Other population-based metaheuristics

- IS Immune Systems
- DE Differential Evolution
- PMB Probabilistic Model Building Algorithms
- MA Memetic Algorithms

Immune Systems

Short history:

- mid 1980 first models
- 1990 Ishida proposes a first application of immune models in problem solving
- mid 1990:
 - Forrest et al: applications in computer security
 - Hunt et al: applications in data analysis
- Current tendency: back to the biological model

[http://www-users.cs.york.ac.uk/jtimmis/utm/ais-course.html]

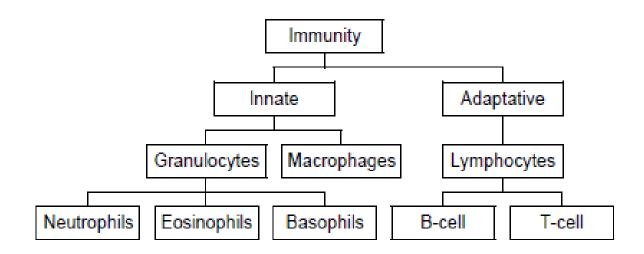
Applications

- Anomaly detection and information systems security
- Data analysis (classification, pattern recognition, clustering etc)
- Optimization;
- Self-organization and autonomous control;

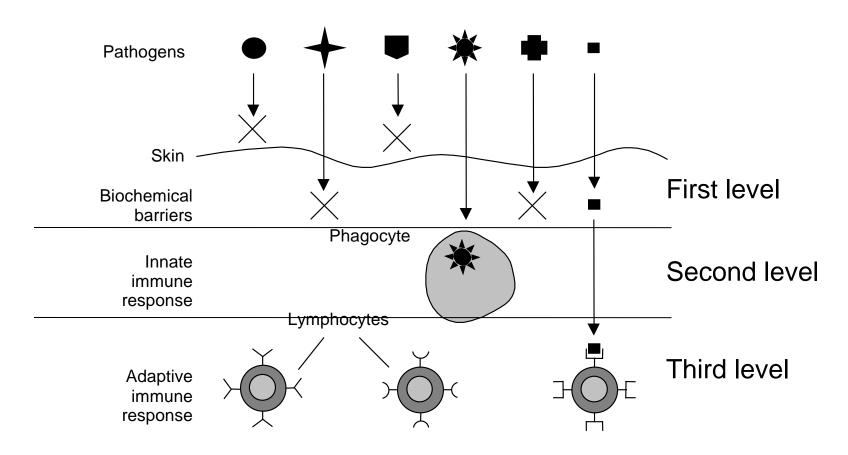
Natural Immune Systems

The natural immune system contains two main components:

- innate (inherited from the parents) based on granulocytes (neutrophils, eosinophils si basophils) and macrophages
- Adaptive based on lymphocytes (B cells and T cells)



Particularity: active at different levels



The adaptive component of the immune system is able to:

- Memorize (ability to recall previous contacts with pathogens and to react quickly)
- Learn (ability to identify/recognize unknown pathogens)
- a) Active elements: lymphocytes
- They contain specific receptors able to recognize the antigens (the organisms usually contain a library of millions of receptors)
- There are two types of lymphocytes:
 - B cells
 - Synthesized in the bone marrow
 - Contain receptors called antibodies the recognition process is based on the complementarity between the binding region of the B cell and the epitope of the antigen
 - T cells: Synthesized by thymus

