
Metaheuristic Algorithms - Lecture
12-13

1

Artificial Neural Networks

 Feedforward Neural Networks

 Recurrent Neural Networks

2

Artificial Neural Networks
Artificial Neural Networks (ANNs) are black-box adaptive systems which
extract models from data through a training process

Input data
Results

Training examples (labelled data)

Neural network=
Adaptive system
consisting of many
interconnected units

Training

 ANNs are inspired by the
brain structure and
functioning

 They are very simplified
models of the brain

(Input vector) (Output vector)

Metaheuristic Algorithms - Lecture
12-13

3

Artificial Neural Networks
inputs

Output

w1,w2, ...: numerical weights
associated to the connections
(synaptic weights)

w1

w2

y1

y2

yn wn

bias

Metaheuristic Algorithms - Lecture
12-13

4

Artificial Neural Networks
ANN = set of interconnected functional units

(neurons)
Functional unit: simplified computational

model of the biological neuron (several
inputs, one output, an aggregation and an
activation function)

Notation:
 input signals: y1,y2,…,yn

 synaptic weights: w1,w2,…,wn

 activation threshold: b (sau w0)
 output: y
Rmk: All values are real

inputs

Output
w1

w2

y1

y2

yn wn

w1,w2, ...: numerical weights
associated to the connections
(synaptic weights)

b

Metaheuristic Algorithms - Lecture
12-13

5

Artificial Neural Networks
Components of an ANN

 Architecture:

 Topology (how are placed the functional units) and
connectivity (how are interconnected the functional units)

 Defined by an oriented graph
 Functioning:

 How the output signal is computed starting from the input
signals

 Training:
 Estimate the network parameters by using the training set

Metaheuristic Algorithms - Lecture
12-13

6

Artificial Neural Networks

6

Architectures
 Feedforward

 The graph does not contain cycles (usually the units are placed on
layers)

 The output vector can be computed directly from the input vector
 Recurrent:

 The graph contains cycles
 The output vector is obtained through an iterative process (simulation of

a dynamical system)

Recurrent network (fully connected) Feed-forward network

Metaheuristic Algorithms - Lecture
12-13

7

Artificial Neural Networks

7

Training:

 Supervised
 The training examples contain the correct answer.
 Aim: estimate the parameters which minimizes the error

(difference between actual output and correct answers)

 Unsupervised
 The training set contains only input data
 Aim: estimate the parameters such that the model captures

the statistical properties of the training data

Metaheuristic Algorithms - Lecture
12-13

8

Artificial Neural Networks

8

Applications:

 Classification/ Recognition problems

 Regression/ Prediction problems

 Clustering problems

 Association problems

Metaheuristic Algorithms - Lecture
12-13

Metaheuristic Algorithms - Lecture
12-13

9

Classification problems

9

Example 1: identifying the type of an iris flower

• Attributes: sepal/petal lengths, sepal/petal width
• Classes: Iris setosa, Iris versicolor, Iris virginica

Example 2: handwritten character recognition
• Attributes: various statistical and geometrical

characteristics of the corresponding image
• Classes: set of characters to be recognized
⇒ Classification = find the relationship between some

vectors with attribute values and classes labels
 (Du Trier et al; Feature extraction methods for character
 Recognition. A Survey. Pattern Recognition, 1996)

Metaheuristic Algorithms - Lecture
12-13

10

Classification problems
Classification:

– Problem: identify the class to which a given data (described

by a set of attributes) belongs

– Prior knowledge: examples of data belonging to each class

Simple example:
 linearly separable case

A more difficult example:
 nonlinearly separable case

Metaheuristic Algorithms - Lecture
12-13

11

Approximation problems
• Estimation of a hous price knowing:

– Total surface
– Number of rooms
– Size of the back yard
– Location

 => approximation problem = find a numerical relationship
between some output and input value(s)

• Estimating the amount of resources required by a software application
or the number of users of a web service or a stock price knowing
historical values

 => prediction problem=
find a relationship between future values
 and previous values

Metaheuristic Algorithms - Lecture
12-13

12

Approximation problems
Regression (fitting, prediction):

– Problem: estimate the value of a characteristic depending

on the values of some predicting characteristics
– Prior knowledge: pairs of corresponding values (training set)

x

y

Known values

Estimated value (for x’ which is not in the training set)

x’

Metaheuristic Algorithms - Lecture
12-13

13

Approximation problems

All approximation (mapping) problems can be stated as follows:

Starting from a set of data (Xi,Yi), Xi in RN and Yi din RM find a

function F:RN -> RM which minimizes the distance between the
data and the corresponding points on its graph: ||Yi-F(Xi)||2

Questions:

• What structure (shape) should have F ?
• How can we find the parameters defining the properties of F ?

Metaheuristic Algorithms - Lecture
12-13

14

Approximation problems
Can be such a problem be solved by using neural networks ?

Yes, at least in theory, the neural networks are proven “universal

approximators” [Hornik, 1985]:

“ Any continuous function can be approximated by a feedforward

neural network having at least one hidden layer. The accuracy
of the approximation depends on the number of hidden units.”

• The shape of the function is influenced by the architecture of the

network and by the properties of the activation functions.

• The function parameters are in fact the weights corresponding
to the connections between neurons.

Metaheuristic Algorithms - Lecture
12-13

15

Neural Networks Design
Steps to follow in designing a neural network:

• Choose the architecture: number of layers, number of units on

each layer, activation functions, interconnection style

• Train the network: compute the values of the weights using the
training set and a learning algorithm.

• Validate/test the network: analyze the network behavior for data
which do not belong to the training set.

Metaheuristic Algorithms - Lecture
12-13

16

Functional units (neurons)
Functional unit: several inputs, one output
Notations:
• input signals: y1,y2,…,yn
• synaptic weights: w1,w2,…,wn

(they model the synaptic permeability)
• threshold (bias): b (or theta)
(it models the activation threshold of the

neuron)
• Output: y

• All these values are usually real

numbers

inputs

output

Weights assigned to
the connections

w1

w2

y1

y2

yn wn

Metaheuristic Algorithms - Lecture
12-13

17

Functional units (neurons)
Output signal generation:
• The input signals are “combined” by using the connection weights

and the threshold
– The obtained value corresponds to the local potential of the

neuron
– This “combination” is obtained by applying a so-called

aggregation function
• The output signal is constructed by applying an activation function

– It corresponds to the pulse signals propagated along the axon

Input signals
(y1,…,yn)

Neuron’s state
(u)

Output signal
(y)

Aggregation
function

Activation
function

Metaheuristic Algorithms - Lecture
12-13

18

Functional units (neurons)
Aggregation functions:

...

