
Metaheuristic algorithms.  

 

Lab 7:  

Multimodal optimization 

Evolutionary training of neural networks 

______________________________________________________________________________ 

1. Multimodal optimization 

 

Depending on their goal, the optimization problems can belong to one of the following 

categories: 

 Global optimization:  the aim is to find a configuration which minimizes or maximizes 

the value of the objective function (among all possible configurations in the search 

space).  

 Local optimization: the aim is to find the best configuration in the neighborhood of a 

given (initial) element. A local optimum is better than the elements in its neighborhood 

but it could be worse than the global optimum.   

 Multimodal optimization:  the aim is to find all optima (both local and global); it is useful 

when there are  several global optima and/or the local optima correspond to interesting 

configurations. The interest in identifying all optima might appear in engineering design  

(e.g. find all resonance points of a mechanical or electrical system). 

 

The identification of all optima can be done in at least two ways: 

 By iterating a local optimization algorithm (starting from different initial configurations)  

 By using a single run of a population-based algorithm which enforce the population to 

discover several niches in the search space, each niche being related to an optimum. 

 

The global optimization metaheuristics favor the populations which converges in a neighborhood 

of the optimum, such that at the end of the iterative process the population is characterized by a 

small diversity. In the case of multimodal optimization the strategy should be different, as the 

population should re-organize itself in species associated to the regions of all optima. Such a 

speciation should be achieved through explicit division of population in sub-populations (which is 

not effective if the number of optima is unknown) or through implicit speciation (the elements 

group themselves in species as an effect of some specific mechanisms). The most popular 

speciation mechanisms are: 

 

 Sharing:  the fitness of each element is penalized (by using a sharing function) if it 

belongs to a crowded region. 

 Crowding: the main idea is that during the selection process an element competes only 

with elemente which are in its neighborhood (e.g. with the closest element) 

Example:  Crowding DE (proposed by R. Thomsen „Multimodal optimization using crowding-

based differential evolution”, CEC 2004) is different from a standard DE (see lab 5) only with 
respect to the selection step. In the standard DE, each trial element (zi)is compared only 
with the  corresponding current element (xi). In crowding DE the trial element replaces the 
element from the current population which is the closest and it replaces it if it is better. 

 Fig 1 illustrates the effect of this change in the DE selection. 

 



 
Fig. 1.  Distribution of a population with 30 elements after 500 generation. Standard DE (left) and 

crowding DE (right) 

 

Application 1.  Modify the implementation of the DE algorithm (lab 5) in order to incorporate 

the crowding-based selection and test for one-dimensional and 2-dimensional multimodal test 

functions.  Hint:  see DEcrowding.sci 

 

 

2. Evolutionary training of neural  networks 

 

Evolutionary algorithms (but also other population-based metaheuristics) can be used for neural 

networks design at least in two cases:  

 

 Estimation of the synaptic weights in the case of networks with non-differentiable 

activation/transfer functions  or in the case of recurrent networks (when traditional 

algorithms like Backpropagation cannot be applied) 

 Establishing the architecture of the network (both in the case of explicit and in the case of 

implicit encoding – see Lecture 13-14) . 

 

Application 2. Let us consider the problem of training a neural network in order to represent the 

XOR function. 

 

We can use the following architecture: 

 2 input units + 1 dummy unit (used to provide the biases for the hidden units) 

 K hidden units (K is an input parameter) with a Heaviside activation function + 1 dummy 

unit (used to provide the bias for the output unit) 

 An output unit with a Heaviside activation function 

 

Each element of the population will have 4*K+1 components corresponding to all weights and 

biases. The function to be minimized is the MSE (Mean Squared Error) computed for the training 

set containing all four examples: ((0,0),0), ((0,1),1),((1,0),1), ((1,1),0). Analyze the influence of 

the population sizes, mutation parameter, number of parents used for recombination, selection 

type (truncation or tournament) and value of K. 

 

Hint. see SE_nn.sci. The function used by the evolution strategy to evaluate a network is 

SE_XOR.   

 



Exercise:  Use DE (differential evolution) or PSO (particle swarm optimization) instead of the 

evolution strategy to estimate the parameters of the neural network.  

 

Homework.   Implement an evolutionary approach which estimate simultaneously both the 

number of hidden units and the weights      


