
Metaheuristic Algorithms - Lecture
13

1

Evolutionary Design of Neural
Networks

 Motivation

 Evolutionary training

 Evolutionary design of the architecture

 Evolutionary design of the learning rules

Metaheuristic Algorithms - Lecture
13

2

Evolutionary Design of Neural
Networks

 Motivation. Neural networks design consists of:

 Choice of the architecture (network topology + connectivity)
 Has an influence on the network ability to solve the problem
 Usually is a trial-and-error process

 Train the network

 Is an optimization problem = find the parameters (weights) which
minimize the error on the training set

 The classical methods (e.g. gradient-based methods as is
BackPropagation) have some drawbacks :
 Risk of getting stuck in local minima
 They cannot be applied if

 the activation functions are not differentiable
 the error function cannot be expressed directly as a

function of the parameters (e.g. for recurrent networks)

Metaheuristic Algorithms - Lecture
13

3

Evolutionary Design of Neural
Networks

Idea: use an evolutionary process

 Inspired by the biological evolution of the

brain

 The system is not explicitly designed but
its structure derives by an evolutionary
process involving a population of
encoded neural networks
 Genotype = the network codification

(structural description)
 Phenotype = the network itself,

which can be simulated (functional
description)

Metaheuristic Algorithms - Lecture
13

4

Evolutionary Design of Neural
Networks

Variants

 Evolutionary training:

 Estimate the weights using a global optimization metaheuristic
 It can be used for networks with discontinuous activation functions

and for recurrent networks

 Evolving architecture:
 Evolve the number of units, types of activation, connections

 Evolving adjustment rules in the training process

Metaheuristic Algorithms - Lecture
13

5

Evolutionary Training

 Use an evolutionary
algorithm to solve the
problem of minimizing the
mean squared error on the
training set

2

1

11

)(1 :functionError

)},(),....,,{(:set Training

l
L

l

l

LL

yd
L

E(W)

dxdx

−= ∑
=

 Parameters: synaptic
weights and biases

},...,,...,
,,,,,,{

76717

404241303231

www
wwwwwwW =

Metaheuristic Algorithms - Lecture
13

6

Evolutionary Training
Evolutionary algorithm components:

 Encoding: each element of the population is a real vector

containing all adaptive parameters (similar to the case of
evolution strategies)

 Evolutionary operators: typical to evolution strategies or
evolutionary programming or other population-based
metaheuristics (e.g. particle swarm optimization, differential
evolution)

 Evaluation: the quality of an element depends on the mean
squared error (MSE) on the training/validation set; an element is
better if the MSE is smaller

Metaheuristic Algorithms - Lecture
13

7

Evolutionary Training
Aplications:

 For networks with non-differentiable or non-continuous

activation functions
 For recurrent networks (the output value cannot be explicitely

computed from the input value, thus the derivative based
learning algorithms cannot be applied

Drawbacks:
 More costly than traditional non-evolutionary training
 It is not appropriate for fine tuning the parameters
Hybrid versions:
 Use an EA to explore the parameter space and a local search

technique to refine the values of the parameters

Metaheuristic Algorithms - Lecture
13

8

Evolutionary Training
Remark. EAs can be used to preprocess the training set

• Selection of attributes

• Selection of examples

Metaheuristic Algorithms - Lecture
13

9

Evolutionary Pre-processing
Selection of attributes (for classification problems)

• Motivation: if the number of attributes is large the training is

difficult

• It is important when some of the attributes are not relevant for
the classification task

• The aim is to select the relevant attributes

• For initial data having N attributes the encoding could be a
vector of N binary values (0 – not selected, 1 – selected)

• The evaluation is based on training the network for the selected
attributes (this corresponds to a wrapper-like technique of
attributes selection)

Metaheuristic Algorithms - Lecture
13

10

Evolutionary Pre-processing
Example: identify patients with cardiac risk
Total set of attributes:
 (age, weight, height, body mass index, blood pressure,

cholesterol, glucose level)
 Population element: (1,0,0,1,1,1,0)
 Corresponding subset of attributes:
 (age, body mass index, blood pressure, cholesterol)
Evaluation: train the network using the subset of selected

attributes and compute the accuracy; the fitness value will be
proportional to the accuracy

Remark:
• This technique can be applied also for non neural classifiers (ex:

Nearest-Neigbhor)
• It is called “wrapper based attribute selection”

Metaheuristic Algorithms - Lecture
13

11

Evolutionary Pre-processing
Selection of examples

• Motivation: if the training set is large the training process is

costly and there is a higher risk of overfitting

• It is similar to attribute selection

• Binary encoding (0 – not selected, 1 – selected)