)(

1,11

2

1
0

1

++==

−=−=

∑∑∏

∑∑

===

==

ji

n

ji
ijj

n

j
j

n

j

w
j

j

n

j
jj

n

j
j

yywywuyu

ywuwywu

j

Weighted sum Euclidean distance

Remark: in the case of the weighted sum the threshold can be
interpreted as a synaptic weight which corresponds to a virtual unit
which always produces the value -1

j

n

j
j ywu ∑

=

=
0

Multiplicative neuron High order connections

Metaheuristic Algorithms - Lecture
12-13

19

Functional units (neurons)
Activation functions:

},0max{)(
)(

11
11

11
)(

01
00

)()(

01
01

)sgn()(

uuf
uuf

u
uu

u
uf

u
u

uHuf

u
u

uuf

=
=









>
≤≤−

−<−
=





>
≤

==





>
≤−

== signum

Heaviside

Saturated linear

linear

Rectified linear – used in deep networks

Metaheuristic Algorithms - Lecture
12-13

20

Functional units (neurons)
Sigmoidal aggregation functions

)exp(1
1)(

1)2exp(
1)2exp()tanh()(

u
uf

u
uuuf

−+
=

+
−

==

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-6 -4 -2 2 4 6

-1

-0.5

0.5

1(Hyperbolic tangent)

(Logistic)

Metaheuristic Algorithms - Lecture
12-13

21

Functional units (neurons)
• What can do a single neuron ?
• It can solve simple problems (linearly

separable problems)

OR
0 1

0

1

0 1

1 1 y=H(w1x1+w2x2-b)

Ex: w1=w2=1, w0=0.5

x1

x2

w1

w2

y

b
-1

Metaheuristic Algorithms - Lecture
12-13

22

Functional units (neurons)
• What can do a single neuron ?
• It can solve simple problems (linearly

separable problems)

OR
0 1

0

1

0 1

1 1 y=H(w1x1+w2x2-w0)

Ex: w1=w2=1, w0=0.5

x1

x2

w1

w2

y

w0
-1

AND
0 1

0

1

0 0

0 1

 y=H(w1x1+w2x2-w0)
Ex: w1=w2=1, w0=1.5

Metaheuristic Algorithms - Lecture
12-13

23

Functional units (neurons)
Representation of boolean functions: f:{0,1}2->{0,1}

Linearly separable
problem: one layer
network

Nonlinearly separable
problem: multilayer
network

OR

XOR

Metaheuristic Algorithms - Lecture
12-13

24

Architecture and notations
Feedforward network with K layers

0 1 k

Input
layer

Hidden layers Output layer

Y0=X

… … K
W1 W2 Wk Wk+1 WK

X1

Y1

F1

Xk

Yk

Fk

XK

YK

FK

X = input vector, Y= output vector, F=vectorial activation function

Metaheuristic Algorithms - Lecture
12-13

25

Functioning
Computation of the output vector

)()(

)))(...((
1

1111

−

−−

==

=
kkkkk

KKKKK

YWFXFY

XWFWFWFY

FORWARD Algorithm (propagation of the input signal toward the
output layer)

Y[0]:=X (X is the input signal)
FOR k:=1,K DO
 X[k]:=W[k]Y[k-1]
 Y[k]:=F(X[k])
ENDFOR
Rmk: Y[K] is the output of the network

Metaheuristic Algorithms - Lecture
12-13

26

A particular case
One hidden layer

Adaptive parameters: W1, W2

kjkj

ikik

N

k

N

j
jkjiki

ww
ww

xwfwfy

=

=



















= ∑ ∑

= =

)1(

)2(

1

0

0

0

)1(
1

)2(
2

;
 :notationsimpler A

Remark:
Traditionally only 1 or 2 hidden layers are used
Lately, architectures involving many hidden layers became more popular (Deep

Neural Networks) – the are used mainly for image and language processing
(http://deeplearning.net)

Metaheuristic Algorithms - Lecture
12-13

27

Learning process
Learning based on minimizing a error function
• Training set: {(x1,d1), …, (xL,dL)}
• Error function (mean squared error):

2

1

2

1

1

0

0

0
122

1)(∑∑ ∑ ∑
= = = = 




























−=

L

l

N

i

N

k

N

j
jkjik

l
i xwfwfd

L
WE

• Aim of learning process: find W which minimizes the error function
• Minimization method: gradient method

Metaheuristic Algorithms - Lecture
12-13

28

Learning process

Gradient based adjustement
ij

ijij w
twEtwtw

∂
∂

−=+
))(()()1(η

2

1

2

1

1

0

0

0
122

1)(∑∑ ∑ ∑
= = = = 




























−=

L

l

N

i

N

k

N

j
jkjik

l
i xwfwfd

L
WE

xk

yk

xi

yi

El(W)

Learning rate

Metaheuristic Algorithms - Lecture
12-13

29

Learning process
• Partial derivatives computation

2

1

2

1

1

0

0

0
122

1)(∑∑ ∑ ∑
= = = = 




























−=

L

l

N

i

N

k

N

j
jkjik

l
i xwfwfd

L
WE

xk

yk

xi

yi

∑ ∑ ∑

∑∑

= = =

==





























−=

−=







−=−−=

∂
∂

−=−−=
∂

∂

2

1

2
1

0

0

0
12

2

1

'
1

'
1

'
2

2

1

'
2

2
1)(

)()()()()(

)()()(

N

i

N

k

N

j
jkjik

l
il

j
l
kj

N

i

l
iikkjkii

l
i

N

i
ik

kj

l

k
l
ikii

l
i

ik

l

xwfwfdWE

xxwxfxxfxfydw
w

WE

yyxfyd
w

WE

δδ

δ

Metaheuristic Algorithms - Lecture
12-13

30

Learning process
• Partial derivatives computation

∑ ∑ ∑

∑∑

= = =

==





























−=

−=







−=−−=

∂
∂

−=−−=
∂

∂

2

1

2
1

0

0

0
12

2

1

'
1

'
1

'
2

2

1

'
2

2
1)(

)()()()()(

)()()(

N

i

N

k

N

j
jkjik

l
il

j
l
kj

N

i

l
iikkjkii

l
i

N

i
ik

kj

l

k
l
ikii

l
i

ik

l

xwfwfdWE

xxwxfxxfxfydw
w

WE

yyxfyd
w

WE

δδ

δ

Remark:
The derivatives of sigmoidal activation functions have particular

properties:
Logistic: f’(x)=f(x)(1-f(x))=y(1-y)
Tanh: f’(x)=1-f2(x)=1-y2

Metaheuristic Algorithms - Lecture
12-13

31

The BackPropagation Algorithm
Main idea:
For each example in the training

set:
 - compute the output signal
 - compute the error

corresponding to the output
level

 - propagate the error back into
the network and store the
corresponding delta values
for each layer