Main mechanisms

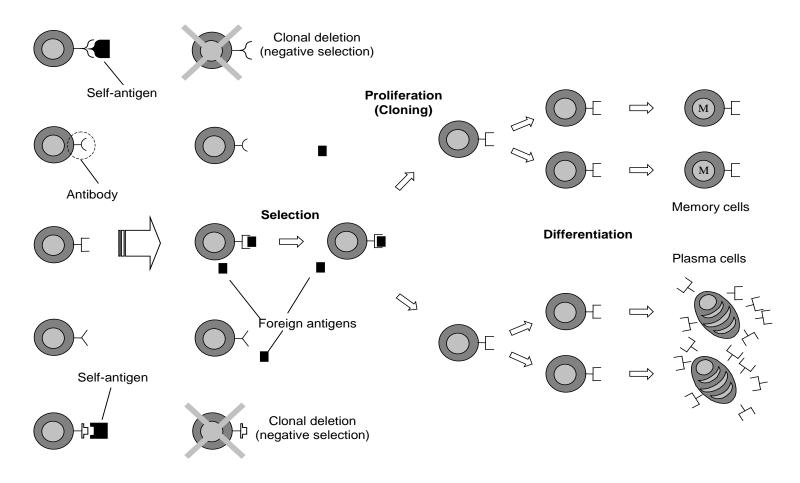
Negative selection: censoring the T cells which recognize the self components (they define the normal behaviour)

Clonal selection: proliferation and differentiation of cells which recognized and antigen (learning and generalization)

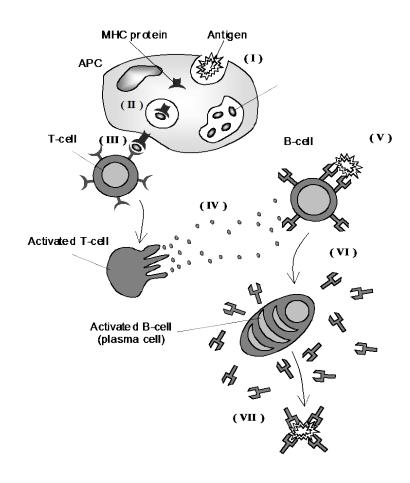
Affinity maturation: the affinity of B cells which recognized an antigen is reinforced by

- Mutation on the receptors (the mutation probability inversely correlated with the affinity)
- The storage of cells with high affinity in a memory (cells pool)
- Removal of the cells with incorrect behavior

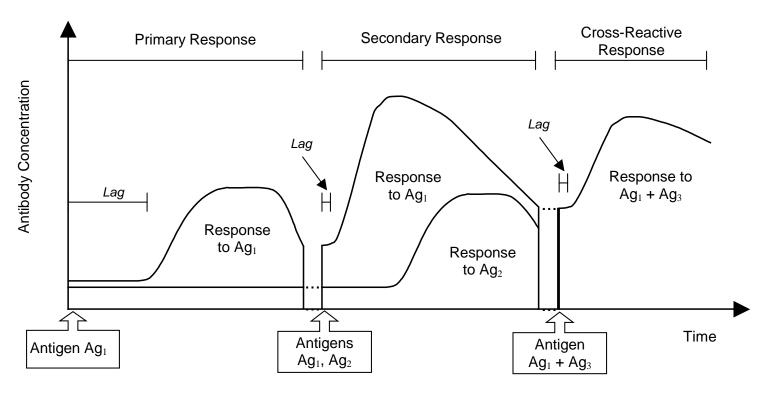
Main mechanisms:



Main steps:



Primary and secondary reaction



Primary reaction: first answer at the contact with an antigen

Secondary reaction: rapid answer

Idea of AIS based problem solving:

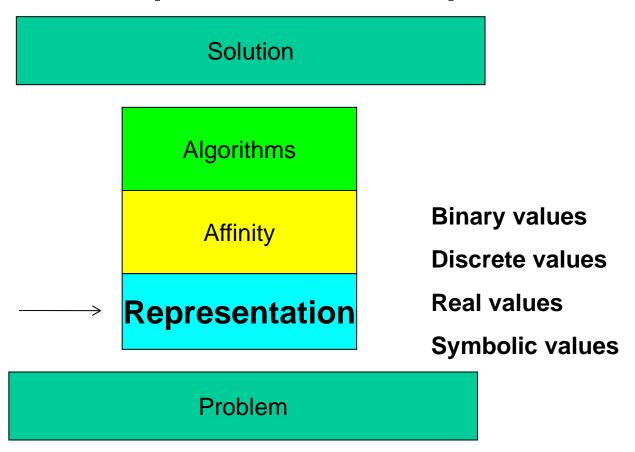
Problem to be solved = environment

Solution (unknown) = antigen

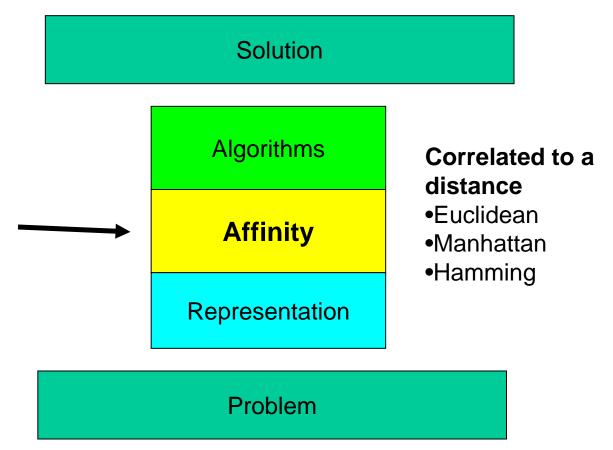
Approximation of the solution (population element) = antibody

Affinity= measure of the quality of an element

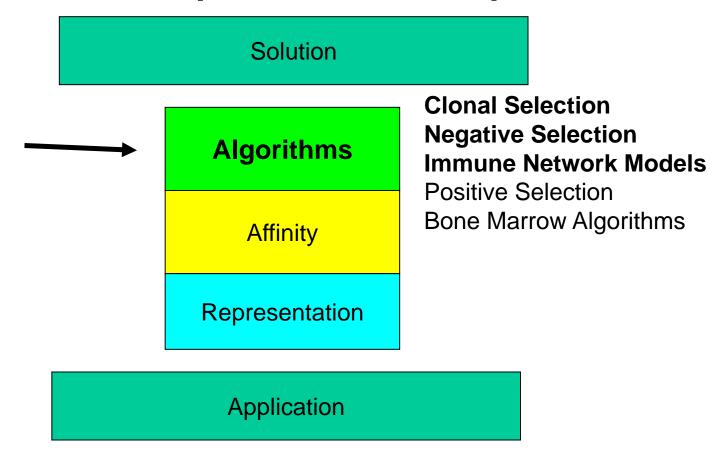
Main idea of AIS[DeCastro, Timmis, 2002]



Main idea of AIS[DeCastro, Timmis, 2002]



Main idea of AIS [DeCastro, Timmis, 2002]



CLONALG (Clonal Selection)

Initialization

REPEAT

Antigenic presentation

- a. Affinity evaluation
- b. Clonal selection and expansion
- c. Affinity maturation
- d. Metadynamics

UNTIL "stopping condition"

CLONALG (Clonal Selection)

Initialization

 Creates a population of antibodies

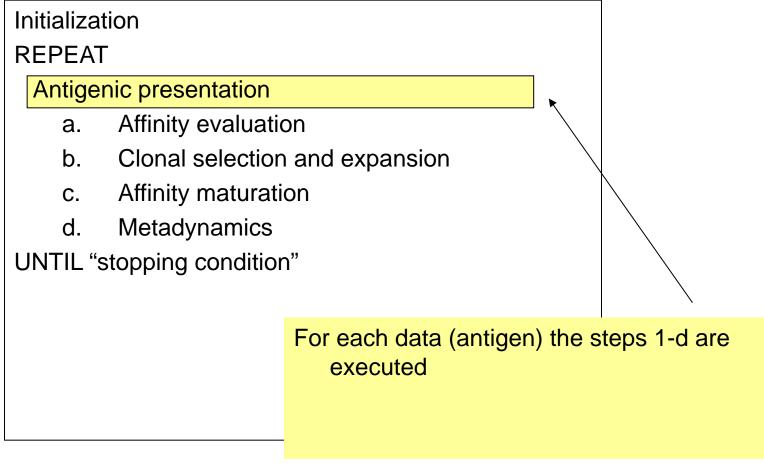
REPEAT

Antigenic presentation

- a. Affinity evaluation
- b. Clonal selection and expansion
- c. Affinity maturation
- d. Metadynamics

