Local and Global Search Algorithms

Motivation: local vs global optimization
General structure of the local search algorithms

Local Search Deterministic Methods:
— Pattern Search
— Nelder Mead

Local Search Random Methods :
— Matyas
— Solis-Wets

Metaheuristics for global search:
— Local search with random restarts
— Iterated local search

Metaheuristic Algorithms - Lecture 2



Local vs Global Optimization

Local optimization (minimization): find x* such that f(x*)<=f(x) for all x in V(x*)
(V(x*)=neighborhood of x);
Rmk: it requires the knowledge of an initial approximation

Global optimization:
e Find x* such that f(x*)<=f(x), for any x (from the entire search domain)

« If the objective function has local optima then the local search methods (e.g.
Gradient methods) can be stucked in such a local optimum

Local optimum ¢

Metaheuristic Algorithms - Lecture 2 Global ogtimum



Local Optimization

Discrete search space: Continuous search space:

- The neighborhood of an element is &) The objective function is
a finite set which can be completely differentiable

explored - Gradient method
Particular case (permutation-like - Newton-like methods
solutions):

- S=(S4,S,,...,S,) S;from {1,....,n}
- V(s)={s'|s’ can be obtained from's  p) The objective function is not

by interchanging two elements} differentiable (or even discontinuous)
- Card V(s)=n(n-1)/2 - Direct search methods(ex: Nelder
Mead)
Example (n=4) - Methods based on small random
s=(2,4,1,3) perturbations
s'=(1,4,2,3)

Metaheuristic Algorithms - Lecture 2 3



Local search: general structure

Notations: Local search algorithm:
S — search space
f — objective function s = initial approximation
S. - set of local/global optima repeat
$=(S1,S,---, Sp) : element of S/ s'=perturb(s)
configuration/ candidate solution e
S. = the best element discoverd up to It (s )’<f(s) then
the current step S=S
s* = optimal solution until <stopping condition>
Remarks:
1. The initial approximation can be selected randomly or constructed based on a
simple heuristic (e.g. greedy)
2. The perturbation can be deterministic (e.g. gradient based) or random
3. The replacement of s with s’ can be done also when f(s”)=f(s) (the condition is
in this case f(s’)<=f(s) )
4. Stopping condition:

(@) No improvement during the previous K iterations;
(b) Maximal number of iterations or of objective function evaluations
Metaheuristic Algorithms - Lecture 2 4



Local search: variants ()

Local search algorithm: More candidates:
S = initial approximation s = initial approximation
repeat repeat

s'=perturb(s)

f f(s)<f(s) then [S1,--., Spp]= MultiplePerturbation(s)

s’=bestOf([s,, ..., S;])

S=s’
until <stopping condition> If f(s’)<f(s) then
S=S’
until < stopping condition >
Remarks:

1. The search is more explorative — at each iteration there are several
candidates which are analyzed

2. Each objective function evaluation should be counted (if the stopping
condition uses the number of evaluations)

Metaheuristic Algorithms - Lecture 2 5



Local search: variants (ll)

Local search algorithm: More candidates:
o o S = initial approximation
S = initial approximation best = s
repeat repeat
s'=perturb(s) _ _
if f(s7)<f(s) then [S1,---, Sp]=MultiplePerturbation(s)
s=g’ s=bestOf([s;,..., Sp])
until <stopping condition> If f(s)<f(best) then best=s
until < stopping condition >
Remarks:

1. The best out of the m candidate solutions is unconditionally accepted

2. The best candidate solution obtained up to the current moment is preserved
(ensuring the elitism of the searching process; elitism = we cannot lose the a
good configuration once that it has been found)

Metaheuristic Algorithms - Lecture 2 6



Local search: perturbation variants

Aim of the perturbation: constructing a new candidate solution starting
from the existing one

Perturbation types (depending on the nature of the perturbation):
— Deterministic
— Random

Perturbation types (depending on the perturbation intensity):
— Local
— Global

Perturbation types (depending on the search space):
— Discrete search space (replacement of one or several components)
— Continuous search space (adding a perturbing term to the current configuration)

Metaheuristic Algorithms - Lecture 2 7



A

Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved

Example 1: TSP (Travelling Salesman Problem)
. Generating a new configuration (2-opt transformation)

C C Implementation:
D D
1. Random choice of two
positions

\
B \ E B ® E 2. Reverse the order of
/ / elements between the
A O two selected positions
F / F
G G
ABCFEDG — ABCFEDG — ABCDEFG

Metaheuristic Algorithms - Lecture 2 8



Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved

Example 2: Timetabling

. Remove conflicts (violated constraints) by moving or exchanging elements
«  Current configuration perturbation: El E3
— Move an event which violates a ’\.
constraint in a free slot ~. E5
/ S
S1 [S2 |S3 S1 [s2 |s3 £ Ee ®FS
O ‘/
T1 |EL E3| E9 T1 |E1 E9 4 / T
T2 |E4 | V|E8 | |T2 |E4 |E3 |ES8 . ES
T3 |E6 |E5 T3 |E6 |ES5
T4 | E2 E7 T4 | E2 E7 Conflicts graph

