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Artificial Neural Networks 
 
 

 Feedforward Neural Networks 
 

 Recurrent Neural Networks 
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Artificial Neural Networks 
Artificial Neural Networks (ANNs) are black-box adaptive systems which 
extract models from data through a training process  

Input data 
Results 

Training examples (labelled data) 

Neural network=  
Adaptive system 
consisting of many 
interconnected units 
 

Training 

 ANNs are inspired by the 
brain structure and 
functioning 

 They are very simplified 
models of the brain 

(Input vector) (Output vector) 
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Artificial Neural Networks 
inputs 

Output 

w1,w2, ...: numerical weights 
associated to the connections 
(synaptic weights) 

w1 

w2 

y1 

y2 

yn wn 

bias 
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Artificial Neural Networks 
ANN =  set of interconnected functional units 

(neurons)  
Functional unit: simplified computational 

model of the biological neuron (several 
inputs, one output, an aggregation and an 
activation function) 

Notation:   
     input signals: y1,y2,…,yn 

     synaptic weights: w1,w2,…,wn 

     activation threshold:  b (sau w0) 
     output: y 
Rmk:  All values are real 

inputs 

Output 
w1 

w2 

y1 

y2 

yn wn 

w1,w2, ...: numerical weights 
associated to the connections 
(synaptic weights) 

b 
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Artificial Neural Networks 
Components of an ANN 
 
 Architecture:   

 Topology (how are placed the functional units) and 
connectivity (how are interconnected the functional units) 

 Defined by an oriented graph 
 Functioning: 

 How the output signal is computed starting from the input 
signals 

 Training: 
 Estimate the network parameters by using the training set 
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Artificial Neural Networks 
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Architectures 
 Feedforward 

 The graph does not contain cycles (usually the units are placed on 
layers) 

 The output vector can be computed directly from the input vector 
 Recurrent: 

 The graph contains cycles 
 The output vector is obtained through an iterative process (simulation of 

a dynamical system) 

Recurrent network (fully connected) Feed-forward network 
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Artificial Neural Networks 
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Training: 
 

 Supervised 
 The training examples contain the correct answer.  
 Aim:  estimate the parameters which minimizes the error 

(difference between actual output and correct answers) 
 

 Unsupervised 
 The training set contains only input data 
 Aim:  estimate the parameters such that the model captures 

the statistical properties of the training data 
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Artificial Neural Networks 
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Applications: 
 

 Classification/ Recognition problems 
 

 Regression/ Prediction problems 
 
 Clustering problems 

 
 Association problems 
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Classification problems 
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Example 1: identifying the type of an iris flower  

• Attributes:  sepal/petal lengths, sepal/petal width 
•  Classes:  Iris setosa, Iris versicolor, Iris virginica 
 
Example 2:  handwritten character recognition 
• Attributes: various statistical and geometrical 

characteristics of the corresponding image 
• Classes: set of characters to be recognized  
⇒ Classification = find the relationship between some 

vectors with attribute values and classes labels 
            (Du Trier et al; Feature extraction methods for character 
                         Recognition. A Survey. Pattern Recognition, 1996) 
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Classification problems 
Classification:   

 
– Problem: identify the class to which a given data (described 

by a set of attributes) belongs 
 

– Prior knowledge: examples of data belonging to each class 

Simple example:  
    linearly separable case 

A more difficult example:  
    nonlinearly separable case 
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Approximation problems 
• Estimation of a hous price knowing: 

– Total surface 
– Number of rooms 
– Size of the back yard 
– Location 

  => approximation problem = find a numerical relationship 
between some output  and input value(s)  
 

• Estimating the amount of resources required by a software application 
or the number of users of a web service or a stock price knowing 
historical values 

         =>  prediction problem= 
find a relationship between future values 
 and previous values 
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Approximation problems 
Regression (fitting, prediction):   

 
– Problem:  estimate the value of a characteristic depending 

on the values of some predicting characteristics 
– Prior knowledge: pairs of corresponding values (training set) 

x 

y 

Known values 

Estimated value (for x’ which is not in the training set) 

x’ 
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Approximation problems 

All approximation (mapping) problems can be stated as follows: 
  
Starting from a set of data (Xi,Yi),  Xi in RN and Yi din RM  find a  

function F:RN -> RM which minimizes the distance between the 
data and the corresponding points on its graph:  ||Yi-F(Xi)||2 

 
Questions: 

 
• What structure (shape) should have F ? 
• How can we find the parameters defining the properties of F ?  
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Approximation problems 
Can be such a problem be solved by using neural networks ? 
 
Yes,  at least in theory, the neural networks are proven  “universal 

approximators” [Hornik, 1985]: 
 
“ Any continuous function can be approximated by a feedforward 

neural network having at least one hidden layer. The accuracy 
of the approximation depends on the number of hidden units.” 

