
Metaheuristic Algorithms - Lecture 2 1

Local and Global Search Algorithms

• Motivation: local vs global optimization
• General structure of the local search algorithms
• Local Search Deterministic Methods:

– Pattern Search
– Nelder Mead

• Local Search Random Methods :
– Matyas
– Solis-Wets

• Metaheuristics for global search:
– Local search with random restarts
– Iterated local search

Metaheuristic Algorithms - Lecture 2 2

Local vs Global Optimization
Local optimization (minimization): find x* such that f(x*)<=f(x) for all x in V(x*)

(V(x*)=neighborhood of x);
Rmk: it requires the knowledge of an initial approximation

Global optimization:
• Find x* such that f(x*)<=f(x), for any x (from the entire search domain)
• If the objective function has local optima then the local search methods (e.g.

Gradient methods) can be stucked in such a local optimum

Global optimum
Local optimum

Metaheuristic Algorithms - Lecture 2 3

Local Optimization
Discrete search space:

- The neighborhood of an element is
a finite set which can be completely
explored

Particular case (permutation-like
solutions):
- s=(s1,s2,...,sn) si from {1,....,n}
- V(s)={s’|s’ can be obtained from s

by interchanging two elements}
- Card V(s)=n(n-1)/2

Example (n=4)
s=(2,4,1,3)
s’=(1,4,2,3)

Continuous search space:

a) The objective function is
differentiable
- Gradient method
- Newton-like methods

b) The objective function is not
differentiable (or even discontinuous)
- Direct search methods(ex: Nelder

Mead)
- Methods based on small random

perturbations

Metaheuristic Algorithms - Lecture 2 4

Local search: general structure
Notations:
S – search space
f – objective function
S* - set of local/global optima
s=(s1,s2,..., sn) : element of S/
configuration/ candidate solution
s* = the best element discoverd up to
the current step
s* = optimal solution

Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping condition>

Remarks:
1. The initial approximation can be selected randomly or constructed based on a

simple heuristic (e.g. greedy)
2. The perturbation can be deterministic (e.g. gradient based) or random
3. The replacement of s with s’ can be done also when f(s’)=f(s) (the condition is

in this case f(s’)<=f(s))
4. Stopping condition:

(a) No improvement during the previous K iterations;
(b) Maximal number of iterations or of objective function evaluations

Metaheuristic Algorithms - Lecture 2 5

Local search: variants (I)
Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping condition>

Remarks:
1. The search is more explorative – at each iteration there are several

candidates which are analyzed
2. Each objective function evaluation should be counted (if the stopping

condition uses the number of evaluations)

More candidates:

s = initial approximation
repeat

[s1,…, sm]= MultiplePerturbation(s)
s’=bestOf([s1,…, sm])
if f(s’)<f(s) then

s=s’
until < stopping condition >

Metaheuristic Algorithms - Lecture 2 6

Local search: variants (II)
Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping condition>

Remarks:
1. The best out of the m candidate solutions is unconditionally accepted
2. The best candidate solution obtained up to the current moment is preserved

(ensuring the elitism of the searching process; elitism = we cannot lose the a
good configuration once that it has been found)

More candidates:
s = initial approximation
best = s
repeat

[s1,…, sm]=MultiplePerturbation(s)
s=bestOf([s1,…, sm])
if f(s)<f(best) then best=s

until < stopping condition >

Metaheuristic Algorithms - Lecture 2 7

Local search: perturbation variants
• Aim of the perturbation: constructing a new candidate solution starting

from the existing one

• Perturbation types (depending on the nature of the perturbation):
– Deterministic
– Random

• Perturbation types (depending on the perturbation intensity):
– Local
– Global

• Perturbation types (depending on the search space):
– Discrete search space (replacement of one or several components)
– Continuous search space (adding a perturbing term to the current configuration)

Metaheuristic Algorithms - Lecture 2 8

Local search: perturbation variants
Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved
Example 1: TSP (Travelling Salesman Problem)
• Generating a new configuration (2-opt transformation)

A

B

C
D

E

F

G

ABCFEDG

A

B

C
D

E

F

G

ABCFEDG ABCDEFG

Implementation:

1. Random choice of two
positions

2. Reverse the order of
elements between the
two selected positions

Metaheuristic Algorithms - Lecture 2 9

Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved
Example 2: Timetabling
• Remove conflicts (violated constraints) by moving or exchanging elements