 - adjust each weight by using
the error signal and input
signal for each layer

Computation of the output signal (FORWARD)

Computation of the error signal (BACKWARD)

Metaheuristic Algorithms - Lecture
12-13

32

The BackPropagation Algorithm
General structure
Random initialization of weights

REPEAT
 FOR l=1,L DO
 FORWARD stage
 BACKWARD stage
 weights adjustement
 ENDFOR
 Error (re)computation
UNTIL <stopping condition>

Rmk.
• The weights adjustment

depends on the learning rate
• The error computation needs

the recomputation of the output
signal for the new values of the
weights

• The stopping condition depends
on the value of the error and on
the number of epochs

• This is a so-called serial
(incremental) variant: the
adjustment is applied separately
for each example from the
training set

ep
oc

h

Metaheuristic Algorithms - Lecture
12-13

33

The BackPropagation Algorithm

ENDFOR

: ,:
/* Stept Adjustemen * /

)(:),)((:

/* Step BACKWARD * /

)(: ,:),(: ,:

/* Step FORWARD * /
DO ,1: FOR

REPEAT
0:

)1,1(:),1,1(:

2

1

'
1

'
2

2

1

0
1

0

0

l
k

l
iikik

l
j

l
kkjkj

N

i

l
iik

l
k

l
k

l
i

l
i

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

ikkj

ywwxww

wxfydxf

xfyywxxfyxwx

Ll

p
randwrandw

ηδηδ

δδδ

+=+=

=−=

====

=

=

−=−=

∑

∑∑

=

==

Details (serial variant)

Metaheuristic Algorithms - Lecture
12-13

34

The BackPropagation Algorithm
Details (serial variant)

* OR UNTIL
1:

)2/(:
ENDFOR

)(:

/* summation Error * /

)(: ,:),(: ,:

/* Step FORWARD * /
DO ,1: FOR

0:
/*n computatioError * /

max

1

2

2

1

0
1

0

0

EEpp
pp

LEE

ydEE

xfyywxxfyxwx

Ll
E

L

l

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

<>
+=

=

−+=

====

=
=

∑

∑∑

=

==

E* denotes the expected training accuracy
pmax denots the maximal number of epochs

Metaheuristic Algorithms - Lecture
12-13

35

The BackPropagation Algorithm
Batch variant
Random initialization of weights

REPEAT
 initialize the variables which will

contain the adjustments
 FOR l=1,L DO
 FORWARD stage
 BACKWARD stage
 cumulate the adjustments
 ENDFOR
 Apply the cumulated adjustments
 Error (re)computation
UNTIL <stopping condition>

Rmk.
• The incremental variant can be

sensitive to the presentation
order of the training examples

• The batch variant is not
sensitive to this order and is
more robust to the errors in the
training examples

• It is the starting algorithm for
more elaborated variants, e.g.
momentum variant

ep
oc

h

Metaheuristic Algorithms - Lecture
12-13

36

The BackPropagation Algorithm

21

2211

2

1

'
1

'
2

2

1

0
1

0

0

21

: ,:
ENDFOR

: ,:
/* step Adjustment * /

)(:),)((:

/*step BACKWARD * /

)(: ,:),(: ,:

/* step FORWARD * /
DO ,1: FOR

00
REPEAT

0:

0..0,1..0,2..1),1,1(:),1,1(:

ikikikkjkjkj

l
k

l
iikik

l
j

l
kkjkj

N

i

l
iik

l
k

l
k

l
i

l
i

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

ikkj

ikkj

wwww

yx

wxfydxf

xfyywxxfyxwx

Ll
:,Δ:Δ

p
NjNkNirandwrandw

∆+=∆+=

+∆=∆+∆=∆

=−=

====

=

==

=

===−=−=

∑

∑∑

=

==

ηδηδ

δδδ

Details (batch variant)

Metaheuristic Algorithms - Lecture
12-13

37

The BackPropagation Algorithm

* OR UNTIL
1:

)2/(:
ENDFOR

)(:

/* summation Error * /

)(: ,:),(: ,:

/* Step FORWARD * /
DO ,1: FOR

0:
/*n computatioError * /

max

1

2

2

1

0
1

0

0

EEpp
pp

LEE

ydEE

xfyywxxfyxwx

Ll
E

L

l

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

<>
+=

=

−+=

====

=
=

∑

∑∑

=

==

Metaheuristic Algorithms - Lecture
12-13

38

Variants
Different variants of BackPropagation can be designed by changing:

 Error function

 Minimization method

 Learning rate choice

 Weights initialization

Metaheuristic Algorithms - Lecture
12-13

39

Variants
Error function:
 MSE (mean squared error function) is appropriate in the case of

approximation problems
 For classification problems a better error function is the cross-

entropy error:
 Particular case: two classes (one output neuron):

– dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to
class 1)

– yl is from (0,1) and can be interpreted as the probability of class
1

∑
=

−−+−=
L

l
llll ydydWCE

1

))1ln()1(ln()(

Rmk: the partial derivatives change, thus the adjustment terms
will be different

Metaheuristic Algorithms - Lecture
12-13

40

Variants

)1()1(

)1(
)1(

)1()1(
)()

1
1

()2('
2

llll

ll
ll

llll

l

l

l

l
l

dyyd

yy
yy

dyydxf
y
d

y
d

−−−=

−⋅
−

−−−
=

−
−

−=δ

Entropy based error:
 Different values of the partial derivatives
 In the case of logistic activation functions the error signal will be:

Metaheuristic Algorithms - Lecture
12-13

41

Variants
Minimization method:
 The gradient method is a simple but not very efficient method

 More sophisticated and faster methods can be used instead:

 Conjugate gradient methods
 Newton’s method and its variants

 Particularities of these methods:

 Faster convergence (e.g. the conjugate gradient converges in n
steps for a quadratic error function)

 Needs the computation of the hessian matrix (matrix with
second order derivatives) : second order methods

Metaheuristic Algorithms - Lecture
12-13

42

Variants
Example: Newton’s method

))(())(()()1(

:is wof estimation new theThus
0))(()())(())((

:ofsolution thebe willminimum
 the respect towith expansion sTaylor' thederivatingBy

))(())((

))())((())((
2
1))(()))((())(()(

p)epoch toingcorrespondn (estimatio)(in expansion sTaylor'By
 weightsall of vector theis ,:

1 pwEpwHpwpw

pwEpwpwHwpwH

w

ww
pwEpwH

pwwpwHpwwpwwpwEpwEwE

pw
RwRRE

ji
ij

TT

nn

∇⋅−=+

=∇+−

∂∂
∂

=

−−+−∇+≅

∈→

−

Metaheuristic Algorithms - Lecture
12-13

43

Variants

Advantage:
• Does not need the computation of the hessian

j

i
ij

T
p

T

L

l

T
Ll

w
wEwJ

wewJ

pwepwJIpwJpwJpwpw

wEwEwewEwE

∂
∂

=

=

+⋅−=+

==

−
=
∑

)(
)(

)(ofjacobian)(

))(())(()))(())((()()1(

))(),...,(()(),()(

1
1

1

µ

Particular case: Levenberg-Marquardt
• This is the Newton method adapted for the case when the

objective function is a sum of squares (as MSE is)

Used in order to deal with
singular matrices

Metaheuristic Algorithms - Lecture
12-13

44

Problems in BackPropagation
 Low convergence rate (the error decreases too slow)

 Oscillations (the error value oscillates instead of continuously

decreasing)

 Local minima problem (the learning process is stuck in a local
minima of the error function)

 Stagnation (the learning process stagnates even if it is not a
local minima)

 Overtraining and limited generalization

Metaheuristic Algorithms - Lecture
12-13

45

Problems in BackPropagation
Problem 1: The error decreases too slow or the error value

oscillates instead of continuously decreasing

Causes:
• Inappropriate value of the learning rate (too small values lead to

slow convergence while too large values lead to oscillations)
– Solution: adaptive learning rate

• Slow minimization method (the gradient method needs small

learning rates in order to converge)
 Solutions:
 - heuristic modification of the standard BP (e.g. momentum)
 - other minimization methods (Newton, conjugate gradient)

Metaheuristic Algorithms - Lecture
12-13

46

Problems in BackPropagation
Adaptive learning rate:

• If the error is increasing then the learning rate should be decreased
• If the error significantly decreases then the learning rate can be

increased
• In all other situations the learning rate is kept unchanged

)1()()1()1()()1()1(
21),1()()1()1()(
10),1()()1()1()(

−=⇒−+≤≤−−
<<−=⇒−−<
<<−=⇒−+>

pppEpEpE
bpbppEpE
apappEpE

ηηγγ
ηηγ
ηηγ

Example: γ=0.05

Metaheuristic Algorithms - Lecture
12-13

47

Problems in BackPropagation
Momentum variant:
 Increase the convergence speed by introducing some kind of

“inertia” in the weights adjustment: the weight changes
corresponding to the current epoch includes the adjustments from
the previous epoch

)()1()1(pwypw ijjiij ∆+−=+∆ αδαη

Momentum coefficient: α in [0.1,0.9]

Metaheuristic Algorithms - Lecture
12-13

48

Problems in BackPropagation
Momentum variant:
 The effect of these enhancements is that flat spots of the error

surface are traversed relatively rapidly with a few big steps, while
the step size is decreased as the surface gets rougher. This
implicit adaptation of the step size increases the learning speed
significantly.

Simple gradient
descent

Use of inertia term

Metaheuristic Algorithms - Lecture
12-13

49

Problems in BackPropagation
Problem 2: Local minima problem (the learning process is stuck in a

local minima of the error function)

Cause: the gradient based methods are local optimization methods

Solutions:
• Restart the training process using other randomly initialized

weights
• Introduce random perturbations into the values of weights:

 variablesrandom : , =+= ijijijij ww ξξ

• Use a global optimization method

Metaheuristic Algorithms - Lecture
12-13

50

Problems in BackPropagation
Solution:
• Replacing the gradient method with a stochastic optimization

method
• This means using a random perturbation instead of an adjustment

based on the gradient computation
• Adjustment step:

)W:(W adjustment accept the THEN)()(IF

 valuesrandom

∆+=<∆+

=∆

WEWE
ij

Rmk:
• The adjustments are usually based on normally distributed

random variables
• If the adjustment does not lead to a decrease of the error then it is

not accepted

Metaheuristic Algorithms - Lecture
12-13

51

Problems in BackPropagation
Problem 3: Stagnation (the learning process

stagnates even if it is not a local minima)

Cause: the adjustments are too small because the

arguments of the sigmoidal functions are too large

Solutions:

– Penalize the large values of the weights
(weights-decay)

– Use only the signs of derivatives not their

values

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

Very small derivates

Metaheuristic Algorithms - Lecture
12-13

52

Problems in BackPropagation

Penalization of large values of the weights: add a regularization
term to the error function

∑+=
ji

ijr wWEWE
,

2
)()()(λ

The adjustment will be:

ijij
r
ij wλ2)(−∆=∆

Metaheuristic Algorithms - Lecture
12-13

53

Problems in BackPropagation
Resilient BackPropagation (use only the sign of the derivative not

its value)

ab

w
pWE

w
pWEpb

w
pWE

w
pWEpa

p

w
pWEp

w
pWEp

pw

ijij
ij

ijij
ij

ij

ij
ij

ij
ij

ij

<<<










<
∂

−∂
⋅

∂
−∂

−∆

>
∂

−∂
⋅

∂
−∂

−∆
=∆










<
∂

−∂
∆

>
∂

−∂
∆−

=∆

10

0))2(())1((if)1(

0))2(())1((if)1(
)(

0))1((if)(

0))1((if)(
)(

Metaheuristic Algorithms - Lecture
12-13

54

Problems in BackPropagation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem 4: Overtraining and limited generalization ability

5 hidden units 10 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Metaheuristic Algorithms - Lecture
12-13

55

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 hidden units 20 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Metaheuristic Algorithms - Lecture
12-13

56

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

Causes:
• Network architecture (e.g. number of hidden units)