 
• The shape of the function is influenced by the architecture of the 

network and by the properties of the activation functions. 
 

• The function parameters are in fact the weights corresponding 
to the connections between neurons.  
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Neural Networks Design 
Steps to follow in designing a neural network: 
 
• Choose the architecture:  number of layers, number of units on 

each layer, activation functions, interconnection style 
 

• Train the network:  compute the values of the weights using the 
training set and a learning algorithm.  
 

• Validate/test the network:  analyze the network behavior for data 
which do not belong to the training set.  
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Functional units (neurons) 
Functional unit: several inputs, one output 
Notations:   
•      input signals: y1,y2,…,yn 
•      synaptic weights: w1,w2,…,wn 

(they model the synaptic permeability)   
•      threshold (bias):  b (or theta) 
(it models the activation threshold of the 

neuron) 
•      Output: y 

 
• All these values are usually real 

numbers  

inputs 

output 

Weights assigned to 
the connections 

w1 

w2 

y1 

y2 

yn wn 
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Functional units (neurons) 
Output signal generation: 
• The input signals are “combined” by using the connection weights 

and the threshold  
– The obtained value corresponds to the local potential of the 

neuron 
– This “combination” is obtained by applying a so-called 

aggregation function  
• The output signal is constructed by applying an activation function 

– It corresponds to the pulse signals propagated along the axon 

Input signals 
(y1,…,yn) 

Neuron’s state 
(u) 

Output signal  
(y) 

Aggregation  
function 

Activation 
function 
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Functional units (neurons) 
Aggregation functions: 
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Functional units (neurons) 
Activation functions: 
 

},0max{)(
)(

11
11

11
)(

         
01
00

   )()(

        
01
01

 )sgn()(

uuf
uuf

u
uu

u
uf

u
u

uHuf

u
u

uuf

=
=









>
≤≤−

−<−
=





>
≤

==





>
≤−

== signum 

Heaviside 

Saturated linear 

linear 

Rectified linear – used in deep networks 



Metaheuristic Algorithms - Lecture 
12-13 

20 

Functional units (neurons) 
Sigmoidal aggregation functions 
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Functional units (neurons) 
• What can do a single neuron ? 
• It can solve simple problems (linearly 

separable problems) 
 
 

OR 
0     1 

0 
 
1 

0      1 
 
1      1           y=H(w1x1+w2x2-b) 

Ex:    w1=w2=1, w0=0.5 

x1 

x2 

w1 

w2 

y 

b 
-1 
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Functional units (neurons) 
• What can do a single neuron ? 
• It can solve simple problems (linearly 

separable problems) 
 
 

OR 
0     1 

0 
 
1 

0      1 
 
1      1        y=H(w1x1+w2x2-w0) 

Ex:    w1=w2=1, w0=0.5 

x1 

x2 

w1 

w2 

y 

w0 
-1 

AND 
0     1 

0 
 
1 

0      0 
 
0      1 

       y=H(w1x1+w2x2-w0) 
Ex:    w1=w2=1, w0=1.5 
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Functional units (neurons) 
Representation of boolean functions:  f:{0,1}2->{0,1} 

Linearly separable  
problem: one layer 
network 

Nonlinearly separable  
problem: multilayer  
network 

OR 

XOR 
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Architecture and notations 
Feedforward network with K layers 

0 1 k 

Input  
layer 

Hidden layers Output layer 

Y0=X 

… … K 
W1 W2 Wk Wk+1 WK 

X1 

Y1 

F1 

Xk 

Yk 

Fk 

XK 

YK 

FK 

X = input vector, Y= output vector,  F=vectorial activation function  
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Functioning 
Computation of the output vector 
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YWFXFY

XWFWFWFY

FORWARD Algorithm (propagation of the input signal toward the 
output layer) 

 
Y[0]:=X (X is the input signal) 
FOR k:=1,K DO 
     X[k]:=W[k]Y[k-1] 
     Y[k]:=F(X[k]) 
ENDFOR  
Rmk: Y[K] is the output of the network 
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A particular case 
One hidden layer 
 
Adaptive parameters:  W1, W2 
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Remark:    
Traditionally only 1 or 2 hidden layers are used 
Lately, architectures involving many hidden layers became more popular (Deep 

Neural Networks) – the are used mainly for image and language processing 
(http://deeplearning.net) 
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Learning process 
Learning based on minimizing a error function 
• Training set:  {(x1,d1), …, (xL,dL)} 
• Error function (mean squared error): 
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• Aim of learning process:  find W which minimizes the error function  
• Minimization method:  gradient method 
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Learning process  

