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Evolutionary Design of Neural 
Networks 

 
 Motivation 

 
  Evolutionary training 

 
  Evolutionary design of the architecture 

 
 Evolutionary design of the learning rules 
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Evolutionary Design of Neural 
Networks 

 Motivation. Neural networks design consists of: 
 

 Choice of the architecture (network topology + connectivity) 
 Has an influence on the network ability to solve the problem 
 Usually is a trial-and-error process 

 
 Train the network 

 Is an optimization problem = find the parameters (weights) which 
minimize the error on the training set 
 

 The classical methods (e.g. gradient-based methods as is 
BackPropagation) have some drawbacks : 
 Risk of getting stuck in local minima 
 They cannot be applied if  

 the activation functions are not differentiable 
 the error function cannot be expressed directly as a 

function of the parameters (e.g. for recurrent networks)  
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Evolutionary Design of Neural 
Networks 

Idea:  use an evolutionary process 
 
 Inspired by the biological evolution of the 

brain 
 

 The system is not explicitly designed but 
its structure derives by an evolutionary 
process involving a population of 
encoded neural networks  
 Genotype = the network codification 

(structural description) 
 Phenotype = the network itself, 

which can be simulated (functional 
description) 
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Evolutionary Design of Neural 
Networks 

Variants 
 
 Evolutionary training: 

 Estimate the weights using a global optimization metaheuristic 
 It can be used for networks with discontinuous activation functions 

and for recurrent networks 
 

 Evolving architecture: 
 Evolve the number of units, types of activation, connections 

 
 Evolving adjustment rules in the training process 
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Evolutionary Training 
 

 Use an evolutionary 
algorithm to solve the 
problem of minimizing the 
mean squared error on the 
training set 
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Evolutionary Training 
Evolutionary algorithm components: 
 
 Encoding:  each element of the population is a real vector 

containing all adaptive  parameters (similar to the case of 
evolution strategies) 
 

 Evolutionary operators: typical to evolution strategies or 
evolutionary programming or other population-based 
metaheuristics (e.g. particle swarm optimization, differential 
evolution) 
 

 Evaluation: the quality of an element depends on the mean 
squared error (MSE) on the training/validation set; an element is 
better if the MSE is smaller 
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Evolutionary Training 
Aplications: 
 
 For networks with non-differentiable or non-continuous 

activation functions  
 For recurrent networks (the output value cannot be explicitely 

computed from the input value, thus the derivative based 
learning algorithms cannot be applied 

Drawbacks:   
 More costly than traditional non-evolutionary training 
 It is not appropriate for fine tuning the parameters  
Hybrid versions: 
 Use an EA to explore the parameter space and a local search 

technique to refine the values of the parameters 
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Evolutionary Training 
Remark. EAs can be used to preprocess the training set  
 
• Selection of attributes 

 
• Selection of examples 
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Evolutionary Pre-processing 
Selection of attributes (for classification problems)  

 
• Motivation: if the number of attributes is large the training is 

difficult 
 

• It is important when some of the attributes are not relevant for 
the classification task  
 

• The aim is to select the relevant attributes 
 

• For initial data having N attributes the encoding could be a 
vector of N binary values (0 – not selected, 1 – selected) 
 

• The evaluation is based on training the network for the selected 
attributes (this corresponds to a wrapper-like technique of 
attributes selection) 
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Evolutionary Pre-processing 
Example:  identify patients with cardiac risk 
Total set of attributes:  
         (age, weight, height, body mass index, blood pressure, 

cholesterol, glucose level) 
 Population element: (1,0,0,1,1,1,0) 
 Corresponding subset of attributes:  
 (age, body mass index, blood pressure, cholesterol) 
Evaluation:   train the network using the subset of selected 

attributes and compute the accuracy; the fitness value will be 
proportional to the accuracy  

Remark:  
• This technique can be applied also for non neural classifiers (ex: 

Nearest-Neigbhor) 
• It is called “wrapper based attribute selection” 
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Evolutionary Pre-processing 
Selection of examples 
 
