, 30, and 50 RIs for the broker, by combining VMs from both Amazon and
Azure cloud computing services, according to the details presented in Table 1
(price and costs are in US dollars, all configuration and prices are from May,
2013). The VMs selected account for different configurations, including small
and average machines (#1 to #3), large machines (#4 and #6), and instances
with large memory, CPU and/or storage (#5, #7 and #8).

Regarding the pricing function, we consider in this work that it is 20% cheaper
than the cost on demand price (i.e. p(bj) = 0.8 ∗COD(bj)). This is a reasonable
value for attracting users to the service, while obtaining reasonable profit values.

The VMMP instances generated are available for downloading from
http://www.fing.edu.uy/inco/grupos/cecal/hpc/VMMP.

Table 1. VMs considered to built the broker pre-booked cloud infrastructure

VM id provider memory storage proc. nc price C COD
1 m1.small Amazon 1.7 GB 160 GB 1.0 GHz 1 0.048 0.027 0.06
2 m1.medium Amazon 3.75 GB 410 GB 2.0 GHz 2 0.096 0.054 0.12
3 A2.medium Azure 3.5 GB 489 GB 1.6 GHz 2 0.096 0.09 0.12
4 m1.large Amazon 7.5 GB 850 GB 2.0 GHz 4 0.192 0.108 0.24
5 m2.xlarge Amazon 17.1 GB 420 GB 3.25 GHz 2 0.192 0.136 0.24
6 A3.large Azure 7.0 GB 999 GB 1.6 GHz 4 0.328 0.18 0.41
7 c1.xlarge Amazon 7.0 GB 1690 GB 2.5 GHz 8 0.384 0.316 0.48
8 A4.xlarge Azure 14.0 GB 2039 GB 1.6 GHz 8 0.464 0.36 0.58

5.2 Development and execution platform

The proposed heuristics were implemented in C, using stdlib and GNU gcc.
The experiments were performed on a Xeon E5430, 2.66 GHz, 8GB RAM, and
CentOS Linux 5.2 from Cluster FING (http://www.fing.edu.uy/cluster).

5.3 Experimental results

We present in this section the results obtained during our experi-
mentation, summarized by instance size. The complete tables of re-
sults for each one of the 400 VMMP instances solved are available at
http://www.fing.edu.uy/inco/grupos/cecal/hpc/VMMP.

HPCLatAm 2013 - Page 43

Table 2 reports the average relative ranking (over all problem instances for
every batch dimension) for each heuristic according to the profit objective, de-
fined by Eq. 1. This rank was computed using the non-parametric Friedman
statistical test. In the table, the rank of a given heuristic means its position (in
average) when sorting the eight heuristics regarding the profit value. The last
rows of the table report the χ2 and the p-values for the Friedman test in each
case. We test if the p-values are less than 10−3, in order to state that there
exists enough evidence to conclude that the results distributions differ in their
true medium profit values for the studied heuristics, with 99% confidence.

Table 2. Mean ranks computed using the Friedman statistical test for the studied
heuristics, regarding the profit objective results

batch dimension (n)
overall

50 100 200 400

h
e
u
ri

st
ic

BFR 5.35 6.34 6.50 7.59 6.44
EFT 6.61 5.81 5.25 4.26 5.48
LGF 6.76 6.44 5.82 5.47 6.12
STF 2.99 3.36 3.77 4.20 3.58
EDF 6.41 6.19 6.03 5.33 5.99
CI 3.17 3.56 3.61 4.21 3.64
SRCI 1.71 1.16 1.10 1.41 1.34
MaxP 3.02 3.14 3.92 3.54 3.41

χ2 474.08 384.74 364.45 365.20 1497.30
p-value < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Table 2 shows that SRCI is consistently the heuristic providing the highest
benefit to the broker: it got the lowest average rank for every batch dimension.
We can see that, aside SRCI, the heuristics that target the profit optimization
(namely, CI and MaxP) are generally outperformed by STF in all problem sizes.
Both SRCI and STF assign first the shortest tasks, which arises as an appropriate
policy. Finally, EDF, EFT, LGF, and BFR performed the worst in all cases.

The profit results are reported in Table 3. The GAP metric is the relative
difference between the profit computed using each heuristic and the best result
for each problem instance. Row #1 indicates how many times the corresponding
heuristic performed the best (i.e., the number one) regarding the profit value.