Gradient based adjustement 
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Learning process  
• Partial derivatives computation 
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Learning process  
• Partial derivatives computation 
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Remark:  
The derivatives of sigmoidal activation functions have particular 

properties: 
Logistic: f’(x)=f(x)(1-f(x))=y(1-y) 
Tanh: f’(x)=1-f2(x)=1-y2 



Metaheuristic Algorithms - Lecture 
12-13 

31 

The BackPropagation Algorithm 
Main idea: 
For each example in the training 

set: 
   - compute the output signal  
   - compute the error 

corresponding to the output 
level 

   - propagate the error back into 
the network and store the 
corresponding delta values 
for each layer 

   - adjust each weight by using 
the error signal and input 
signal for each layer 

Computation of the output signal (FORWARD) 

Computation of the error signal (BACKWARD) 



Metaheuristic Algorithms - Lecture 
12-13 

32 

The BackPropagation Algorithm 
General structure 
Random initialization of weights 
 
REPEAT 
     FOR l=1,L  DO 
        FORWARD stage 
        BACKWARD stage 
        weights adjustement 
     ENDFOR 
     Error (re)computation 
UNTIL <stopping condition> 

Rmk. 
• The weights adjustment 

depends on the learning rate 
• The error computation needs 

the recomputation of the output 
signal for the new values of the 
weights 

• The stopping condition depends 
on the value of the error and on 
the number of epochs 

• This is a so-called serial 
(incremental) variant: the 
adjustment is applied separately 
for each example from the 
training set 

ep
oc

h 
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The BackPropagation Algorithm 

ENDFOR   

:  ,:       
/* Stept Adjustemen *      /

)(: ),)((:       

/* Step BACKWARD *     /

)(: ,: ),(: ,:       

/* Step FORWARD *      /
DO ,1: FOR  

REPEAT
0:

)1,1(:),1,1(:

2

1

'
1

'
2

2

1

0
1

0

0

l
k

l
iikik

l
j

l
kkjkj

N

i

l
iik

l
k

l
k

l
i

l
i

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

ikkj

ywwxww

wxfydxf

xfyywxxfyxwx

Ll

p
randwrandw

ηδηδ

δδδ

+=+=

=−=

====

=

=

−=−=

∑

∑∑

=

==

Details (serial variant) 
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The BackPropagation Algorithm 
Details (serial variant) 
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1:   
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E* denotes the expected training accuracy 
pmax denots the maximal number of epochs 
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The BackPropagation Algorithm 
Batch variant 
Random initialization of weights 
 
REPEAT 
     initialize the variables which will 

contain the adjustments 
     FOR l=1,L  DO 
        FORWARD stage 
        BACKWARD stage 
        cumulate the adjustments 
     ENDFOR 
     Apply the cumulated adjustments 
     Error (re)computation 
UNTIL <stopping condition> 

Rmk. 
• The incremental variant can be 

sensitive to the presentation 
order of the training examples 
 

• The batch variant is not 
sensitive to this order and is 
more robust to the errors in the 
training examples 
 

• It is the starting algorithm for 
more elaborated variants, e.g. 
momentum variant 

ep
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The BackPropagation Algorithm 

21

2211

2

1

'
1

'
2

2

1

0
1

0

0

21

:  ,:
ENDFOR   

:  ,:       
/* step Adjustment *      /

)(: ),)((:       

/*step BACKWARD *     /

)(: ,: ),(: ,:       

/* step  FORWARD *      /
DO ,1: FOR  

00   
REPEAT

0:

0..0,1..0,2..1  ),1,1(:),1,1(:

ikikikkjkjkj

l
k

l
iikik

l
j

l
kkjkj

N

i

l
iik

l
k

l
k

l
i

l
i

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

ikkj

ikkj

wwww

yx

wxfydxf

xfyywxxfyxwx

Ll
:,Δ:Δ

p
NjNkNirandwrandw

∆+=∆+=

+∆=∆+∆=∆

=−=

====

=

==

=

===−=−=

∑

∑∑

=

==

ηδηδ

δδδ

Details (batch variant) 



Metaheuristic Algorithms - Lecture 
12-13 

37 

The BackPropagation Algorithm 
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Variants 
Different variants of BackPropagation can be designed by changing: 

 
 Error function 

 
 Minimization method 

 
 Learning rate choice 

 
 Weights initialization 
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Variants 
Error function: 
 MSE (mean squared error function) is appropriate in the case of 

approximation problems 
 For classification problems a better error function is the cross-

entropy error: 
 Particular case: two classes (one output neuron): 

– dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to 
class 1) 

– yl is from (0,1) and can be interpreted as the probability of class 
1  
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Rmk:  the partial derivatives change, thus the adjustment terms  
will be different 
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Variants 
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Entropy based error:   
 Different values of the partial derivatives 
 In the case of logistic activation functions the error signal will be: 
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Variants 
Minimization method: 
 The gradient method is a simple but not very efficient method 

 
 More sophisticated and faster  methods can be used instead: 

 Conjugate gradient methods 
 Newton’s method and its variants 

 
 Particularities of these methods: 