Metaheuristic Algorithms - Lecture 2 9



Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the

neighborhood of the current one by applying some transformations which are
typical to the problem to be solved

Example 2: Timetabling

. Remove conflicts (violated constraints) by moving or exchanging elements
«  Current configuration perturbation: El E3
— Exchange two events ’\.
ES
/ \-\
s1 |s2 [s3 s1 ]s2 [s3 5> E6/0E8
© @
T1 |E1l E9 T1 |E1 E9 4 / \‘EQ
T2 |E4 |E3 |ES8 T2 |E4 |E3 |ES8 ®F7
T3 E2¢ ES T3 |E6 |ES
T4 |E6" e7 | (T4 |E2 E7 Conflicts graph

Metaheuristic Algorithms - Lecture 2 10



Local search: perturbation variants

Optimization in continuous domains

Random perturbation Deterministic perturbation by direct
Perturb(s,p,inf,sup,r) search (it does not use derivatives)
for i=1:n
if rand(0,1)<=p then « Pattern Search (Hooke -Jeeves)
repeat * Nelder - Mead
n=rand(-r,r)
until inf<=s,+n<=sup
S;=S;i+n _
end Notations:
end s=the candidate solution to be perturbed
return s p=perturbation probability

r=perturbation ,radius”
rand(a,b) = random value uniformly distributed on [a,b]

Metaheuristic Algorithms - Lecture 2 11



Local search: pattern search

Idea: successive modifications of the
components of the current configuration

PatternSearch(s,r)
s=initial approximation
r=initial value
best=s
repeat

s'=s
for i=1:n

if f(s+r*e,)< f(s’) then s’=s+r*e, end
if f(s-r*e;)< f(s’) then s’=s-r*e, end

end

if s==s’ then r=r/2
else s=s’

end

if f(s)<f(best) then best=s
until <stopping condition>

Remark:

1.e=(0,0,...,0,1,0,...,0) (1 on position i)
2. At each iteration are constructed 2n

(a) Initial pattern

(b} Move North

(c) Move West

(d}) Move North

(&) Contract

() Move West

T.G. Kolda et al., Optimization by direct
search: new perspectives on some classical
and modern methods, SIAM Review, 45(3),

385-482, 2003

candidates out of which the best one is selected

Metaheuristic Algorithms - Lecture 2

12



Local search: Nelder-Mead algorithm

H = Highest

ldea: the search is based on a simplex in R" (set of " N = Next to highest
. . H . L=L t
(n+_1) points in R") and on some transformations sink | i \> N e Reflsion
which allow to ,explore” the search space SN E = Expansion
/’ Ci = Contraction
L .Co (inside)

Co = Contraction

The transformations are based on: (outside)

1. Sort the simplex elements increasingly by the
objective function value (for a minimization
problem) E

2. Compute the average, M(Xy,...,X,), of the best
n elements from the simplex

3. Successive construction of new elements by:
reflexion, expansion, contraction (interior,
exterior), shrinking

J.G. Lagarias et.al; Convergence properties of the Nelder-Mead simplex
method in low dimensions, SIAM J. Optim., 1998

Metaheuristic Algorithms - Lecture 2 13



Local search: Nelder-Mead algorithm

Select (n+1) points from R": (X{,X5,..., X141)

Repeat
COMPULE (Fy - ), F1(0) H
sort (X;,X,,-.., Xn41) SUCh that f,<=f,<=...<=f ., M~ N = Next to highest
Shrink \_\\ N L = Lowest
M :(X1+X2+ . +Xn)/n | G > R = Reflexion
NS > E = Expansion
] /’ Ci= (_?.or_ltraction
Stepl (reflexion - R): L .Co (inside)

Co = Contraction

Xr=M+r(M-X,,1); , (outside)

If f,<=f(xr)<f, accept xr; continue;

else goto Pas 2

Step 2 (expansion - E):

If f(xr)< f; then
xe=M+e(xr-M)
if f(xe)<f(xr) then accept xe; continue
else goto Pas 3

Metaheuristic Algorithms - Lecture 2 14



Local search: Nelder-Mead algorithm

Step 4 (contraction exterior/interior — Co/Ci ):
if f <=f(xr)<f ., then
Xc=M+c(xr-M)

H = Highest
if f(xc)<f(xr) accept xc; continue " ~ N = Next to highest
Shrink Ci ~_N L =_L0west.
else goto Pas 5 T T R=Reflexion
. "l N E = Expansion
if f(Xr)>:fn+1 then // Ci = Contraction
L .C (inside)
XCC:M-C(M-XH_,_]_) y Co = Contraction
. . (outside)
if f(xcc)<f,,, then accept xcc; continue ‘R
else goto Pas 5
Step 5 (Shrinking): "

construct a new simplex:
X1:Voyeeny Vpep  UNE Vi=Xi+S(Xi-X4)