Some heuristics report negative profit values for several of the tested in-
stances. Particularly, this happens for those instances with a high ratio between
the VM requests and the available RIs, for which the available RIs are not enough
to process all requests. In such cases, the broker is obliged to book a high num-
ber of on-demand machines, which are more expensive than the price charged to
the customer, in order to avoid deadline violations and keep offering high QoS
and so having high reputation. This scenario is expected to occur only during
sporadic peak periods, and the money loss is compensated by avoiding the loss of
reputation produced by rejecting the customer request. In order to reduce such

HPCLatAm 2013 - Page 44

Table 3. Profit results for the proposed heuristics

n metric
heuristic

BFR EFT LGF STF EDF CI SRCI MaxP

50

avg. profit 27.33 18.50 17.50 37.10 18.57 37.00 40.67 36.92
best profit 47.47 46.21 46.92 56.75 47.19 56.75 56.75 56.75
avg. GAP 35.4% 57.1% 59.5% 9.4% 54.8% 9.5% 1.0% 9.6%

#1 5 0 0 30 1 16 79 29

100

avg. profit 27.45 28.92 25.14 50.19 25.19 49.67 63.94 50.62
best profit 70.70 70.38 67.75 87.45 64.99 83.35 92.94 84.75
avg. GAP 69.9% 66.3% 72.0% 21.0% 73.2% 21.6% 1.2% 19.4%

#1 0 0 0 1 0 6 87 7

200

avg. profit 19.96 30.21 26.75 45.94 25.41 46.41 68.36 45.13
best profit 78.25 101.02 100.39 104.62 104.45 98.94 130.03 106.37
avg. GAP 280.0% 184.6% 261.9% 44.1% 298.9% 36.7% 3.3% 50.6%

#1 0 1 0 0 0 5 92 2

400

avg. profit -59.22 -8.63 -22.41 -6.63 -19.30 -7.15 37.42 -5.07
best profit 96.97 183.40 174.86 129.55 193.94 115.02 204.05 110.44
avg. GAP 239.7% 106.1% 154.8% 87.0% 154.5% 92.1% 0.9% 84.8%

#1 0 0 0 0 4 0 75 21

situations to a minimum, the broker should have good forecasting methods to
predict the VM requests in future months to anticipate and reserve more nodes,
if considered to be profitable. This issue is studied in detail in Table 5.

In order to further analyze the planning computed by each list scheduling
heuristic, we also evaluate the makespan and the flowtime for each schedule. The
makespan is a metric used to evaluate the resource utilization; it is defined as the
time spent from the moment when the first task in the batch begins execution
to the moment when the last task in the batch is completed. Lower values of
the makespan metric means that the RIs will be able to attend more batches
in a given period of time. The flowtime evaluates the sum of the tasks finishing
times, and it is an important metric from the user point-of-view, since it reflects
the response time of a computational system for a set of submitted tasks [9].

The average makespan and flowtime results are reported in Table 4. If we
focus on makespan, LGF clearly stands out as the best heuristic, providing the
best average, GAP, and #1 values for all instances but the largest ones, for which
it is outperformed by BFR, STF, CI, and SRCI in terms of average solution. EDF
is the heuristic providing the best found result for all instance classes, however,
the most accurate one is LGF, as it can be concluded from its value for #1.
Regarding flowtime, EFT is the most efficient heuristic for all sets of instances
except the largest one, for which CI is the best one.

We proceed now to analyze the performance of the heuristics according to the
number of deadline violations in the solutions. This is an important issue because,
as it was previously discussed, the broker will need to book on-demand resources
in order to satisfy these violated requests. The broker will pay for these on-
demand VMs more than the price charged to the customer, implying money loss.
Table 5 shows the results obtained for all the considered heuristics, according

HPCLatAm 2013 - Page 45

Table 4. Makespan and flowtime results for the proposed heuristics

n metric
makespan flowtime

BFR EFT LGF STF EDF CI SRCI MaxP BFR EFT LGF STF EDF CI SRCI MaxP

50

avg. 99.3 71.12 67.1 94.1 69.4 94.0 80.9 92.6 1481.5 1157.8 1320.0 1462.2 1324.8 1660.8 1248.7 1619.4
best 55.3 32.6 32.1 67.1 30.2 57.1 38.7 56.2 936.8 681.9 673.9 997.1 681.7 1105.3 718.6 1060.9