 Faster convergence (e.g. the conjugate gradient converges in n 
steps for a quadratic error function) 

 Needs the computation of the hessian matrix (matrix with 
second order derivatives) : second order methods 
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Variants 
Example:  Newton’s method 
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Variants 

Advantage: 
• Does not need the computation of the hessian 
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Particular case:  Levenberg-Marquardt 
• This is the Newton method adapted for the case when the 

objective function is a sum of squares (as MSE is) 

Used in order to deal with  
singular matrices 
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Problems in BackPropagation 
 Low convergence rate (the error decreases too slow) 

 
 Oscillations (the error value oscillates instead of continuously 

decreasing) 
 

 Local minima problem (the learning process is stuck in a local 
minima of the error function) 
 

 Stagnation (the learning process stagnates even if it is not a 
local minima) 
 

 Overtraining and limited generalization 
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Problems in BackPropagation 
Problem 1: The error decreases too slow or the error value 

oscillates instead of continuously decreasing 
 

Causes:   
• Inappropriate value of the learning rate (too small values lead to 

slow convergence while too large values lead to oscillations) 
– Solution:  adaptive learning rate 

 
• Slow minimization method (the gradient method needs small 

learning rates in order to converge) 
     Solutions:   
       -  heuristic modification of the standard BP (e.g. momentum) 
       -  other minimization methods (Newton, conjugate gradient) 
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Problems in BackPropagation 
Adaptive learning rate: 
 
• If the error is increasing then the learning rate should be decreased 
• If the error significantly decreases then the learning rate can be 

increased 
• In all other situations the learning rate is kept unchanged 

)1()()1()1()()1()1(
21 ),1()()1()1()(
10 ),1()()1()1()(

−=⇒−+≤≤−−
<<−=⇒−−<
<<−=⇒−+>

pppEpEpE
bpbppEpE
apappEpE

ηηγγ
ηηγ
ηηγ

Example:  γ=0.05 
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Problems in BackPropagation 
Momentum variant: 
 Increase the convergence speed by introducing some kind of 

“inertia” in the weights adjustment: the weight changes 
corresponding to the current epoch includes the adjustments from 
the previous epoch 
 

)()1()1( pwypw ijjiij ∆+−=+∆ αδαη

Momentum coefficient: α in [0.1,0.9] 
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Problems in BackPropagation 
Momentum variant: 
 The effect of these enhancements is that flat spots of the error 

surface are traversed relatively rapidly with a few big steps, while 
the step size is decreased as the surface gets rougher. This 
implicit adaptation of the step size increases the learning speed 
significantly.  

Simple gradient 
descent 

Use of inertia term 
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Problems in BackPropagation 
Problem 2: Local minima problem (the learning process is stuck in a 

local minima of the error function) 
 
Cause: the gradient based methods  are local optimization methods 
 
Solutions: 
• Restart the training process using other randomly initialized 

weights 
• Introduce random perturbations into the values of weights: 

 variablesrandom :       , =+= ijijijij ww ξξ

• Use a global optimization method 
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Problems in BackPropagation 
Solution: 
• Replacing the gradient method with a stochastic optimization 

method 
• This means using a random perturbation instead of an adjustment 

based on the gradient computation 
• Adjustment step: 

)W:(W adjustment accept the THEN )()( IF

 valuesrandom

∆+=<∆+

=∆

WEWE
ij

Rmk: 
• The adjustments are usually based on normally distributed 

random variables 
• If the adjustment does not lead to a decrease of the error then it is 

not accepted 
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Problems in BackPropagation 
Problem 3: Stagnation (the learning process 

stagnates even if it is not a local minima) 
 
Cause: the adjustments are too small because the 

arguments of the sigmoidal functions are too large 
 
Solutions: 

– Penalize the large values of the weights 
(weights-decay) 

 
– Use only the signs of derivatives not their 

values  
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Very small derivates 
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Problems in BackPropagation 

Penalization of large values of the weights: add a regularization 
term to the error function 

∑+=
ji

ijr wWEWE
,

2
)( )()( λ

The adjustment will be: 

ijij
r
ij wλ2)( −∆=∆
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Problems in BackPropagation 
Resilient BackPropagation (use only the sign of the derivative not 

its value) 
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Problems in BackPropagation 
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Problem 4: Overtraining and limited generalization ability 
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Problems in BackPropagation 
Problem 4: Overtraining and limited generalization ability 
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Problems in BackPropagation 
Problem 4: Overtraining and limited generalization ability 
 
Causes: 
• Network architecture (e.g. number of hidden units) 

– A large number of hidden units can lead to overtraining (the 
network extracts not only the useful knowledge but also the 
noise in data) 

• The size of the training set 
– Too few examples are not enough to train the network 

• The number of epochs (accuracy on the training set) 
– Too many epochs could lead to overtraining 