• Current configuration perturbation:
– Move an event which violates a

constraint in a free slot

E1

E2

E3

E4

E5

E6

E7

E8

E9

S1 S2 S3
T1 E1 E3 E9
T2 E4 E8
T3 E6 E5
T4 E2 E7

S1 S2 S3
T1 E1 E9
T2 E4 E3 E8
T3 E6 E5
T4 E2 E7 Conflicts graph

Metaheuristic Algorithms - Lecture 2 10

Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved
Example 2: Timetabling
• Remove conflicts (violated constraints) by moving or exchanging elements

• Current configuration perturbation:
– Exchange two events

E1

E2

E3

E4

E5

E6

E7

E8

E9

S1 S2 S3
T1 E1 E9
T2 E4 E3 E8
T3 E2 E5
T4 E6 E7

S1 S2 S3
T1 E1 E9
T2 E4 E3 E8
T3 E6 E5
T4 E2 E7 Conflicts graph

Metaheuristic Algorithms - Lecture 2 11

Local search: perturbation variants
Optimization in continuous domains
Random perturbation
Perturb(s,p,inf,sup,r)

for i=1:n
if rand(0,1)<=p then

repeat
n=rand(-r,r)

until inf<=si+n<=sup
si=si+n

end
end
return s

Deterministic perturbation by direct
search (it does not use derivatives)

• Pattern Search (Hooke -Jeeves)
• Nelder - Mead

Notations:
s=the candidate solution to be perturbed
p=perturbation probability
r=perturbation „radius”
rand(a,b) = random value uniformly distributed on [a,b]

12

Local search: pattern search
Idea: successive modifications of the

components of the current configuration
PatternSearch(s,r)

s=initial approximation
r=initial value
best=s
repeat

s’=s
for i=1:n

if f(s+r*ei)< f(s’) then s’=s+r*ei end
if f(s-r*ei)< f(s’) then s’=s-r*ei end

end
if s==s’ then r=r/2

else s=s’
end
if f(s)<f(best) then best=s

until <stopping condition>

T.G. Kolda et al., Optimization by direct
search: new perspectives on some classical
and modern methods, SIAM Review, 45(3),
385-482, 2003

Remark:
1. ei=(0,0,...,0,1,0,...,0) (1 on position i)
2. At each iteration are constructed 2n
candidates out of which the best one is selected

Metaheuristic Algorithms - Lecture 2

Metaheuristic Algorithms - Lecture 2 13

Local search: Nelder-Mead algorithm

Idea: the search is based on a simplex in Rn (set of
(n+1) points in Rn) and on some transformations
which allow to „explore” the search space

The transformations are based on:
1. Sort the simplex elements increasingly by the

objective function value (for a minimization
problem)

2. Compute the average, M(x1,...,xn), of the best
n elements from the simplex

3. Successive construction of new elements by:
reflexion, expansion, contraction (interior,
exterior), shrinking

J.G. Lagarias et.al; Convergence properties of the Nelder-Mead simplex
method in low dimensions, SIAM J. Optim., 1998

Metaheuristic Algorithms - Lecture 2 14

Local search: Nelder-Mead algorithm

Select (n+1) points from Rn: (x1,x2,..., xn+1)
Repeat

compute (f1,f2,..., fn+1), fi=f(xi)
sort (x1,x2,..., xn+1) such that f1<=f2<=...<=fn+1

M=(x1+x2+...+xn)/n

Step1 (reflexion - R):
xr=M+r(M-xn+1);
if f1<=f(xr)<fn accept xr; continue;
else goto Pas 2

Step 2 (expansion - E):
if f(xr)< f1 then

xe=M+e(xr-M)
if f(xe)<f(xr) then accept xe; continue
else goto Pas 3

Metaheuristic Algorithms - Lecture 2 15

Local search: Nelder-Mead algorithm

Step 4 (contraction exterior/interior – Co/Ci):
if fn<=f(xr)<fn+1 then

xc=M+c(xr-M)
if f(xc)<f(xr) accept xc; continue
else goto Pas 5

if f(xr)>=fn+1 then
xcc=M-c(M-xn+1)
if f(xcc)<fn+1 then accept xcc; continue
else goto Pas 5

Step 5 (Shrinking):
construct a new simplex:
x1,v2,..., vn+1 unde vi=xi+s(xi-x1)

Parameters: r=1, e=2, c=1/2, s=1/2

Metaheuristic Algorithms - Lecture 2 16

From local to global optimization
Perturbation: use (ocasionally) some large perturbations