GAP 77.4% 12.4% 4.9% 66.7% 7.7% 66.0% 36.1% 63.6% 39.1% 2.2% 14.4% 36.2% 14.8% 55.2% 12.5% 51.1%
#1 4 16 50 6 42 6 7 2 14 68 9 1 0 0 9 0

100

avg. 107.1 87.1 84.5 106.9 86.5 105.3 102.0 103.0 3116.5 2846.3 3212.5 3184.4 3283.5 3287.5 2958.2 3371.8
best 90.2 46.2 44.9 88.0 42.5 90.2 63.6 91.3 2531.1 1705.0 1846.4 2573.1 1862.7 2808.5 1919.1 2948.8

GAP 46.0% 10.0% 6.0% 46.3% 8.6% 43.9% 35.5% 40.7% 22.0% 6.6% 20.4% 24.5% 22.5% 29.8% 13.0% 32.8%
#1 4 16 32 3 26 7 5 8 15 57 0 4 0 18 3 3

200

avg. 101.3 91.2 86.0 103.2 87.6 102.6 101.9 102.1 5400.9 5363.8 6322.1 5525.4 6341.6 5758.9 5425.0 5544.8
best 91.1 52.0 45.3 93.9 43.1 91.3 71.7 90.8 4694.0 3197.7 3984.8 4726.4 3928.0 4497.7 3738.0 4297.0

GAP. 30.8% 11.1% 3.8% 33.4% 5.7% 32.1% 29.5% 31.2% 19.9% 15.2% 35.9% 22.5% 36.2% 28.6% 18.5% 23.9%
#1 15 8 31 8 23 9 2 5 12 43 0 6 0 8 2 29

400

avg. 106.5 109.7 109.0 106.2 110.7 107.2 109.1 110.5 10210.5 12602.8 13107.4 10604.4 13292.8 9724.0 11632.1 9806.9
best 96.5 95.7 96.5 95.7 92.7 95.5 96.9 98.0 8456.2 9847.1 7513.3 8521.1 7546.6 6955.9 8963.9 6947.1

GAP 5.5% 8.6% 7.9% 5.2% 9.6% 6.1% 8.0% 9.5% 10.2% 35.7% 37.7% 14.3% 39.4% 3.7% 25.2% 4.6%
#1 19 6 8 23 16 16 9 4 24 0 2 2 3 36 0 33

the average number of VM request violated (avg.), to the number of times every
heuristic was finding the solution with less violated deadlines (#1), and the
number of times they found solutions without any deadline violation (zero).
EFT stands out as the best compared scheduler according to these metrics.
It is only outperformed by EDF in the number of times a solution without
deadline violations is found for the largest instances. For medium and large
problem instances, SRCI—the best heuristic regarding the profit objective—has
acceptable values of deadline violations.

Table 5. Deadline violations for the proposed heuristics

n metric
heuristic

BFR EFT LGF STF EDF CI SRCI MaxP

50
avg. 8.2% 0.2% 0.8% 5.6% 0.7% 10.1% 23.0% 9.5%
#1 17 91 71 17 87 8 53 11
zero 17 78 69 17 81 8 52 11

100
avg. 15.5% 0.1% 4.1% 11.5% 3.1% 22.0% 4.4% 20.4%
#1 0 91 52 0 61 0 17 0
zero 0 48 48 0 51 0 15 0

200
avg. 17.2% 0.0% 7.4% 13.8% 6.7% 26.1% 5.9% 28.2%
#1 0 98 44 0 47 0 7 0
zero 0 45 44 0 45 0 7 0

400
avg. 19.3% 0.1% 14.5% 16.3% 14.1% 32.9% 7.2% 32.4%
#1 0 83 14 0 18 0 1 0
zero 0 0 14 0 15 0 0 0

Figures 1(a) and 1(b) graphically summarizes the main comparative results
for the proposed heuristics. In particular, they represent the number of times
they are the best heuristic and the percentage of violated requests, respectively.
The values in the plots were rounded for the sake of clarity. In the plots, it can be
clearly seen how SRCI outperforms all the other heuristics according to profit,

HPCLatAm 2013 - Page 46

while it also provides accurate results for the number of violated deadlines. In
this case, EFT clearly stands out as the best algorithm. At this point, we would
like to emphasize that a constraint violation does not imply a decrease on the
QoS provided, because the broker will book an on-demand resource to avoid
that, and the extra cost for such resource is considered in the total profit value.