 
Solutions: 
• Dynamic adaptation of the architecture 
• Stopping criterion based on  validation error; cross-validation 
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Problems in BackPropagation 
Dynamic adaptation of the architectures: 
 
• Incremental strategy: 

 
– Start with a small number of hidden neurons 
– If the learning does not progress new neurons are introduced 

 
 
• Decremental  strategy: 

– Start with a large number of hidden neurons 
– If there are neurons with small weights (small contribution to the 

output signal) they can be eliminated 
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Problems in BackPropagation 
Stopping criterion based on  validation error : 
 
• Divide the learning set in m parts: (m-1) are for training and 

another one for validation 
• Repeat the weights adjustment as long as the error on the 

validation subset is decreasing (the learning is stopped when 
the error on the validation subset start increasing) 

Cross-validation: 
• Applies for m times the learning algorithm by successively 

changing the learning and validation sets 
 
1: S=(S1,S2, ....,Sm) 
2: S=(S1,S2, ....,Sm)  
....    
m: S=(S1,S2, ....,Sm)  
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Problems in BackPropagation 
 
Stop the learning process when the error on the validation set start 

to increase (even if the error on the training set is still 
decreasing) : 

 

Error on the training set 

Error on the validation set 
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Recurrent neural networks  

 
• Architectures 

– Fully recurrent networks 
– Partially recurrent networks 

 

• Dynamics of recurrent networks 
– Continuous time dynamics 
– Discrete time dynamics 

 

• Applications 
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 Recurrent neural networks  

 
• Architecture 

– Contains feedback connections  
– Depending on the density of feedback connections there are: 

• Fully recurrent networks (Hopfield model) 
• Partially recurrent networks: 

– With contextual units (Elman model, Jordan model) 
– Cellular networks (Chua-Yang model) 

• Applications 
– Associative memories 
– Combinatorial optimization problems  
– Prediction 
– Image processing 
– Dynamical systems and chaotical phenomena modelling 
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Hopfield networks 
Architecture:   
      N fully connected units 
 
Activation function:   
 Signum/Heaviside 
 Logistica/Tanh 
Parameters: 
    weight matrix 

Notations:  xi(t) – potential (state) of the neuron  i at moment  t 
               yi(t)=f(xi(t)) – the output signal generated by unit i at moment t  
               Ii(t) – the input signal 
               wij – weight of connection between j and i 
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Hopfield networks 
Functioning:  -  the output signal is generated by the evolution of a  

  dynamical system 
                      -  Hopfield networks are equivalent to dynamical systems 
 
Network state: 
            -  the vector of neuron’s state X(t)=(x1(t), …, xN(t)) 
or  
            -  output signals vector  Y(t)=(y1(t),…,yN(t)) 
 
Dynamics: 
• Discrete time – recurrence relations (difference equations) 
• Continuous time – differential equations 
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Hopfield networks 
Discrete time functioning:  
     the network state corresponding to moment t+1 depends on the 

network state corresponding to moment t 
 
Network’s state:   Y(t) 
 
Variants: 
• Asynchronous:  only one neuron can change its state at a given time 
• Synchronous:  all neurons can simultaneously change their states  
 
Network’s answer:  the stationary state of the network 
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Hopfield networks 
Asynchronous 

variant:  
      

*   ),()1(
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Choice of  i*: 
                           - systematic scan of  {1,2,…,N} 
                           - random (but such that during N steps each neuron     

changes its state just once) 
Network simulation: 
     - choose an initial state (depending on the problem to be solved) 
     - compute the next state until the network reach a stationary state  
       (the distance between two successive states is less than ε)      
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Hopfield networks 
Synchronous variant: 
      

Either continuous or discrete activation functions can be used 
Functioning: 
 
Initial state 
      REPEAT 
           compute the new state starting from the current one 
      UNTIL < the difference between the current state and the previous 

one is small enough > 

NitItywfty
N
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Hopfield networks 
Continuous time functioning: 
      

NitItxfwtx
dt

tdx
ij

N
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Network simulation: solve (numerically) the system of differential 
equations for  a given initial state xi(0) 

Example: Explicit Euler method 
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Stability properties 
Possible behaviours of a network: 
• X(t)  converged to a stationary state X* (fixed point of the network 

dynamics) 
• X(t) oscillates between two or more states 
• X(t) has a chaotic behavior or  ||X(t)|| becomes too large 

 
Useful behaviors: 
• The network converges to a stationary state  

– Many stationary states: associative memory 
– Unique stationary state: combinatorial optimization problems 

 
• The network has a periodic behavior 

– Modelling of cycles 
 
Obs.  Most useful situation: the network converges to a stable stationary 

state 
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Stability properties 

Illustration:      

Formalization:   
 
 
 
X* is asymptotic stable (wrt the initial conditions) if it is 
                    stable 
                    attractive    