Example: use a infinite support probability distribution (e.g.
Normal or Cauchy distribution – algoritm Matyas, Solis-Wets)

Random restart: start a new search process from a random initial
configuration
Example: local search with random restarts

Exploration of the local optima set: the current local optimum is
perturbed and used as a starting point for a new search process
Example: iterated local search

Selection: accept (ocasionally) poorer configurations
Example: simulated annealing

Metaheuristic Algorithms - Lecture 2 17

Example: Matyas algorithm(1960)
s(0) = initial configuration
k=0 // iteration counter
e=0 // failure counter
repeat

generate a random vector with normally
distributed components (z1,…zn)
IF f(s(k)+z)<f(s(k)) THEN s(k+1)=s(k)+z

e=0
ELSE s(k+1)=s(k)

e=e+1
k=k+1

UNTIL (k==kmax) OR (e==emax)

Rmk. The random
perturbation is usually
applied to one of the
components (e.g. the
vector z has only one
non-zero component)

Problem: how should be
chosen the
parameters of the
distribution used to
perturb the current
value?

Example: N(0,sigma)

Metaheuristic Algorithms - Lecture 2 18

Reminder: simulation of random
variables with normal distribution

Box-Muller algorithm

u=rand(0,1) // random value uniformly distributed on (0,1)
v=rand(0,1)
r=sqrt(-2*ln(u));
z1=r*cos(2*PI*v)
z2=r*sin(2*PI*v)
RETURN z1,z2

// z1 and z2 can be considered as values of two independent random
variables with normal distribution

Metaheuristic Algorithms - Lecture 2 19

Reminder: simulation of random
variables with normal distribution

Other variant of the Box-Muller algorithm:
repeat
u=rand(0,1) v=rand(0,1)
w=u2+v2

until 0<w<1
y=sqrt(-2ln(w)/w)
z1=u*y
z2=v*y
RETURN z1,z2

Rmk: to obtain values corresponding to a non-standard normal
distribution N(m,sigma) one have to apply the transformation:
m+z*sigma

Metaheuristic Algorithms - Lecture 2 20

Example: Solis-Wets algorithm (1981)
s(0) = initial configuration
k=0; m(0)=0 // the average of the perturbation vector is adaptive
repeat

generate a vector (z1,…zn) having components distributed according toN(m(k),1)
IF f(s(k)+z)<f(s(k)) THEN s(k+1)=s(k)+z;

m(k+1)=0.4*z+0.2*m(k)

IF f(s(k)-z)<min{f(s(k)),f(s(k)+z)} THEN s(k+1)=s(k)-z;
m(k+1)=m(k)-0.4*z

IF f(s(k)-z)>f(s(k)) AND f(s(k)+z)>f(s(k)) THEN
s(k+1):=s(k)
m(k+1):=0.5*m(k)

k:=k+1
UNTIL (k==kmax)

Metaheuristic Algorithms - Lecture 2 21

Search with random restarts
Idea:
• The search process is repeated

starting from random initial
configurations

• The best final configuration is
chosen as solution

Remarks:
• The stopping condition of the

local search can be based on a
random decision (e.g. The
allocated time can be random)

• The search processes are
independent – none of the
information collected at the
previous search threads is used

Random Restart
s=initial configuration
best=s
Repeat

repeat
r=perturb(s)
if f(r)<=f(s) then s=r

until <local search stopping
condition>

if f(s)<f(best) then best =s
s=other initial configuration

(random)
until <stopping condition>
return best

Metaheuristic Algorithms - Lecture 2 22

Iterated Local Search
Idea:
• It is based on some successive

local search stages which are
correlated

• The initial configuration from the
next stage is chosen in a
neighborhood of the local
optimum identified at the current
stage

Remark:
• The initial configuration of a new

search stage is based on a
more „aggressive” perturbation
than the perturbation used for
local search

Iterated Local Search (ILS)
s=initial configuration
s0=s; best=s
Repeat

repeat
r=perturbSmall(s)
if f(r)<=f(s) then s=r

until <local stopping condition>
if f(s)<f(best) then best =s
s0=choose(s0,s)
s=perturbLarge(s0)

until <stopping condition>
return best

Metaheuristic Algorithms - Lecture 2 23

Next Lecture
Other global search methods:

• Simulated Annealing

• Variable Neighborhood Search

• Tabu Search

• Greedy Randomized Search