– A large number of hidden units can lead to overtraining (the
network extracts not only the useful knowledge but also the
noise in data)

• The size of the training set
– Too few examples are not enough to train the network

• The number of epochs (accuracy on the training set)
– Too many epochs could lead to overtraining

Solutions:
• Dynamic adaptation of the architecture
• Stopping criterion based on validation error; cross-validation

Metaheuristic Algorithms - Lecture
12-13

57

Problems in BackPropagation
Dynamic adaptation of the architectures:

• Incremental strategy:

– Start with a small number of hidden neurons
– If the learning does not progress new neurons are introduced

• Decremental strategy:

– Start with a large number of hidden neurons
– If there are neurons with small weights (small contribution to the

output signal) they can be eliminated

Metaheuristic Algorithms - Lecture
12-13

58

Problems in BackPropagation
Stopping criterion based on validation error :

• Divide the learning set in m parts: (m-1) are for training and

another one for validation
• Repeat the weights adjustment as long as the error on the

validation subset is decreasing (the learning is stopped when
the error on the validation subset start increasing)

Cross-validation:
• Applies for m times the learning algorithm by successively

changing the learning and validation sets

1: S=(S1,S2,,Sm)
2: S=(S1,S2,,Sm)
....
m: S=(S1,S2,,Sm)

Metaheuristic Algorithms - Lecture
12-13

59

Problems in BackPropagation

Stop the learning process when the error on the validation set start

to increase (even if the error on the training set is still
decreasing) :

Error on the training set

Error on the validation set

Metaheuristic Algorithms - Lecture
12-13

60

Recurrent neural networks

• Architectures

– Fully recurrent networks
– Partially recurrent networks

• Dynamics of recurrent networks
– Continuous time dynamics
– Discrete time dynamics

• Applications

Metaheuristic Algorithms - Lecture
12-13

61

 Recurrent neural networks

• Architecture

– Contains feedback connections
– Depending on the density of feedback connections there are:

• Fully recurrent networks (Hopfield model)
• Partially recurrent networks:

– With contextual units (Elman model, Jordan model)
– Cellular networks (Chua-Yang model)

• Applications
– Associative memories
– Combinatorial optimization problems
– Prediction
– Image processing
– Dynamical systems and chaotical phenomena modelling

Metaheuristic Algorithms - Lecture
12-13

62

Hopfield networks
Architecture:
 N fully connected units

Activation function:
 Signum/Heaviside
 Logistica/Tanh
Parameters:
 weight matrix

Notations: xi(t) – potential (state) of the neuron i at moment t
 yi(t)=f(xi(t)) – the output signal generated by unit i at moment t
 Ii(t) – the input signal
 wij – weight of connection between j and i

Metaheuristic Algorithms - Lecture
12-13

63

Hopfield networks
Functioning: - the output signal is generated by the evolution of a

 dynamical system
 - Hopfield networks are equivalent to dynamical systems

Network state:
 - the vector of neuron’s state X(t)=(x1(t), …, xN(t))
or
 - output signals vector Y(t)=(y1(t),…,yN(t))

Dynamics:
• Discrete time – recurrence relations (difference equations)
• Continuous time – differential equations

Metaheuristic Algorithms - Lecture
12-13

64

Hopfield networks
Discrete time functioning:
 the network state corresponding to moment t+1 depends on the

network state corresponding to moment t

Network’s state: Y(t)

Variants:
• Asynchronous: only one neuron can change its state at a given time
• Synchronous: all neurons can simultaneously change their states

Network’s answer: the stationary state of the network

Metaheuristic Algorithms - Lecture
12-13

65

Hopfield networks
Asynchronous

variant:

*),()1(

)()()1(
1

iityty

tItywfty

ii

N

j
ijjii

≠=+









+=+ ∑

=

Choice of i*:
 - systematic scan of {1,2,…,N}
 - random (but such that during N steps each neuron

changes its state just once)
Network simulation:
 - choose an initial state (depending on the problem to be solved)
 - compute the next state until the network reach a stationary state
 (the distance between two successive states is less than ε)

Metaheuristic Algorithms - Lecture
12-13

66

Hopfield networks
Synchronous variant:

Either continuous or discrete activation functions can be used
Functioning:

Initial state
 REPEAT
 compute the new state starting from the current one
 UNTIL < the difference between the current state and the previous

one is small enough >

NitItywfty
N

j
ijiji ,1 ,)()()1(

1
=








+=+ ∑

=

Metaheuristic Algorithms - Lecture
12-13

67

Hopfield networks
Continuous time functioning:

NitItxfwtx
dt

tdx
ij

N

j
iji

i ,1),())(()()(
1

=++−= ∑
=

Network simulation: solve (numerically) the system of differential
equations for a given initial state xi(0)

Example: Explicit Euler method

NiIxfwhxhx

NitItxfwhtxhhtx

NitItxfwtx
h

txhtx

i
old
j

N

j
ij

old
i

new
i

ij

N

j
ijii

ij

N

j
iji

ii

,1),)(()1(

:signalinput Constant

,1)),())((()()1()(

,1),())(()()()(

1

1

1

=++−≅

=++−≅+

=++−≅
−+

∑

∑

∑

=

=

=

Metaheuristic Algorithms - Lecture
12-13

68

Stability properties
Possible behaviours of a network:
• X(t) converged to a stationary state X* (fixed point of the network

dynamics)
• X(t) oscillates between two or more states
• X(t) has a chaotic behavior or ||X(t)|| becomes too large

Useful behaviors:
• The network converges to a stationary state

– Many stationary states: associative memory
– Unique stationary state: combinatorial optimization problems

• The network has a periodic behavior

– Modelling of cycles

Obs. Most useful situation: the network converges to a stable stationary

state

Metaheuristic Algorithms - Lecture
12-13

69

Stability properties

Illustration:

Formalization:

X* is asymptotic stable (wrt the initial conditions) if it is
 stable
 attractive

0*)(

)0()),(()(
0

=

==

XF

XXtXF
dt

tdX

Asymptotic stable Stable Unstable

Metaheuristic Algorithms - Lecture
12-13

70

Stability properties

Stability:
 X* is stable if for all ε>0 there exists δ(ε) > 0 such that:
 ||X0-X*||< δ(ε) implies ||X(t;X0)-X*||< ε

Attractive:
 X* is attractive if there exists δ > 0 such that:
 ||X0-X*||< δ implies X(t;X0)->X*

In order to study the asymptotic stability one can use the Lyapunov

method.