0*)(

)0(   )),(()(
0

=

==

XF

XXtXF
dt

tdX

Asymptotic stable      Stable               Unstable 
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Stability properties 
 
Stability:   
     X* is stable if for all  ε>0 there exists δ(ε ) > 0   such that:   
                 ||X0-X*||< δ(ε )   implies  ||X(t;X0)-X*||< ε 
 
Attractive: 
    X* is attractive if there exists δ > 0  such that:   
                ||X0-X*||< δ   implies X(t;X0)->X* 
 
In order to study the asymptotic stability one can use the Lyapunov 

method.  
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Stability properties 
Lyapunov 

function: 
 
 

0 toricepentru   ,0))((
inferior marginita  ,:

><

→

dt
tXdV

RRV N

• If one can find a Lyapunov function for a system then its 
stationary solutions are asymptotically stable  

• The Lyapunov function is similar to the energy function in 
physics (the physical systems naturally converges to the lowest 
energy state) 

• The states for which the Lyapunov function is minimum are 
stable states 

• Hopfield networks satisfying some properties have Lyapunov 
functions.  

bounded 
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Stability properties 
Stability result for continuous neural networks 
 
If: 
       - the weight matrix is symmetrical (wij=wji) 
       - the activation function is strictly increasing (f’(u)>0) 
       - the input signal is constant (I(t)=I) 
 
Then all stationary states of the network are asymptotically stable 
 
Associated Lyapunov function: 
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Stability properties 
Stability result for discrete neural networks (asynchronous case) 
If: 
       - the weight matrix is symmetrical (wij=wji) 
       - the activation function is signum or Heaviside 
       - the input signal is constant (I(t)=I) 
Then all stationary states of the network are asymptotically stable 
 
Corresponding Lyapunov function 
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Stability properties 
This result means that: 
 
• All stationary states are stable 

 
• Each stationary state has attached an attraction region (if the 

initial state of the network is in the attraction region of a given 
stationary state then the network will converge to that stationary 
state) 
 

Remarks: 
• This property is useful for associative memories  

 
• For synchronous discrete dynamics this result is no more true, 

but the network converges toward either fixed points or cycles of 
period two 
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Associative memories 
Memory = system to store and recall the information 
 
Address-based memory: 

– Localized storage: all components bytes of a value are stored 
together at a given address 

– The information can be recalled based on the address 
 

Associative memory: 
– The information is distributed and the concept of address 

does not have sense 
– The recall is based on the content (one starts from a clue 

which corresponds to a partial or noisy pattern) 
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Associative memories 
Properties: 
• Robustness 

 
Implementation: 
• Hardware: 

– Electrical circuits 
– Optical systems 

 
• Software:   

– Hopfield networks simulators 
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Associative memories 
Software simulations of associative memories: 
• The information is binary: vectors having elements from  {-1,1} 
• Each component of the pattern vector corresponds to a unit in the 

networks 

Example (a) 
(-1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-

1,1,1,-1,-1, -1,-1,1,1,-1,-1) 
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Associative memories 
 
Associative memories design: 
• Fully connected network with N signum units (N is the patterns 

size) 
 

Patterns storage: 
• Set the weights values (elements of matrix W) such that the 

patterns to be stored become fixed points (stationary states) of 
the network dynamics 

 
Information recall: 
• Initialize the state of the network with a clue (partial or noisy 

pattern) and let the network to evolve toward the corresponding 
stationary state.  
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Associative memories 
Patterns to be stored:  {X1,…,XL}, Xl  in {-1,1}N 

 
Methods: 
• Hebb rule 
• Pseudo-inverse rule  (Diederich – Opper algorithm) 
 
Hebb rule: 
• It is based on the Hebb’s principle: “the synaptic permeability of 

two neurons which are simultaneously activated is increased” 
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Associative memories 

Properties of the Hebb’s rule: 
 
• If the vectors to be stored are orthogonal (statistically uncorrelated) 

then all of them become fixed points of the network dynamics 
 

• Once the vector X is stored the vector –X is also stored 
 

• An improved variant: the pseudo-inverse method 
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Complementary vectors 
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Associative memories 
Pseudo-inverse method: 
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• If Q is invertible then all elements of {X1,…,XL}  are fixed points of 
the network dynamics 
 

• In order to avoid the costly operation of inversion  one can use an 
iterative algorithm for weights adjustment 



Metaheuristic Algorithms - Lecture 
12-13 

82 

Associative memories 
 

Diederich-Opper algorithm : 

Initialize W(0) using the Hebb rule 
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Associative memories 
 

Recall process: 
 
• Initialize the network state 

with a starting clue 
 

• Simulate the network until 
the stationary state is 
reached.  