UNTIL "stopping condition"

CLONALG (Clonal Selection)



CLONALG (Clonal Selection)

Initialization REPEAT Antigenic presentation a. Affinity evaluation b. Clonal selection and expansion c. Affinity maturation d. Metadynamics UNTIL "stopping condition"

Compute the affinity

- a) Data mining pb: affinity is higher if the similarity is higher
- b) Optimization pb: affinity is higher if the fitness is higher (the fitness is correlated with the objective function value)

Metaheurist

CLONALG (Clonal Selection)

Initialization

REPEAT

Antigenic presentation

- a. Affinity evaluation
- b. Clonal selection and expansion
- c. Affinity maturation
- d. Metadynamics

UNTIL "stopping condition"

- Select n elements from P in decreasing order of affinity
- Generate for each selected element a number (proportional to the affinity) of clones

CLONALG (Clonal Selection)

Initialization REPEAT Antigenic presentation a. Affinity evaluation b. Clonal selection and expansion c. Affinity maturation d. Metadynamics UNTIL "stopping condition"

- Apply mutation to each clone
- The mutation rate is inverse proportional to the affinity
- Add the new element to the population
- Evaluate the affinity for new elements and store the best element

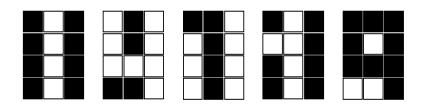
CLONALG (Clonal Selection)

Initialization REPEAT Antigenic presentation Affinity evaluation a. Clonal selection and expansion Affinity maturation d. Metadynamics UNTIL "stopping (Some of the elements of the population having small affinity are replaced with random elements

Applications of CLONALG

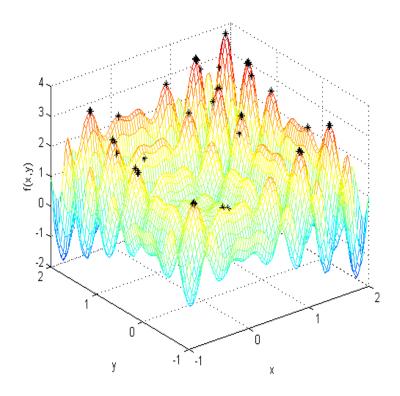
 Pattern recognition = genete "detectors" for the recognition of characters specified by bitmaps

Rmk: affinity is measured using the Hamming distance



Applications of CLONALG

 Multi-modal optimization = identify all optima (local and global) of a function



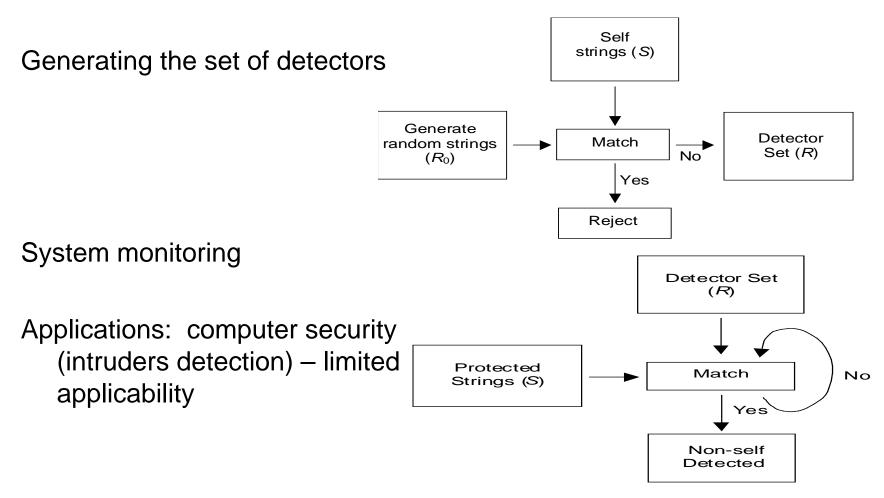
Properties of CLONALG

- The general structure is similar to the structure of an evolutionary algorithm (instead of fitness is used the affinity)
- The specific elements refer to :
 - The cloning process is controlled by the value of the affinity
 - The mutation probability is inverse proportional to the affinity
 - The low affinity elements are replaced with random elements