Metaheuristic Algorithms - Lecture
12-13

71

Stability properties
Lyapunov

function:

0 toricepentru ,0))((
inferior marginita ,:

><

→

dt
tXdV

RRV N

• If one can find a Lyapunov function for a system then its
stationary solutions are asymptotically stable

• The Lyapunov function is similar to the energy function in
physics (the physical systems naturally converges to the lowest
energy state)

• The states for which the Lyapunov function is minimum are
stable states

• Hopfield networks satisfying some properties have Lyapunov
functions.

bounded

Metaheuristic Algorithms - Lecture
12-13

72

Stability properties
Stability result for continuous neural networks

If:
 - the weight matrix is symmetrical (wij=wji)
 - the activation function is strictly increasing (f’(u)>0)
 - the input signal is constant (I(t)=I)

Then all stationary states of the network are asymptotically stable

Associated Lyapunov function:

∑ ∫∑∑
=

−

==

+−−=
N

i

xfN

i
iij

N

ji
iijN

i

dzzfIxfxfxfwxxV
1

)(

0

1

11,
1)()()()(

2
1),...,(

Metaheuristic Algorithms - Lecture
12-13

73

Stability properties
Stability result for discrete neural networks (asynchronous case)
If:
 - the weight matrix is symmetrical (wij=wji)
 - the activation function is signum or Heaviside
 - the input signal is constant (I(t)=I)
Then all stationary states of the network are asymptotically stable

Corresponding Lyapunov function

∑∑
==

−−=
N

i
iiji

N

ji
ijN IyyywyyV

11,
1 2

1),...,(

Metaheuristic Algorithms - Lecture
12-13

74

Stability properties
This result means that:

• All stationary states are stable

• Each stationary state has attached an attraction region (if the

initial state of the network is in the attraction region of a given
stationary state then the network will converge to that stationary
state)

Remarks:
• This property is useful for associative memories

• For synchronous discrete dynamics this result is no more true,

but the network converges toward either fixed points or cycles of
period two

Metaheuristic Algorithms - Lecture
12-13

75

Associative memories
Memory = system to store and recall the information

Address-based memory:

– Localized storage: all components bytes of a value are stored
together at a given address

– The information can be recalled based on the address

Associative memory:
– The information is distributed and the concept of address

does not have sense
– The recall is based on the content (one starts from a clue

which corresponds to a partial or noisy pattern)

Metaheuristic Algorithms - Lecture
12-13

76

Associative memories
Properties:
• Robustness

Implementation:
• Hardware:

– Electrical circuits
– Optical systems

• Software:

– Hopfield networks simulators

Metaheuristic Algorithms - Lecture
12-13

77

Associative memories
Software simulations of associative memories:
• The information is binary: vectors having elements from {-1,1}
• Each component of the pattern vector corresponds to a unit in the

networks

Example (a)
(-1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-

1,1,1,-1,-1, -1,-1,1,1,-1,-1)

Metaheuristic Algorithms - Lecture
12-13

78

Associative memories

Associative memories design:
• Fully connected network with N signum units (N is the patterns

size)

Patterns storage:
• Set the weights values (elements of matrix W) such that the

patterns to be stored become fixed points (stationary states) of
the network dynamics

Information recall:
• Initialize the state of the network with a clue (partial or noisy

pattern) and let the network to evolve toward the corresponding
stationary state.

Metaheuristic Algorithms - Lecture
12-13

79

Associative memories
Patterns to be stored: {X1,…,XL}, Xl in {-1,1}N

Methods:
• Hebb rule
• Pseudo-inverse rule (Diederich – Opper algorithm)

Hebb rule:
• It is based on the Hebb’s principle: “the synaptic permeability of

two neurons which are simultaneously activated is increased”

l
j

L

l

l
iij xx

N
w ∑

=

=
1

1

Metaheuristic Algorithms - Lecture
12-13

80

Associative memories

Properties of the Hebb’s rule:

• If the vectors to be stored are orthogonal (statistically uncorrelated)

then all of them become fixed points of the network dynamics

• Once the vector X is stored the vector –X is also stored

• An improved variant: the pseudo-inverse method

l
j

L

l

l
iij xx

N
w ∑

=

=
1

1

Orthogonal vectors

Complementary vectors

Metaheuristic Algorithms - Lecture
12-13

81

Associative memories
Pseudo-inverse method:

k
i

N

i

l
ilk

l
jlk

kl

l
iij

xx
N

Q

xQx
N

w

∑

∑

=

−

=

=

1

1

,

1

)(1

• If Q is invertible then all elements of {X1,…,XL} are fixed points of
the network dynamics

• In order to avoid the costly operation of inversion one can use an
iterative algorithm for weights adjustment

Metaheuristic Algorithms - Lecture
12-13

82

Associative memories

Diederich-Opper algorithm :

Initialize W(0) using the Hebb rule

Metaheuristic Algorithms - Lecture
12-13

83

Associative memories

Recall process:

• Initialize the network state

with a starting clue

• Simulate the network until
the stationary state is
reached.

Stored patterns

Noisy patterns (starting clues)

Metaheuristic Algorithms - Lecture
12-13

84

Associative memories

Storage capacity:
– The number of patterns which can be stored and recalled

(exactly or approximately)
– Exact recall: capacity=N/(4lnN)
– Approximate recall (prob(error)=0.005): capacity = 0.15*N

Spurious attractors:

– These are stationary states of the networks which were not
explicitly stored but they are the result of the storage
method.

Avoiding the spurious states
– Modifying the storage method
– Introducing random perturbations in the network’s

dynamics

Metaheuristic Algorithms - Lecture
12-13

85

Solving optimization problems

• First approach: Hopfield & Tank (1985)

– They propose the use of a Hopfield model to solve the

traveling salesman problem.

– The basic idea is to design a network whose energy
function is similar to the cost function of the problem (e.g.
the tour length) and to let the network to naturally evolve
toward the state of minimal energy; this state would
represent the problem’s solution.