• The evaluation is based on training the network (using any
training algorithm) for the subset specified by the binary
encoding

Metaheuristic Algorithms - Lecture
13

12

Evolving architecture
Non-evolutionary approaches:

 Growing networks

 Start with a small size network
 If the training stagnates add a new unit
 The assimilation of the new unit is based on adjusting, in a

first stage, only its weights

 Pruning networks
 Start with a large size network
 The units and connection which do not influence the training

process are eliminated

Metaheuristic Algorithms - Lecture
13

13

Evolving architecture

Elements which can be evolved:
 Number of units
 Connectivity
 Activation function type

Encoding variants:
 Direct
 Indirect

Metaheuristic Algorithms - Lecture
13

14

Evolving architecture
Direct encoding: each element of the architecture appears explicitly in the

encoding
• Network architecture = oriented graph
• The network can be encoded by the adjacency matrix

Rmk. For feedforward networks the units can be numbered such that the unit

i receives signals only from units j, such that j<i => inferior triangular
matrix

Architecture

Adjacency matrix
Chromosome

Metaheuristic Algorithms - Lecture
13

15

Evolving architecture
Operators
• Crossover similar to that used for genetic algorithms

Metaheuristic Algorithms - Lecture
13

16

Evolving architecture

Operators:
• Mutation similar to that used for genetic algorithms

Metaheuristic Algorithms - Lecture
13

17

Evolving architecture
Evolve the number of units an connections

Hypothesis: N – maximal number of units

Encoding:
• Binary vector with N elements

– 0: inactivated unit
– 1: activ unit

• Adjacency matrix NxN
– For a zero element in the unit vector the corresponding row and

column in the matrix are ignored.

Metaheuristic Algorithms - Lecture
13

18

Evolving architecture
Evolving the activation function type:
Encoding :
• Binary vector with N elements

– 0: inactivated unit
– 1: active unit with activation function of type 1 (ex: tanh)
– 2: active unit with activation function of type 2 (ex: logistic)
– 3: active unit with activation function of type 3 (ex: linear)

Evolution of weights
• The adjacency matrix is replaced with the matrix of weights

– 0: no coonection
– <>0: weight value

Metaheuristic Algorithms - Lecture
13

19

Evolving architecture
Evaluation:

• The network is trained
• The training error is estimated (Ea)
• The validation error is estimated (Ev)
• The fitness is inverse proportional to:

– Training error
– Validation error
– Network size

Metaheuristic Algorithms - Lecture
13

20

Evolving architecture
Drawbacks of the direct encoding:
• It is not scalable
• Can lead to different representations of the same network

(permutation problem)
• It is not appropriate for modular networks

Metaheuristic Algorithms - Lecture
13

21

Evolving architecture
Indirect encoding:

• Biological motivation

• Parametric encoding

– The network is described by a set of characteristics (fingerprint)

– Particular case: feedforward network with variable number of
hidden units

– The fingerprint is instantiated in a network only for evaluation

• Rules-based encoding

Metaheuristic Algorithms - Lecture
13

22

Evolving architecture
• Parametric encoding

Instantiation: random choice of connections according to the
specified characteristics

Network param Layer 1 Layer 2

Nr layers Training param

Nr of units Layer Description of connectivity (density, receptive fields etc)

(description of each layer)

…

Metaheuristic Algorithms - Lecture
13

23

Evolving architecture
Example:

Operators:
Mutation: change the network

characteristics
Recombination: combine characteristics of

layers

Nr. of layers

Param. BP

Info. layer 1

Info. layer 2

Metaheuristic Algorithms - Lecture
13

24

Evolving architecture
Rule-based encoding (similar to Grammar Evolution) :

General rule

Examples:

Structure of an element:

Metaheuristic Algorithms - Lecture
13

25

Evolving architecture
Deriving an architecture:

Metaheuristic Algorithms - Lecture
13

26

Evolving architecture

Drawback of separate evolution of the architecture and weights:

• Since the behaviour of an architecture depends on the weights

values, at different evaluations steps, same architecture can have
various fitness values (caused by different training processes) -
thus the fitness is noisy

Solutions:
• Repeat the training of the same architecture and compute an

averaged fitness => high computational costs
• Simultaneous evolution of the architecture and weights (it will

ensure a one-to-one mapping between the genotype – the
architecture - and the phenotype – the trained network)

Metaheuristic Algorithms - Lecture
13

27

EPNet
Exemplu: EPNet = evolutionary design of feedforward neural networks

using principles of evolutionary proramming [Xin Yao, 1996]