Stored patterns 

Noisy patterns (starting clues) 
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Associative memories 
 

Storage capacity:  
– The number of patterns which can be stored and recalled 

(exactly or approximately)  
– Exact recall:  capacity=N/(4lnN) 
– Approximate recall (prob(error)=0.005): capacity = 0.15*N 

 
Spurious attractors: 

– These are stationary states of the networks which were not 
explicitly stored but they are the result of the storage 
method.  
 

Avoiding the spurious states 
– Modifying the storage method  
– Introducing random perturbations in the network’s 

dynamics 
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Solving optimization problems 
 

• First approach:  Hopfield & Tank (1985)  
 
– They propose the use of a Hopfield model to solve the 

traveling salesman problem.  
 

– The basic idea is to design a network whose energy 
function is similar to the cost function of the problem (e.g. 
the tour length) and to let the network to naturally evolve 
toward the state of minimal energy; this state would 
represent the problem’s solution.  
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Solving optimization problems 
 

A constrained optimization problem: 
     find (y1,…,yN) satisfying: 
             it minimizes a cost function C:RN->R 
             it satisfies some constraints as Rk (y1,…,yN) =0  with  
                        Rk  nonnegative functions 
 
Main steps: 
• Transform the constrained optimization problem in an 

unconstrained optimization one (penalty method) 
• Rewrite the cost function as a  Lyapunov function 
• Identify the values of the parameteres (W and I) starting from 

the Lyapunov function  
• Simulate the network 
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Solving optimization problems 
 

Step 1: Transform the constrained optimization problem in an 
unconstrained optimization one 
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The values of a and b are chosen such that they reflect the relative 
importance of the cost function and constraints 
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Solving optimization problems 
 

Step 2: Reorganizing the cost function as a Lyapunov function  
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Remark: This approach works only for cost functions and constraints 
which are linear or quadratic 
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Solving optimization problems 
 

Step 3: Identifying the network parameters: 
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Solving optimization problems 
 Designing a neural network for TSP (n towns): 

 
N=n*n neurons 
The state of the neuron (i,j) is interpreted as follows: 

   1    - the town i is visited at time j 
                          0    - otherwise 

A 

C 

D E 

B         1    2     3    4   5 
A      1    0     0    0   0 
B      0    0     0    0   1 
C      0    0     0    1   0 
D      0    0     1    0   0 
E      0    1     0    0   0 

AEDCB 
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Solving optimization problems 
 

 
Constraints: 
  - at a given time only one town is visited 

(each column contains exactly one 
value equal to 1) 

  -  each town is visited only once (each 
row contains exactly one value equal to 
1) 

 
Cost function:   
     the tour length = sum of distances 

between towns visited at consecutive 
time moments 

 

        1    2     3    4   5 
A      1    0     0    0   0 
B      0    0     0    0   1 
C      0    0     0    1   0 
D      0    0     1    0   0 
E      0    1     0    0   0 
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Solving optimization problems 
 

Constraints and cost function: 
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Solving optimization problems 
 

Identified parameters: 
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Prediction in time series  

• Time series = sequence of values measured at successive    
    moments of time 
 

• Examples: 
– Currency exchange rate evolution  
– Stock price evolution 
– Biological signals (EKG) 
 

• Aim of time series analysis: predict the future value(s) in the 
series 
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Time series 
The prediction (forecasting) is based on a model which describes the 

dependency between previous values and the next value in the 
series.  

Order of the model 

Parameters corresponding  
to external factors 
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Time series 
The model associated to a time series can be: 

- Linear 
- Nonlinear  

- Deterministic 
- Stochastic  

Example: autoregressive model (AR(p))  

noise = random variable from 
N(0,1) 
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Time series 
 
Neural networks. Variants: 
 
• The order of the model is known 

– Feedforward neural network with delayed input layer   
    (p input units) 

 
• The order of the model is unknown  

– Network with contextual units (Elman network) 
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Networks with delayed input layer 

Architecture:                            

Functioning:                            
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Networks with delayed input layer 
Training:   
 
• Training set:  {((xl,xl-1,…,xl-p+1),xl+1)}l=1..L 

 

• Training algorithm:  BackPropagation  
 

• Drawback:  needs the knowledge of p 
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Elman network 
Architecture: 
      

Functioning:      

Contextual  
units 

Rmk: the contextual 
units contain 
copies of the 
outputs of the 
hidden layers 
corresponding to 
the previous 
moment    
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Elman network 
Training 
 
Training set :  {(x(1),x(2)),(x(2),x(3)),…(x(t-1),x(t))} 
 
Sets of weights: 
 
- Adaptive:  Wx, Wc si W2 

- Fixed: the weights of the connections between the hidden and the 
contextual layers.  