Negative selection algorithm

- It is based on the pronciple of the discrimination between self and non-self
- The self elements are considered to be representations of the normal behavior of a system
- The aim of the algorithm is to generate a set of detectors which are different from the set S of self elements (they would be detectors of nonself elements – would correspond to anomalous behavior)
- The algorithm will monitor the system functioning and will detect elements similar to non-self.

Negative selection algorithm



Negative selection algorithm

```
 \begin{array}{l} \textbf{input} : S_{seen} = \textbf{set of seen known self elements} \\ \textbf{output} : D = \textbf{set of generated detectors} \\ \textbf{begin} \\ \textbf{repeat} \\ \textbf{Randomly generate potential detectors and place them in a set } P \\ \textbf{Determine the affinity of each member of } P \text{ with each member of } \\ \textbf{the self set } S_{seen} \\ \textbf{If at least one element in } S \text{ recognises a detector in } P \text{ according to a recognition threshold, then the detector is rejected, otherwise it is added to the set of available detectors } D \\ \textbf{until } Until \text{ stopping criteria has been met} \\ \textbf{end} \\ \end{array}
```

J.Timmis, P. Andrews, N. Owens, E. Clark – An Interdisciplinary Perspective of Artificial Immune Systems, Evolutionary Intelligence, Volume 1, Number 1, 5-26, 2008

aiNET Algorithm

Initialization

REPEAT

- Antigenic presentation
 - a. Affinity evaluation
 - b. Clonal selection and expansion
 - c. Affinity maturation
 - d. Metadynamics
 - e. Clonal suppression
- Network interactions (analysis of interactions between network antibodies = computation of affinity between pairs of antibodies)
- Network suppression (eliminate the antibodies which are similar to other antibodies)
- Diversity (insertion of random antibodies)

UNTIL "stopping condition"

Properties of aiNET:

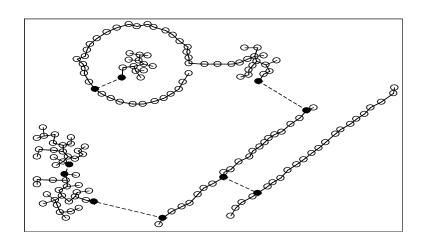
- aiNET is similar to CLONALG but it uses a suppression mechanism based on the affinity between the population elements
- aiNET was initially used for data clustering (but it has difficulty in the case of arbitrary distributed data)
- aiNET was successfully applied in solving multimodal optimization problems

