Local and Global Search Algorithms

• Motivation: local vs global optimization
• General structure of the local search algorithms
• Local Search Deterministic Methods:
 – Pattern Search
 – Nelder Mead
• Local Search Random Methods:
 – Matyas
 – Solis-Wets
• Metaheuristics for global search:
 – Local search with random restarts
 – Iterated local search
Local vs Global Optimization

Local optimization (minimization): find x^* such that $f(x^*) \leq f(x)$ for all x in $V(x^*)$ ($V(x^*)=$ neighborhood of x);

Rmk: it requires the knowledge of an initial approximation

Global optimization:
• Find x^* such that $f(x^*) \leq f(x)$, for any x (from the entire search domain)
• If the objective function has local optima then the local search methods (e.g. Gradient methods) can be stucked in such a local optimum
Local Optimization

Discrete search space:

- The neighborhood of an element is a finite set which can be completely explored

Particular case (permutation-like solutions):

- \(s = (s_1, s_2, \ldots, s_n) \) \(s_i \) from \(\{1, \ldots, n\} \)
- \(V(s) = \{s' | s' \text{ can be obtained from } s \text{ by interchanging two elements}\} \)
- \(\text{Card } V(s) = n(n-1)/2 \)

Example (n=4)

\(s = (2, 4, 1, 3) \)
\(s' = (1, 4, 2, 3) \)

Continuous search space:

a) The objective function is differentiable
- Gradient method
- Newton-like methods

b) The objective function is not differentiable (or even discontinuous)
- Direct search methods (ex: Nelder Mead)
- Methods based on small random perturbations
Local search: general structure

Notations:
S – search space
f – objective function
S* - set of local/global optima
s=(s₁,s₂,..., sₙ) : element of S/ configuration/ candidate solution
s* = the best element discovered up to the current step
s* = optimal solution

Local search algorithm:
s = initial approximation
repeat
s’=perturb(s)
if f(s’)<f(s) then
 s=s’
until <stopping condition>

Remarks:
1. The initial approximation can be selected randomly or constructed based on a simple heuristic (e.g. greedy)
2. The perturbation can be deterministic (e.g. gradient based) or random
3. The replacement of s with s’ can be done also when f(s’)=f(s) (the condition is in this case f(s’)<=f(s))
4. Stopping condition:
 (a) No improvement during the previous K iterations;
 (b) Maximal number of iterations or of objective function evaluations
Local search: variants (I)

Local search algorithm:

\[s = \text{initial approximation} \]
\[\text{repeat} \]
\[s' = \text{perturb}(s) \]
\[\text{if } f(s') < f(s) \text{ then} \]
\[s = s' \]
\[\text{until } \langle \text{stopping condition} \rangle \]

More candidates:

\[s = \text{initial approximation} \]
\[\text{repeat} \]
\[s' = \text{perturb}(s) \]
\[\text{if } f(s') < f(s) \text{ then} \]
\[s = s' \]
\[[s_1, \ldots, s_m] = \text{MultiplePerturbation}(s) \]
\[s' = \text{bestOf}([s_1, \ldots, s_m]) \]
\[\text{if } f(s') < f(s) \text{ then} \]
\[s = s' \]
\[\text{until } \langle \text{stopping condition} \rangle \]

Remarks:

1. The search is more explorative – at each iteration there are several candidates which are analyzed
2. Each objective function evaluation should be counted (if the stopping condition uses the number of evaluations)
Local search: variants (II)

Local search algorithm:

\[s = \text{initial approximation} \]

repeat
\[s' = \text{perturb}(s) \]
if \(f(s') < f(s) \) then
\[s = s' \]
until <stopping condition>

Remarks:
1. The best out of the \(m \) candidate solutions is unconditionally accepted
2. The best candidate solution obtained up to the current moment is preserved (ensuring the elitism of the searching process; elitism = we cannot lose the a good configuration once that it has been found)