Parameters: r=1, e=2, c=1/2, s=1/2

Metaheuristic Algorithms - Lecture 2 15



From local to global optimization

Perturbation: use (ocasionally) some large perturbations

Example: use a infinite support probability distribution (e.g.
Normal or Cauchy distribution — algoritm Matyas, Solis-Wets)

Random restart: start a new search process from a random initial
configuration

Example: local search with random restarts

Exploration of the local optima set: the current local optimum is
perturbed and used as a starting point for a new search process
Example: iterated local search

Selection: accept (ocasionally) poorer configurations
Example: simulated annealing

Metaheuristic Algorithms - Lecture 2 16



Example: Matyas algorithm(1960)

s(0) = initial configuration Rmk. The random
k=0 // iteration counter perturbation is usually
e=0 //failure counter applied to one of the

repeat components (e.g. the

vector z has only one

enerate a random vector with normall
J y non-zero component)

distributed components (z,,...z,)

IF f(s(k)+z)<f(s(k)) THEN s(k+1)=s(k)+z
(s(k)+2)<H(s(k)) (ket1)=s(k) Problem: how should be

e=0 chosen the
ELSE s(k+1)=s(k) parameters of the
e=e+l distribution used to
k=k+1 perturb the current
value?

UNTIL (k==kmax) OR (e==emax)

Example: N(O,sigma)

Metaheuristic Algorithms - Lecture 2 17



Reminder: simulation of random
variables with normal distribution

Box-Muller algorithm

u=rand(0,1) // random value uniformly distributed on (0,1)
v=rand(0,1)

r=sqrt(-2*In(u));

z1=r*cos(2*PI*v)

z2=r*sin(2*P1*v)

RETURN z1,z2

// z1 and z2 can be considered as values of two independent random
variables with normal distribution

Metaheuristic Algorithms - Lecture 2 18



Reminder: simulation of random
variables with normal distribution

Other variant of the Box-Muller algorithm:
repeat
u=rand(0,1) v=rand(0,1)
W=U2+V?2
until O<w<1
y=sqrt(-2In(w)/w)
z1=u*y
Z2=V*y
RETURN z1,z2

Rmk: to obtain values corresponding to a non-standard normal

distribution N(m,sigma) one have to apply the transformation:

m+z*sigma

Metaheuristic Algorithms - Lecture 2

19



Example: Solis-Wets algorithm (1981)

s(0) = initial configuration
k=0; m(0)=0 // the average of the perturbation vector is adaptive
repeat
generate a vector (z,,...z,) having components distributed according toN(m(k),1)
IF f(s(k)+z)<f(s(k)) THEN s(k+1)=s(k)+z;
m(k+1)=0.4*z+0.2*m(k)

IF f(s(k)-z)<min{f(s(k)),f(s(k)+2)} THEN s(k+1)=s(K)-z;
m(k+1)=m(k)-0.4*z

IF f(s(k)-z)>f(s(k)) AND f(s(k)+z)>f(s(k)) THEN
S(k+1):=s(k)
m(k+1):=0.5*m(k)
K:=k+1
UNTIL (k==kmax)

Metaheuristic Algorithms - Lecture 2 20



Search with random restarts

|dea: Random Restart

The search process is repeated  g=jnjtial configuration
starting from random initial best=
configurations esSt=s

Repeat

The best final configuration is
chosen as solution repeat

r=perturb(s)

Remarks: If f(r)<:f(s) then s=r
« The stopping condition of the until <local search stopping
local search can be based on a condition>
random decision (e.g. The If f(s)<f(best) then best =s
allocated time can be random) s=other initial configuration
 The search processes are (random)
independent — none of the until <stopping condition>

information collected at the

orevious search threads is used ~ €turn best

Metaheuristic Algorithms - Lecture 2 21



lterated Local Search

|dea:

It is based on some successive
local search stages which are
correlated

The initial configuration from the
next stage is chosen in a
neighborhood of the local
optimum identified at the current
stage

Remark:

The initial configuration of a new
search stage is based on a
more ,aggressive” perturbation
than the perturbation used for
local search

lterated Local Search (ILS)
s=initial configuration
s0=s; best=s
Repeat
repeat
r=perturbSmall(s)
if f(r)<=f(s) then s=r
until <local stopping condition>
If f(s)<f(best) then best =s
sO=choose(s0,s)
s=perturbLarge(s0)
until <stopping condition>
return best

Metaheuristic Algorithms - Lecture 2 22



Next Lecture

Other global search methods:

Simulated Annealing
Variable Neighborhood Search
Tabu Search

Greedy Randomized Search

Metaheuristic Algorithms - Lecture 2

23