 
Training algorithm: BackPropagation 
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Cellular networks 
Architecture:  
• All units have a double role: input and 

output units 
 

• The units are placed in the nodes of a 
two dimensional grid  
 

• Each unit is connected only with units 
from its neighborhood (the 
neighborhoods are defined as in the 
case of Kohonen’s networks) 
 

• Each unit is identified through its 
position p=(i,j)  in the grid 

virtual cells  
(used to define  
the context for  
border cells) 
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Cellular networks 
Activation function: ramp  

-2 -1 1 2

-1

-0.5

0.5

1

Notations: 
Xp(t) – state of unit p at time t 
Yp(t) - output signal 
Up(t) – control signal 
Ip(t) – input from the environment 
apq – weight of connection between unit q and unit p 
bpq -  influence of control signal Uq on unit p 



Metaheuristic Algorithms - Lecture 
12-13 

104 

Cellular networks 
Functioning: 

Remarks: 
• The grid has a boundary of fictitious units (which usually 

generate signals equal to 0) 
• Particular case:  the weights of the connections between 

neighboring units do not depend on the positions of units  
Example: if p=(i,j), q=(i-1,j), p’=(i’,j’), q’=(i’-1,j’) then  

 
apq= ap’q’=a-1,0 

Signal generated by 
other units 

Control 
signal 

Input signal 
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Cellular networks 
These networks are called cloning template cellular networks 
Example: 
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Cellular networks 
Illustration of the cloning template elements 
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Cellular networks 
Software simulation = equivalent to numerical solving of a differential 

system (initial value problem) 
 
Explicit Euler method 

Applications: 
• Gray level image processing 
• Each pixel corresponds to a unit of the network 
• The gray level is encoded by using real values from  [-1,1] 
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Cellular networks 
Image processing: 
 
• Depending on the choice of templates, of control signal (u), initial 

condition (x(0)), boundary conditions (z) different image 
processing tasks can be solved: 
 

 
– Edge detection in binary images 

 
– Gap filling in binary images 

 
– Noise elimination in binary images 
 
– Identification of horizontal/vertical line segments 
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Cellular networks 
Example 1:  edge detection 
z=-1,  U=input image, h=0.1 
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http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/CNNsim_adv.html 
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Cellular networks 
Example 2:  gap filling 
z=-1,   
U=input image,  
h=0.1 
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Cellular networks 
Example 3: noise removing 
z=-1,  U=input image, h=0.1 
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Cellular networks 
Example 4: horizontal line detection 
z=-1,  U=input image, h=0.1 
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Other related models 
Reservoir computing (www.reservoir-computing.org) 
 
Particularities:  
• These models use a set of hidden units (called reservoir) which are 

arbitrarly connected (their connection weights are randomly set; each of 
these units realize a nonlinear transformation of the signals received 
from the input units.  
 

• The output values are obtained by a linear combination of the signals 
produced by the input units and by the reservoir units.  
 

• Only the weights of connections toward the output units are trained  
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Other related models 
Reservoir computing (www.reservoir-computing.org) 
 
Variants:  
 
• Temporal Recurrent Neural Network (Dominey 1995) 
• Liquid State Machines (Natschläger, Maass and Markram 2002) 
• Echo State Networks (Jaeger 2001) 
• Decorrelation-Backpropagation Learning (Steil 2004) 
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Other related models 
Echo State Networks: 
U(t) = input vector 
X(t) = reservoir state vector 
Z(t)=[U(t);X(t)]  = concatenated input and state 

vectors 
Y(t) = output vector 
 
X(t)=(1-a)X(t-1)+a tanh(Win U(t)+W X(t-1)) 
Y(t)=Wout Z(t) 
 
Win ,W – random matrices (W is scaled such 

that the spectral radius has a predefined 
value);  

Wout  - set by training 

M. Lukosevicius – Practical Guide to  
Applying Echo State Networks 
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Other related models 
Applications of reservoir computing: 
 
- Speech recognition 
- Handwritten text recognition 
- Robot control 
- Financial data prediction 
- Real time prediction of epilepsy seizures 
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Other related models 
Deep learning (http://deeplearning.net/) 
Particularities:  
• Deep architecture = many layers (aim: hierarchical extraction of data features);  

 
• Unsupervised training based on Restricted Boltzmann Machines) followed by a 

fine tuning of weights using a supervised training (e.g. Backpropagation) 
 

Remarks:  
• Boltzmann Machines = recurrent neural networks with binary stochastic units 
• Restricted BM = recurrent neural networks with bidirectional connections only 

between the units belonging to different subsets of units (e.g. subsets:  visible 
units, hidden units) 

• There are feed-forward deep neural networks (e.g: Convolutional Neural 
Networks) 
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Other related models 
Deep learning (http://deeplearning.net/) 
 
 
Applications: 
- Image classification, objects detection (e.g. Face recognition – Deep Face) 
- Speech recognition (Google Brain, Siri) 
- Semantic indexing (ex: word2vec) and automated translation 
- Dream simulation (http://npcontemplation.blogspot.ca/2012/02/machine-that-

can-dream.html) 
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