aiNET - clustering

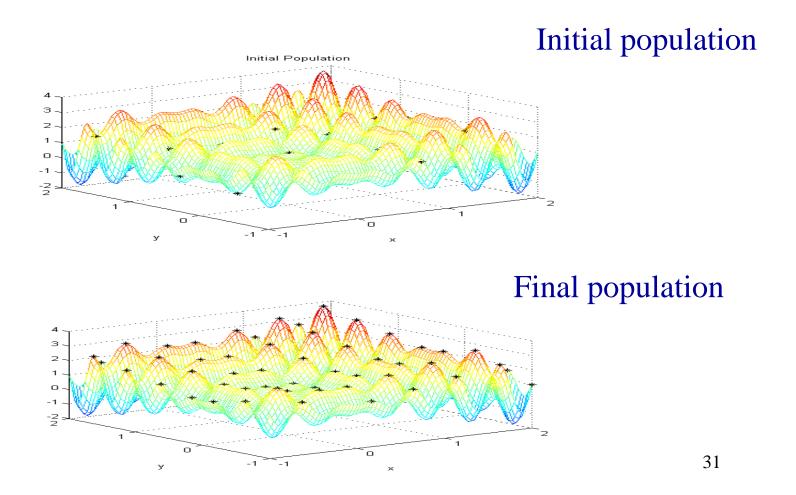
Training Pattern

Training Patterns 0.8 0.6 0.4 0.2 0.2 0.4 0.2 0.6 0.7 0.8 0.8 1

Result immune network



aiNET - multimodal optimization



Creators: Rainer Storn & Kenneth Price (1995)

Aim: continuous optimization

Idea: for each element of the current population:

- Randomly select 3 elements
- The mutation is based on the computation of the difference between two elements; the difference (multiplied by a scale factor) is added to the third element. The obtained element is called mutant
- The mutant element is recombined with the current element leading to the so-called trial element
- If the trial element is better than the current element then it replaces it

Problem: maximization of $f:D \square R^n \rightarrow R$

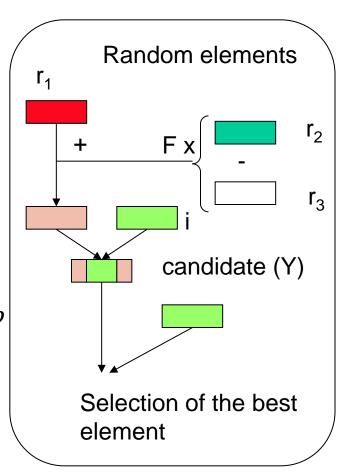
$$X = \{x_1, ..., x_m\}$$
 – current population
 $Y = \{y_1, ..., y_m\}$ – population of candidates
 $Z = \{z_1, ..., z_m\}$ – new population

$$y_i^j = \begin{cases} x_{r_1}^j + F \cdot (x_{r_2}^j - x_{r_3}^j), & \text{with probability } p \\ x_i^j, & \text{with probability } 1 - p \end{cases}$$

 r_1, r_2, r_3 = random indices from $\{1, ..., m\}$

$$F \in (0,2], \ p \in (0,1]$$

$$z_i = \begin{cases} x_i, & f(x_i) > f(y_i) \\ y_i, & f(x_i) \le f(y_i) \end{cases}$$



Variants

$$y_i^j = \begin{cases} x_{r_1}^j + F \cdot (x_{r_2}^j - x_{r_3}^j) \cdot N(0,1), & \text{with probability } p \\ x_i^j, & \text{with probability } 1 - p \end{cases}$$

$$y_{i}^{j} = \begin{cases} x_{r_{1}}^{j} + F_{1} \cdot (x_{r_{2}}^{j} - x_{r_{3}}^{j}) + F_{2} \cdot (x_{r_{4}}^{j} - x_{r_{5}}^{j}), & \text{with probability } p \\ x_{i}^{j}, & \text{with probability } 1 - p \end{cases}$$

$$y_i^j = \begin{cases} \lambda x_*^j + (1-\lambda)x_{r_1}^j + F \cdot (x_{r_2}^j - x_{r_3}^j), & \text{with probability } p \\ x_i^j, & \text{with probability } 1-p \end{cases}$$

 x_* = best element of the population

Taxonomy: DE/base element/number of differences/crossover type (e.g. DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin etc.)

Control parameters:

Scale factor (F):

- range: (0,2)
- small values: exploitation of the search space (local search)
 - can lead to premature convergence
- large values: exploration of the search space

Crossover probability:

- small values (<0.5): appropriate for separable problems
- large values (>0.5): appropriate for nonseparable problems

Self-adapting [Brest, 2006]

- Each individual is extended with two components corresponding to the control parameters (F and p)
- At each generation the parameters are randomly changed

Particularity: class of algorithms which search the solution space by estimating and simulating some probability distributions