Metaheuristic Algorithms - Lecture
12-13

86

Solving optimization problems

A constrained optimization problem:
 find (y1,…,yN) satisfying:
 it minimizes a cost function C:RN->R
 it satisfies some constraints as Rk (y1,…,yN) =0 with
 Rk nonnegative functions

Main steps:
• Transform the constrained optimization problem in an

unconstrained optimization one (penalty method)
• Rewrite the cost function as a Lyapunov function
• Identify the values of the parameteres (W and I) starting from

the Lyapunov function
• Simulate the network

Metaheuristic Algorithms - Lecture
12-13

87

Solving optimization problems

Step 1: Transform the constrained optimization problem in an
unconstrained optimization one

0,

),...,(),...,(),...,(* 1
1

11

>

+= ∑
=

k

N

r

k
kkNN

ba

yyRbyyaCyyC

The values of a and b are chosen such that they reflect the relative
importance of the cost function and constraints

Metaheuristic Algorithms - Lecture
12-13

88

Solving optimization problems

Step 2: Reorganizing the cost function as a Lyapunov function

rkyIyywyyR

yIyywyyC

N

i
i

k
i

N

ji
ji

k
ijNk

N

i
i

obj
i

N

ji
ji

obj
ijN

,1 ,
2
1),....,(

2
1),....,(

11,
1

11,
1

=−−=

−−=

∑∑

∑∑

==

==

Remark: This approach works only for cost functions and constraints
which are linear or quadratic

Metaheuristic Algorithms - Lecture
12-13

89

Solving optimization problems

Step 3: Identifying the network parameters:

NiIbaII

Njiwbaww

k
i

r

k
k

obj
ii

k
ij

r

k
k

obj
ijij

,1 ,

,1, ,

1

1

=+=

=+=

∑

∑

=

=

Metaheuristic Algorithms - Lecture
12-13

90

Solving optimization problems
 Designing a neural network for TSP (n towns):

N=n*n neurons
The state of the neuron (i,j) is interpreted as follows:

 1 - the town i is visited at time j
 0 - otherwise

A

C

D E

B 1 2 3 4 5
A 1 0 0 0 0
B 0 0 0 0 1
C 0 0 0 1 0
D 0 0 1 0 0
E 0 1 0 0 0

AEDCB

Metaheuristic Algorithms - Lecture
12-13

91

Solving optimization problems

Constraints:
 - at a given time only one town is visited

(each column contains exactly one
value equal to 1)

 - each town is visited only once (each
row contains exactly one value equal to
1)

Cost function:
 the tour length = sum of distances

between towns visited at consecutive
time moments

 1 2 3 4 5
A 1 0 0 0 0
B 0 0 0 0 1
C 0 0 0 1 0
D 0 0 1 0 0
E 0 1 0 0 0

Metaheuristic Algorithms - Lecture
12-13

92

Solving optimization problems

Constraints and cost function:

)()(

01

01

1,1,
1 ,1 1

2

1 1

2

1 1

+−
= ≠= =

= =

= =

+=

=







−

=







−

∑ ∑ ∑

∑ ∑

∑ ∑

jkjk

n

i

n

ikk

n

j
ijik

n

i

n

j
ij

n

j

n

i
ij

yyycYC

y

y

)11(
2

)(
2

)(*

2

1 1

2

1 1

1,1,
1 ,1 1

∑ ∑∑ ∑

∑ ∑ ∑

= == =

+−
= ≠= =









−+








−

++=

n

i

n

j
ij

n

j

n

i
ij

jkjk

n

i

n

ikk

n

j
ijik

yyb

yyycaYC

Cost function in the
unconstrained case:

Metaheuristic Algorithms - Lecture
12-13

93

Solving optimization problems

Identified parameters:

)11(
2

)(
2

)(*

2

1 1

2

1 1

1,1,
1 ,1 1

∑ ∑∑ ∑

∑ ∑ ∑

= == =

+−
= ≠= =









−+








−

++=

n

i

n

j
ij

n

j

n

i
ij

jkjk

n

i

n

ikk

n

j
ijik

yyb

yyycaYC

ij

n

i

n

j
ijklij

n

i

n

j

n

k

n

l
klij IyyywYV ∑∑∑∑∑∑

= == = = =

−−=
1 11 1 1 1

,2
1)(

bI
w

bacw

ij

ijij

jlikjlikjljlikklij

2

0

)()(

,

1,1,,

=

=

++−+−= +− δδδδδδ

Metaheuristic Algorithms - Lecture
12-13

94

Prediction in time series

• Time series = sequence of values measured at successive
 moments of time

• Examples:
– Currency exchange rate evolution
– Stock price evolution
– Biological signals (EKG)

• Aim of time series analysis: predict the future value(s) in the
series

Metaheuristic Algorithms - Lecture
12-13

95

Time series
The prediction (forecasting) is based on a model which describes the

dependency between previous values and the next value in the
series.

Order of the model

Parameters corresponding
to external factors

Metaheuristic Algorithms - Lecture
12-13

96

Time series
The model associated to a time series can be:

- Linear
- Nonlinear

- Deterministic
- Stochastic

Example: autoregressive model (AR(p))

noise = random variable from
N(0,1)

Metaheuristic Algorithms - Lecture
12-13

97

Time series

Neural networks. Variants:

• The order of the model is known

– Feedforward neural network with delayed input layer
 (p input units)

• The order of the model is unknown

– Network with contextual units (Elman network)

Metaheuristic Algorithms - Lecture
12-13

98

Networks with delayed input layer

Architecture:

Functioning:

Metaheuristic Algorithms - Lecture
12-13

99

Networks with delayed input layer
Training:

• Training set: {((xl,xl-1,…,xl-p+1),xl+1)}l=1..L

• Training algorithm: BackPropagation

• Drawback: needs the knowledge of p

Metaheuristic Algorithms - Lecture
12-13

100

Elman network
Architecture:

Functioning:

Contextual
units

Rmk: the contextual
units contain
copies of the
outputs of the
hidden layers
corresponding to
the previous
moment

Metaheuristic Algorithms - Lecture
12-13

101

Elman network
Training

Training set : {(x(1),x(2)),(x(2),x(3)),…(x(t-1),x(t))}

Sets of weights:

- Adaptive: Wx, Wc si W2

- Fixed: the weights of the connections between the hidden and the
contextual layers.