• Motivation: if the training set is large the training process is 

costly and there is a higher risk of overfitting 
 

• It is similar to attribute selection 
 

• Binary encoding (0 – not selected, 1 – selected) 
 

• The evaluation is based on training the network (using any 
training algorithm) for the subset specified by the binary 
encoding   
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Evolving architecture 
Non-evolutionary approaches: 
 
 Growing networks 

 Start with a small size network 
 If the training stagnates add a new unit  
 The assimilation of the new unit is based on adjusting, in a 

first stage, only its weights 
   

 Pruning networks 
 Start with a large size network 
 The units and connection which do not influence the training 

process are eliminated 
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Evolving architecture 
 
Elements which can be evolved: 
 Number of units 
 Connectivity 
 Activation function type 

 
Encoding variants: 
 Direct 
 Indirect 
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Evolving architecture 
Direct encoding:   each element of the architecture appears explicitly in the 

encoding 
• Network architecture = oriented graph   
• The network can be encoded by the adjacency matrix 

 
Rmk. For feedforward networks the units can be numbered such that the unit 

i receives signals only from units j, such that j<i  => inferior triangular 
matrix 

Architecture 

Adjacency matrix 
Chromosome 
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Evolving architecture 
Operators 
• Crossover similar to that used for genetic algorithms 
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Evolving architecture 

Operators: 
• Mutation similar to that used for genetic algorithms 
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Evolving architecture 
Evolve the number of units an connections 
 
Hypothesis:  N – maximal number of units 
 
Encoding: 
• Binary vector with N elements  

– 0: inactivated unit 
– 1: activ unit 

• Adjacency matrix NxN 
– For a zero element in the unit vector the corresponding row and 

column in the matrix are ignored.  
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Evolving architecture 
Evolving the activation function type:  
Encoding : 
• Binary vector with N elements  

– 0: inactivated unit 
– 1: active unit with activation function of type 1 (ex: tanh) 
– 2: active unit with activation function of type 2 (ex: logistic) 
– 3: active unit with activation function of type 3 (ex: linear) 

Evolution of weights 
• The adjacency matrix is replaced with the matrix of weights  

– 0: no coonection 
– <>0: weight value 
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Evolving architecture 
Evaluation: 
 
• The network is trained 
• The training error is estimated (Ea)  
• The validation error is estimated (Ev) 
• The fitness is inverse proportional to: 

– Training error 
– Validation error 
– Network size 
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Evolving architecture 
Drawbacks of the direct encoding: 
• It is not scalable 
• Can lead to different representations of the same network 

(permutation problem) 
• It is not appropriate for modular networks 
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Evolving architecture 
Indirect encoding:  
 
• Biological motivation 
 
• Parametric encoding 

– The network is described by a set of characteristics (fingerprint) 
 

– Particular case: feedforward network with variable number of 
hidden units 
 

– The fingerprint is instantiated in a network only for evaluation 
 

• Rules-based encoding 
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Evolving architecture 
• Parametric encoding 

Instantiation: random choice of connections according to the 
specified characteristics 

Network param Layer 1 Layer 2 

Nr layers Training param 

Nr of units Layer Description of connectivity (density, receptive fields etc) 

(description of each layer) 

… 
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Evolving architecture 
Example: 

Operators: 
Mutation:  change the network 

characteristics 
Recombination: combine characteristics of 

layers 

Nr. of layers 

Param. BP 

Info. layer 1 

Info. layer 2 
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Evolving architecture 
Rule-based encoding (similar to Grammar Evolution) : 

General rule 

Examples: 

Structure of an element: 
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Evolving architecture 
Deriving an architecture: 
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Evolving architecture 

Drawback of separate evolution of the architecture and weights: 
 
• Since the behaviour of an architecture depends on the weights 

values, at different evaluations steps, same architecture can have 
various fitness values (caused by different training processes)  - 
thus the fitness is noisy 

Solutions: 
• Repeat the training of the same architecture and compute an 

averaged fitness => high computational costs 
• Simultaneous evolution of the architecture and weights (it will 

ensure a one-to-one mapping between the genotype – the 
architecture - and the phenotype – the trained network) 
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EPNet 
Exemplu:  EPNet = evolutionary design of feedforward neural networks 

using principles of evolutionary proramming  [Xin Yao, 1996] 
 