More candidates:

\[s = \text{initial approximation} \]
best = \(s \)
repeat
\[[s_1, \ldots, s_m] = \text{MultiplePerturbation}(s) \]
\[s = \text{bestOf}([s_1, \ldots, s_m]) \]
if \(f(s) < f(\text{best}) \) then \(\text{best} = s \)
until < stopping condition >
Local search: perturbation variants

• **Aim of the perturbation**: constructing a new candidate solution starting from the existing one

• **Perturbation types (depending on the nature of the perturbation)**:
 – Deterministic
 – Random

• **Perturbation types (depending on the perturbation intensity)**:
 – Local
 – Global

• **Perturbation types (depending on the search space)**:
 – Discrete search space (replacement of one or several components)
 – Continuous search space (adding a perturbing term to the current configuration)
Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current one by applying some transformations which are typical to the problem to be solved.

Example 1: TSP (Travelling Salesman Problem)

• Generating a new configuration (2-opt transformation)

Implementation:

1. Random choice of two positions
2. Reverse the order of elements between the two selected positions

ABCFEDG → ABCFEDG → ABCDEFG
Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current one by applying some transformations which are typical to the problem to be solved

Example 2: Timetabling

- Remove conflicts (violated constraints) by moving or exchanging elements

- Current configuration perturbation:
 - Move an event which violates a constraint in a free slot

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>E1</td>
<td>E3</td>
</tr>
<tr>
<td>T2</td>
<td>E4</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>E6</td>
<td>E5</td>
</tr>
<tr>
<td>T4</td>
<td>E2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>E1</td>
<td>E9</td>
</tr>
<tr>
<td>T2</td>
<td>E4</td>
<td>E3</td>
</tr>
<tr>
<td>T3</td>
<td>E6</td>
<td>E5</td>
</tr>
<tr>
<td>T4</td>
<td>E2</td>
<td>E7</td>
</tr>
</tbody>
</table>

Conflicts graph
Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current one by applying some transformations which are typical to the problem to be solved.

Example 2: Timetabling

- Remove conflicts (violated constraints) by moving or exchanging elements

- Current configuration perturbation:
 - Exchange two events

```
<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>E1</td>
<td>E9</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>E4</td>
<td>E3</td>
<td>E8</td>
</tr>
<tr>
<td>T3</td>
<td>E2</td>
<td>E5</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>E6</td>
<td>E7</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>E1</td>
<td>E9</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>E4</td>
<td>E3</td>
<td>E8</td>
</tr>
<tr>
<td>T3</td>
<td>E6</td>
<td>E5</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>E2</td>
<td>E7</td>
<td></td>
</tr>
</tbody>
</table>
```

Conflicts graph
Local search: perturbation variants

Optimization in continuous domains

Random perturbation

\[
\text{Perturb}(s, p, \text{inf}, \text{sup}, r) \\
\text{for } i = 1:n \\
\quad \text{if } \text{rand}(0,1) \leq p \text{ then} \\
\quad \quad \text{repeat} \\
\quad \quad \quad n = \text{rand}(-r, r) \\
\quad \quad \quad \text{until } \text{inf} \leq s_i + n \leq \text{sup} \\
\quad \quad s_i = s_i + n \\
\quad \text{end} \\
\text{end} \\
\text{return } s
\]

Deterministic perturbation by direct search (it does not use derivatives)

- Pattern Search (Hooke-Jeeves)
- Nelder-Mead

Notations:

- \(s\) = the candidate solution to be perturbed
- \(p\) = perturbation probability
- \(r\) = perturbation "radius"
- \(\text{rand}(a, b)\) = random value uniformly distributed on \([a, b]\)
Local search: pattern search

Idea: successive modifications of the components of the current configuration

PatternSearch(s,r)

s=initial approximation
r=initial value
best=s
repeat

s′=s
for i=1:n

if f(s+r*e_i)< f(s′) then s′=s+r*ei end
if f(s-r*ei)< f(s′) then s′=s-r*ei end
endif

s==s′ then r=r/2
else s=s′
end
if f(s)<f(best) then best=s

until <stopping condition>

Remark:

1. e_i=(0,0,...,0,1,0,...,0) (1 on position i)
2. At each iteration are constructed 2n candidates out of which the best one is selected

Local search: Nelder-Mead algorithm

Idea: the search is based on a simplex in \mathbb{R}^n (set of $(n+1)$ points in \mathbb{R}^n) and on some transformations which allow to "explore" the search space

The transformations are based on:
1. Sort the simplex elements increasingly by the objective function value (for a minimization problem)
2. Compute the average, $M(x_1,\ldots,x_n)$, of the best n elements from the simplex
3. Successive construction of new elements by: reflexion, expansion, contraction (interior, exterior), shrinking

J.G. Lagarias et.al; Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 1998
Local search: Nelder-Mead algorithm

Select (n+1) points from \(\mathbb{R}^n \): \((x_1, x_2, ..., x_{n+1})\)

Repeat

- compute \((f_1, f_2, ..., f_{n+1})\), \(f_i = f(x_i)\)
- sort \((x_1, x_2, ..., x_{n+1})\) such that \(f_1 \leq f_2 \leq ... \leq f_{n+1}\)
- \(M = \frac{x_1 + x_2 + ... + x_n}{n}\)

Step 1 (reflection - R):

- \(x_r = M + r(M - x_{n+1})\);
- if \(f_1 \leq f(x_r) < f_n\) accept \(x_r\); continue;
- else goto Pas 2

Step 2 (expansion - E):

- if \(f(x_r) < f_1\) then
 - \(x_e = M + e(x_r - M)\)
 - if \(f(x_e) < f(x_r)\) then accept \(x_e\); continue
 - else goto Pas 3
Local search: Nelder-Mead algorithm

Step 4 (contraction exterior/interior – Co/Ci):

- if $f_n \leq f(x_r) < f_{n+1}$ then
 - $x_c = M + c(x_r - M)$
 - if $f(x_c) < f(x_r)$ accept x_c; continue
 - else goto Pas 5
- if $f(x_r) \geq f_{n+1}$ then
 - $x_{cc} = M - c(M - x_{n+1})$
 - if $f(x_{cc}) < f_{n+1}$ then accept x_{cc}; continue
 - else goto Pas 5

Step 5 (Shrinking):

- construct a new simplex:
 - $x_1, v_2, \ldots, v_{n+1}$ unde $v_i = x_i + s(x_i - x_1)$

Parameters: $r=1$, $e=2$, $c=1/2$, $s=1/2$
From local to global optimization

Perturbation: use (occasionally) some large perturbations
- Example: use a infinite support probability distribution (e.g. Normal or Cauchy distribution – algorithm Matyas, Solis-Wets)

Random restart: start a new search process from a random initial configuration
- Example: local search with random restarts

Exploration of the local optima set: the current local optimum is perturbed and used as a starting point for a new search process
- Example: iterated local search

Selection: accept (occasionally) poorer configurations
- Example: simulated annealing
Example: Matyas algorithm (1960)

\[s(0) = \text{initial configuration} \]
\[k=0 \quad // \text{iteration counter} \]
\[e=0 \quad // \text{failure counter} \]
repeat
\[\text{generate a random vector with normally distributed components } (z_1, \ldots z_n) \]
\[\text{IF } f(s(k)+z) < f(s(k)) \text{ THEN } s(k+1) = s(k) + z \]
\[e=0 \]
\[\text{ELSE } s(k+1) = s(k) \]
\[e=e+1 \]
\[k=k+1 \]
UNTIL \((k==k_{\text{max}}) \text{ OR } (e==e_{\text{max}})\)

\textbf{Rmk.} The random perturbation is usually applied to one of the components (e.g. the vector } z \text{ has only one non-zero component)}

\textbf{Problem:} how should be chosen the parameters of the distribution used to perturb the current value?