Training algorithm: BackPropagation

Metaheuristic Algorithms - Lecture
12-13

102

Cellular networks
Architecture:
• All units have a double role: input and

output units

• The units are placed in the nodes of a
two dimensional grid

• Each unit is connected only with units
from its neighborhood (the
neighborhoods are defined as in the
case of Kohonen’s networks)

• Each unit is identified through its
position p=(i,j) in the grid

virtual cells
(used to define
the context for
border cells)

Metaheuristic Algorithms - Lecture
12-13

103

Cellular networks
Activation function: ramp

-2 -1 1 2

-1

-0.5

0.5

1

Notations:
Xp(t) – state of unit p at time t
Yp(t) - output signal
Up(t) – control signal
Ip(t) – input from the environment
apq – weight of connection between unit q and unit p
bpq - influence of control signal Uq on unit p

Metaheuristic Algorithms - Lecture
12-13

104

Cellular networks
Functioning:

Remarks:
• The grid has a boundary of fictitious units (which usually

generate signals equal to 0)
• Particular case: the weights of the connections between

neighboring units do not depend on the positions of units
Example: if p=(i,j), q=(i-1,j), p’=(i’,j’), q’=(i’-1,j’) then

apq= ap’q’=a-1,0

Signal generated by
other units

Control
signal

Input signal

Metaheuristic Algorithms - Lecture
12-13

105

Cellular networks
These networks are called cloning template cellular networks
Example:

Metaheuristic Algorithms - Lecture
12-13

106

Cellular networks
Illustration of the cloning template elements

Metaheuristic Algorithms - Lecture
12-13

107

Cellular networks
Software simulation = equivalent to numerical solving of a differential

system (initial value problem)

Explicit Euler method

Applications:
• Gray level image processing
• Each pixel corresponds to a unit of the network
• The gray level is encoded by using real values from [-1,1]

Metaheuristic Algorithms - Lecture
12-13

108

Cellular networks
Image processing:

• Depending on the choice of templates, of control signal (u), initial

condition (x(0)), boundary conditions (z) different image
processing tasks can be solved:

– Edge detection in binary images

– Gap filling in binary images

– Noise elimination in binary images

– Identification of horizontal/vertical line segments

Metaheuristic Algorithms - Lecture
12-13

109

Cellular networks
Example 1: edge detection
z=-1, U=input image, h=0.1

UXI

BA

=−=

















−
−−

−
=
















=

)0(,1
010
121

010
 ,

000
030
000

http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/CNNsim_adv.html

Metaheuristic Algorithms - Lecture
12-13

110

Cellular networks
Example 2: gap filling
z=-1,
U=input image,
h=0.1

1) are pixels (all 1)0(,5.0
000
040
000

 ,
010
15.11
010

==
















=
















=

ijxI

BA

Metaheuristic Algorithms - Lecture
12-13

111

Cellular networks
Example 3: noise removing
z=-1, U=input image, h=0.1

UXI

BA

==
















=
















=

)0(,0
000
000
000

 ,
010
121
010

Metaheuristic Algorithms - Lecture
12-13

112

Cellular networks
Example 4: horizontal line detection
z=-1, U=input image, h=0.1

UXI

BA

=−=
















=
















=

)0(,1
000
111
000

 ,
000
020
000

Metaheuristic Algorithms - Lecture
12-13

113

Other related models
Reservoir computing (www.reservoir-computing.org)

Particularities:
• These models use a set of hidden units (called reservoir) which are

arbitrarly connected (their connection weights are randomly set; each of
these units realize a nonlinear transformation of the signals received
from the input units.

• The output values are obtained by a linear combination of the signals
produced by the input units and by the reservoir units.

• Only the weights of connections toward the output units are trained

Metaheuristic Algorithms - Lecture
12-13

114

Other related models
Reservoir computing (www.reservoir-computing.org)

Variants:

• Temporal Recurrent Neural Network (Dominey 1995)
• Liquid State Machines (Natschläger, Maass and Markram 2002)
• Echo State Networks (Jaeger 2001)
• Decorrelation-Backpropagation Learning (Steil 2004)

Metaheuristic Algorithms - Lecture
12-13

115

Other related models
Echo State Networks:
U(t) = input vector
X(t) = reservoir state vector
Z(t)=[U(t);X(t)] = concatenated input and state

vectors
Y(t) = output vector

X(t)=(1-a)X(t-1)+a tanh(Win U(t)+W X(t-1))
Y(t)=Wout Z(t)

Win ,W – random matrices (W is scaled such

that the spectral radius has a predefined
value);

Wout - set by training

M. Lukosevicius – Practical Guide to
Applying Echo State Networks

Metaheuristic Algorithms - Lecture
12-13

116

Other related models
Applications of reservoir computing:

- Speech recognition
- Handwritten text recognition
- Robot control
- Financial data prediction
- Real time prediction of epilepsy seizures

Metaheuristic Algorithms - Lecture
12-13

117

Other related models
Deep learning (http://deeplearning.net/)
Particularities:
• Deep architecture = many layers (aim: hierarchical extraction of data features);

• Unsupervised training based on Restricted Boltzmann Machines) followed by a

fine tuning of weights using a supervised training (e.g. Backpropagation)

Remarks:
• Boltzmann Machines = recurrent neural networks with binary stochastic units
• Restricted BM = recurrent neural networks with bidirectional connections only

between the units belonging to different subsets of units (e.g. subsets: visible
units, hidden units)

• There are feed-forward deep neural networks (e.g: Convolutional Neural
Networks)

Metaheuristic Algorithms - Lecture
12-13

118

Other related models
Deep learning (http://deeplearning.net/)

Applications:
- Image classification, objects detection (e.g. Face recognition – Deep Face)
- Speech recognition (Google Brain, Siri)
- Semantic indexing (ex: word2vec) and automated translation
- Dream simulation (http://npcontemplation.blogspot.ca/2012/02/machine-that-

can-dream.html)

	Artificial Neural Networks
	Artificial Neural Networks
	Artificial Neural Networks
	Artificial Neural Networks
	Artificial Neural Networks
	Artificial Neural Networks
	Artificial Neural Networks
	Artificial Neural Networks
	Classification problems
	Classification problems
	Approximation problems
	Approximation problems
	Approximation problems
	Approximation problems
	Neural Networks Design
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Architecture and notations
	Functioning
	A particular case
	Learning process
	Learning process
	Learning process
	Learning process
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	Variants
	Variants
	Variants
	Variants
	Variants
	Variants
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	�Recurrent neural networks �
	� Recurrent neural networks �
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories�
	Associative memories�
	Associative memories�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Prediction in time series
	Time series
	Time series
	Time series
	Networks with delayed input layer
	Networks with delayed input layer
	Elman network
	Elman network
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Other related models
	Other related models
	Other related models
	Other related models
	Other related models
	Other related models