 

BP 

BP+SA 

Successful 
=error decrease 

The removed nodes  
are randomly selected 

Successful=better  
than the worst  
Network from  the  
population  
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EPNet 
Network encoding:  
                 list of hidden units +  
  Connectivity matrix+ 
  Weight matrix 
Example: each neuron (except for the first m which are input neurons) is connected to all 

previous neurons 
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EPNet 
Architectures evolved by EPNet for the parity problem 

n=7 n=8 
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NEAT 
NEAT = NeuroEvolution of Augmenting Topologies   

(http://nn.cs.utexas.edu/?neat) 
 
• Direct encoding: 

– List of nodes (neurons) 
• Type of the nodes:  input, hidden, output, bias 

– List of connections;   for each connection: 
• In-node 
• Out-node 
• Connection weight 
• Activation bit (0 – active connection, 1- disabled connection) 
• Innovation value 
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NEAT 
NEAT = NeuroEvolution of Augmenting Topologies   

(http://nn.cs.utexas.edu/?neat) 
 

• The initial population consists of simple architectures (only input and 
output layers) 
 

• Mutation variants: 
– Node adding: insert a new node between two already connected 

nodes   (the old connection is removed and two other 
connections are added: that entering the new node has the 
weight=1, that going out from the new node has the weight of the 
removed connection) 

– Connection adding:  a new connection (with a random weight) is 
added between two previously unconnected nodes 
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NEAT 
Mutation example:  (K.Stanley, R. Miikulainen – Evolving Neural 

Networks through Augmenting Topologies, Evol.Comput. 2002) 
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NEAT 
Crossover:    
  2 parents ----  1 offspring 
 Similar to uniform crossover used in genetic algorithms 
 
Step 1:  identify the matching genes from the two parents based on the 

innovation values 
• Two genes match if they have the same innovation value (this 

values is assigned when the gene is created) 
• The non-matching genes are disjoint or in excess genes 
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NEAT 
Crossover:    
  2 parents ----  1 offspring 
         Similar to uniform crossover used in genetic algorithms 
 
Step 2:  offspring construction 
• For matching genes the offspring will receive the gene from one of 

the parents (randomly selected) 
• The in excess/disjoint  genes are transferred into the ofspring either 

based on a probabilistic decision or based on the fitness of the 
parents (the gene its transferred if it belongs to the better parent) 
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NEAT 
Crossover example 
(Stanley, 

Miikulainen, 
2002) 
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Evolving learning rules 
General form of a local adjustement rule 

),,,,,,),(()1( αδδϕ jijjiiijij yxyxkwkw =+

xi,xj – input signals 
yi,yj – output signals 
α – control parameters (ex: learning rate) 
δi,δj – error signal 
Example: BackPropagation 

jiijij ykwkw ηδ+=+ )()1(
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Evolving learning rules 
Elements which can be evolved: 
 
• Parameters of the learning process (ex: learning rate, momentum 

coefficient) 
• The adjusting expression (see Genetic Programming) 

 
Evaluation: 
• Train networks using the corresponding rule 
 
Drawback: very high cost 
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Evolutionary Deep Neural Networks 
M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin: 
Evolutionary Synthesis of Deep Neural Networks, 2016 
DeepNN = neural networks with many layers 
Motivation:  evolve efficient Deep NN (instead of trying to compress 
existing DeepNN in order to make them more efficient 
 
Main ideas:   
• the deep neural networks architecture are encoded using 

synaptic probability models (interpreted as network DNA)  
• new  networks are synthesized using these probability models 

which are further trained 
 

Implemented mechanisms:  heredity, natural selection, random 
mutation 
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Evolutionary Deep Neural Networks 
M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin: 
Evolutionary Synthesis of Deep Neural Networks, 2016 
 
Particularities: 
• usage of the exponential distribution as probability model for 

synaptic weights 
• Impose constraints on the number of synapses (e.g. an offspring 

has at most 50% of the synapses of its parent). 
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