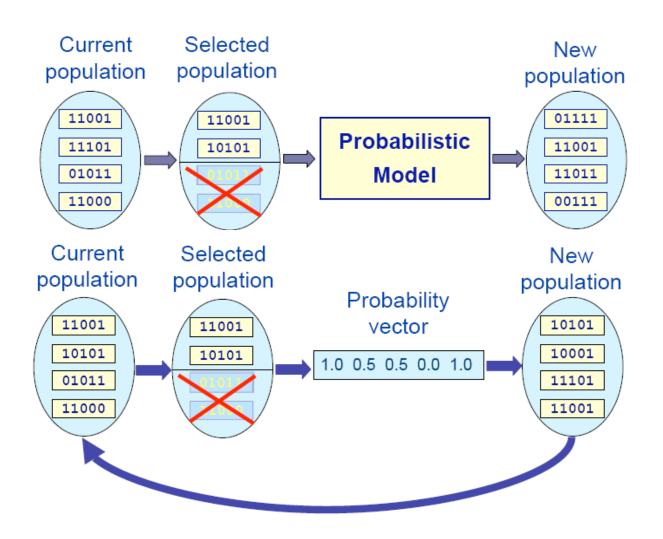
Variants:

- Estimation of Distribution Algorithms (EDA) [Mühlenbein & Paass, 1996]
- Iterated Density Estimation Algorithms (IDEA) [Bosman & Thierens, 2000]
- Bayesian Optimization Algorithms (BOA) [Pelikan, Goldberg, & Cantu-paz, 1998]

Idea: the mutation and crossover operators are replaced with a process for the estimation of the probability distribution of selected elements and a process of sampling new elements using this distribution

Remark: the sampled values should be promising elements

Illustration [M.Pelikan – Probabilistic Model Building GA Tutorial]



General structure.

Step 1: Population initialization (m elements)

Step 2: REPEAT

- select m'<m elements from the current population (based on their fitness)
- estimate a probability distribution using the selected elements
- sample m elements from the estimated probability distribution
 UNTIL <stopping condition>

Remarks

- The main difficulty is to estimate the probability distribution (especially when the components of individuals are correlated)
- A simplified variant is based on the assumption that the components are independent; therefore the corresponding probabilities can be estimated separately.

Variants based on the independence assumption:

- UMDA (Univariate Marginal Distribution Algorithm)
- PBIL (Probabilistic Based Incremental Learning)

UMDA (Mühlenbein, Paass, 1996)

$$P^{t}(x_{i}) = \frac{\sum_{j=1}^{m'} \delta_{j}(X_{i} = x_{i} \mid S(t-1))}{m'}$$
 probability of component i

S(t-1) is the population selected at iteration (t-1)

$$\delta_j(X_i = x_i \mid S(t-1)) = 1$$
 if the jth selected element contains the value x_i on position i

PBIL (Baluja, 1995)

$$P^{t}(x_{i}) = (1-\alpha)P^{(t-1)}(x_{i}) + \alpha \frac{\sum_{j=1}^{m'} \delta_{j}(X_{i} = x_{i} \mid S(t-1))}{m'}$$

$$\alpha \in (0,1]$$

Memetic Algorithms

Creator: Pablo Moscato (1989)

Particularity: hybridization of EAs with local search techniques

Name: "memetic" comes "meme", a term coined by Richard Dawkins to specify the transfer unit of different entities (biological, cultural etc) between generations

Variants: Hybrid Evolutionary Algorithms, Baldwinian Evolutionary Algorithms, Lamarckian Evolutionary Algorithms, Cultural Algorithms or Genetic Local Search

Memetic Algorithms

General structure:

- Step 1: Population Initialization
- Step 2: WHILE <stopping condition>
 - Evaluate the elements of the population
 - Generate new elements using the variation operators (mutation and crossover)
 - Select a subpopulation on which are applied some local search operators (e.g. SA, TS etc)

Remarks:

- The local search can be based on a set of operators the operators to be applied are probabilistically selected
- 2. The elements which define the local search operators can be evolved.