(a) Number of times the heuristic is best (b) Number of violated constraints

Figure 1. Comparative results for the proposed heuristics

Summarizing, the experimental analysis indicates that the SRCI heuristic
is the most appropriate choice for the broker: it maximizes the profit, clearly
outperforming the others, and is among the best according to the number of
violated constraints.

6 Conclusions and future work

This article has introduced the VMMP, a relevant problem when planning re-
source utilization in cloud infrastructures. We focus on a novel cloud brokering
business in which the broker sublets reserved resources to his customers in an on-
demand basis, and at cheaper prices than those offered by cloud providers. The
model is profitable thanks to the large difference in price between on-demand
and reserved VMs in the cloud. Customer requests have an associated deadline,
and if the broker does not have enough resources to process the requests within
their deadlines, he will need to book on-demand VMs in the cloud, with the
consequent money loss.

Eight different fast and accurate heuristics were proposed to solve the prob-
lem. They focus on different aspects, such as VM cost or QoS. The schedulers are
deeply analyzed and evaluated over a large set of (publicly available) benchmark
problem instances that account for realistic workloads and scenarios using real
data from cloud providers. The main conclusion of the experimental analysis is
that the Shortest Request to Cheapest Instance (SRCI) heuristic provides the
best results, clearly outperforming all the other ones accounting for the broker’s
profit, and being among the best ones in terms of QoS of the provided solutions.

HPCLatAm 2013 - Page 47

The main lines for future work include to further studying the VMMP and
designing more accurate heuristics and multi-objective metaheuristics to search
for trade-off solutions to the problem. Finally, the development of prediction
techniques to efficiently manage the amount of reserved resources to cope with
the expected demand at minimum cost is a further issue to be considered.

Acknowledgements

B. Dorronsoro is supported by the NRF, Luxembourg, AFR contract no 4017742.

References

1. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and
Paradigms. Wiley (2011)

2. Buyya, R., Ranjan, R., Calheiros, R.: Intercloud: Utility-oriented federation of
cloud computing environments for scaling of application services. In: Int. Conf. on
Algorithms and Architectures for Parallel Processing. pp. 13–31 (2010)

3. Calheiros, R., Buyya, R.: Cost-effective provisioning and scheduling of deadline-
constrained applications in hybrid clouds. In: Proc. of 13th Int. Conf. on Web
Information System Engineering. pp. 28–30 (2012)

4. Foster, I., Zhao, Y., Lu, S.: Cloud computing and grid computing 360-degree com-
pared. In: Grid Computing Environments Workshop. pp. 1–10 (2008)

5. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: Tax-
onomy and survey. Software: Practice and Experience pp. 1–22, online first (2012)

6. Ibarra, O., Kim, C.: Heuristic algorithms for scheduling independent tasks on non-
identical processors. Journal of the ACM 24(2), 280–289 (1977)

7. Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

8. Lampe, U.: Optimizing the distribution of software services in infrastructure
clouds. In: IEEE World Congress on Services. pp. 69–72 (2011)

9. Leung, J., Kelly, L., Anderson, J.: Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press (2004)

10. Mattess, M., Vecchiola, C., Garg, S., Buyya, R.: Cloud Computing: Methodol-
ogy, Systems, and Applications, chap. Cloud Bursting: Managing Peak Loads by
Leasing Public Cloud Services, pp. 343–368. CRC Press (2011)

11. Nesmachnow, S., Cancela, H., Alba, E.: Heterogeneous computing scheduling with
evolutionary algorithms. Soft Computing 15(4), 685–701 (2010)

12. Nesmachnow, S., Cancela, H., Alba, E.: A parallel micro evolutionary algorithm
for heterogeneous computing and grid scheduling. Applied Soft Computing 12(2),
626–639 (2012)

13. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing sys-
tems. In: 5th Int. Joint Conf. on INC, IMS and IDC. pp. 44–51 (2009)

14. Rogers, O., Cliff, D.: A financial brokerage model for cloud computing. Journal of
Cloud Computing: Advances, Systems and Applications 1(2), 1–12 (2012)

15. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A scalable application placement
controller for enterprise data centers. In: World Wide Web Conf. pp. 331–340 (2007)

16. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Generation Computer Systems 28(2) (2012)

17. Wu, F., Zhang, L., Huberman, B.: Truth-telling reservations. Algorithmica 52(1),
65–79 (2008)

HPCLatAm 2013 - Page 48