BP

BP+SA

Successful
=error decrease

The removed nodes
are randomly selected

Successful=better
than the worst
Network from the
population

Metaheuristic Algorithms - Lecture
13

28

EPNet
Network encoding:
 list of hidden units +
 Connectivity matrix+
 Weight matrix
Example: each neuron (except for the first m which are input neurons) is connected to all

previous neurons

Metaheuristic Algorithms - Lecture
13

29

EPNet
Architectures evolved by EPNet for the parity problem

n=7 n=8

Metaheuristic Algorithms - Lecture
13

30

NEAT
NEAT = NeuroEvolution of Augmenting Topologies

(http://nn.cs.utexas.edu/?neat)

• Direct encoding:

– List of nodes (neurons)
• Type of the nodes: input, hidden, output, bias

– List of connections; for each connection:
• In-node
• Out-node
• Connection weight
• Activation bit (0 – active connection, 1- disabled connection)
• Innovation value

Metaheuristic Algorithms - Lecture
13

31

NEAT
NEAT = NeuroEvolution of Augmenting Topologies

(http://nn.cs.utexas.edu/?neat)

• The initial population consists of simple architectures (only input and
output layers)

• Mutation variants:
– Node adding: insert a new node between two already connected

nodes (the old connection is removed and two other
connections are added: that entering the new node has the
weight=1, that going out from the new node has the weight of the
removed connection)

– Connection adding: a new connection (with a random weight) is
added between two previously unconnected nodes

Metaheuristic Algorithms - Lecture
13

32

NEAT
Mutation example: (K.Stanley, R. Miikulainen – Evolving Neural

Networks through Augmenting Topologies, Evol.Comput. 2002)

Metaheuristic Algorithms - Lecture
13

33

NEAT
Crossover:
 2 parents ---- 1 offspring
 Similar to uniform crossover used in genetic algorithms

Step 1: identify the matching genes from the two parents based on the

innovation values
• Two genes match if they have the same innovation value (this

values is assigned when the gene is created)
• The non-matching genes are disjoint or in excess genes

Metaheuristic Algorithms - Lecture
13

34

NEAT
Crossover:
 2 parents ---- 1 offspring
 Similar to uniform crossover used in genetic algorithms

Step 2: offspring construction
• For matching genes the offspring will receive the gene from one of

the parents (randomly selected)
• The in excess/disjoint genes are transferred into the ofspring either

based on a probabilistic decision or based on the fitness of the
parents (the gene its transferred if it belongs to the better parent)

Metaheuristic Algorithms - Lecture
13

35

NEAT
Crossover example
(Stanley,

Miikulainen,
2002)

Metaheuristic Algorithms - Lecture
13

36

Evolving learning rules
General form of a local adjustement rule

),,,,,,),(()1(αδδϕ jijjiiijij yxyxkwkw =+

xi,xj – input signals
yi,yj – output signals
α – control parameters (ex: learning rate)
δi,δj – error signal
Example: BackPropagation

jiijij ykwkw ηδ+=+)()1(

Metaheuristic Algorithms - Lecture
13

37

Evolving learning rules
Elements which can be evolved:

• Parameters of the learning process (ex: learning rate, momentum

coefficient)
• The adjusting expression (see Genetic Programming)

Evaluation:
• Train networks using the corresponding rule

Drawback: very high cost

Metaheuristic Algorithms - Lecture
13

38

Evolutionary Deep Neural Networks
M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin:
Evolutionary Synthesis of Deep Neural Networks, 2016
DeepNN = neural networks with many layers
Motivation: evolve efficient Deep NN (instead of trying to compress
existing DeepNN in order to make them more efficient

Main ideas:
• the deep neural networks architecture are encoded using

synaptic probability models (interpreted as network DNA)
• new networks are synthesized using these probability models

which are further trained

Implemented mechanisms: heredity, natural selection, random
mutation

Metaheuristic Algorithms - Lecture
13

39

Evolutionary Deep Neural Networks
M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin:
Evolutionary Synthesis of Deep Neural Networks, 2016

Particularities:
• usage of the exponential distribution as probability model for

synaptic weights
• Impose constraints on the number of synapses (e.g. an offspring

has at most 50% of the synapses of its parent).

	Evolutionary Design of Neural Networks
	Evolutionary Design of Neural Networks
	Evolutionary Design of Neural Networks
	Evolutionary Design of Neural Networks
	Evolutionary Training
	Evolutionary Training
	Evolutionary Training
	Evolutionary Training
	Evolutionary Pre-processing
	Evolutionary Pre-processing
	Evolutionary Pre-processing
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	Evolving architecture
	EPNet
	EPNet
	EPNet
	NEAT
	NEAT
	NEAT
	NEAT
	NEAT
	NEAT
	Evolving learning rules
	Evolving learning rules
	Evolutionary Deep Neural Networks
	Evolutionary Deep Neural Networks