\textbf{Example:} N(0,\sigma)
Reminder: simulation of random variables with normal distribution

Box-Muller algorithm

\[
\begin{align*}
u &= \text{rand}(0,1) \quad \text{// random value uniformly distributed on (0,1)} \\
v &= \text{rand}(0,1) \\
r &= \sqrt{-2 \ln(u)}; \\
z_1 &= r \cos(2\pi v) \\
z_2 &= r \sin(2\pi v) \\
\end{align*}
\]

RETURN \(z_1, z_2 \)

// \(z_1 \) and \(z_2 \) can be considered as values of two independent random variables with normal distribution
Reminder: simulation of random variables with normal distribution

Other variant of the Box-Muller algorithm:

repeat
 u=rand(0,1) v=rand(0,1)
 w=u^2+v^2
until 0<w<1
y=sqrt(-2ln(w)/w)
z1=u*y
z2=v*y
RETURN z1,z2

Rmk: to obtain values corresponding to a non-standard normal distribution \(N(m,\sigma) \) one have to apply the transformation:
\[m+z*\sigma \]
Example: Solis-Wets algorithm (1981)

\[s(0) = \text{initial configuration} \]
\[k=0; \ m(0)=0 \ // \text{the average of the perturbation vector is adaptive} \]
\[\text{repeat} \]
\[\quad \text{generate a vector } (z_1, \ldots, z_n) \text{ having components distributed according to } N(m(k), 1) \]
\[\text{IF } f(s(k)+z) < f(s(k)) \text{ THEN } s(k+1)=s(k)+z; \]
\[\quad \mbox{m}(k+1)=0.4z+0.2\mbox{m}(k) \]
\[\text{IF } f(s(k)-z) < \min\{f(s(k)), f(s(k)+z)\} \text{ THEN } s(k+1)=s(k)-z; \]
\[\quad \mbox{m}(k+1)=\mbox{m}(k)-0.4z \]
\[\text{IF } f(s(k)-z) > f(s(k)) \text{ AND } f(s(k)+z) > f(s(k)) \text{ THEN} \]
\[\quad s(k+1):=s(k) \]
\[\quad \mbox{m}(k+1):=0.5\mbox{m}(k) \]
\[k:=k+1 \]
\[\text{UNTIL } (k==k_{\text{max}}) \]
Search with random restarts

Idea:
- The search process is repeated starting from random initial configurations
- The best final configuration is chosen as solution

Remarks:
- The stopping condition of the local search can be based on a random decision (e.g. The allocated time can be random)
- The search processes are independent – none of the information collected at the previous search threads is used

Random Restart
s=initial configuration
best=s
Repeat
 repeat
 r=perturb(s)
 if f(r)≤f(s) then s=r
 until <local search stopping condition>
 if f(s)<f(best) then best =s
 s=other initial configuration (random)
until <stopping condition>
return best
Iterated Local Search

Idea:
• It is based on some successive local search stages which are correlated
• The initial configuration from the next stage is chosen in a neighborhood of the local optimum identified at the current stage

Remark:
• The initial configuration of a new search stage is based on a more „aggressive” perturbation than the perturbation used for local search

Iterated Local Search (ILS)
\[s = \text{initial configuration} \]
\[s_0 = s; \ best = s \]
Repeat
 repeat
 \[r = \text{perturbSmall}(s) \]
 if \(f(r) \leq f(s) \) then \(s = r \)
 until <local stopping condition>
 if \(f(s) < f(\text{best}) \) then \(\text{best} = s \)
 \[s_0 = \text{choose}(s_0, s) \]
 \[s = \text{perturbLarge}(s_0) \]
until <stopping condition>
return best
Next Lecture

Other global search methods:

• Simulated Annealing
• Variable Neighborhood Search
• Tabu Search
• Greedy Randomized Search