
Metaheuristic algorithms 

 

Lab 5: Ant Colony Optimization. Particle Swarm Optimization. Differential Evolution 

            

______________________________________________________________________________ 

 

1. Ant Colony Optimization (ACO) 

 

ACO is a metaheuristic inspired by the behavior of the ant colonies. It is especially used in 

solving combinatorial optimization problems (e.g. routing, scheduling, assignment)  It uses a 

population of artificial ants (agents) which is changed during an iterative process. At each 

iteration each ant constructs, component by component, a potential solution. The values for the 

solution components are chosen randomly based on a probability distribution. The probability 

distribution is computed by using both local information (what the ant can collect from its 

neighbourhood) and global information (obtained by using the indirect communication process 

between ants based on pheromone trails). 

 

Solving TSP using ACO.  The input data consists of the graph describing the direct connections 

between towns and their costs.  A population of ants is initially placed on random nodes (or all of 

them in the first node). At each iteration, each ant visits n distinct nodes, constructing a tour. The 

ants have a local memory where the list of visited nodes is stored in order to avoid visiting twice 

the same node. The transition of an ant k from the node i to the node j at step t is based on the 

following probability: 
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The factors appearing in the computation of the probability are:  

 τij  models the pheromone concentration released by the ants on edge (i,j); the pheromone 

concentration is randomly initialized with small positive values. Each ant which visits an 

edge (i,j) can release some pheromone on it contributing to the update of the pheromone 

concentration: 
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              ρ is a constant less than 1 which controls the evaporation process, Qij(k) is 0 if   (i,j) does 

             not belong to the tour constructed by ant  k.   Cost(Tk)  denotes the cost of the tour  

             constructed by the ant k. 

 ηij models the local information concerning the quality of the edge; the simplest variant is 

when it is 1/cost(i,j).  

 α and β are parameters which control the relative importance of those two types of 

information: the global information provided by the pheromone concentration and the 

local one provided by the cost of the edge.  

 N(k) denotes the neighborhood of node i and contains the nodes which can be reached 

from node i and have not been visited yet. 

 

Application 1. Implement an ACO algorithm for TSP.  



Hint. See function ACO_TSP.sci 

 

Exercise.  Change the previous implementation such that when the pheromone matrix elements 

are updated, the tours visited by all ants are taken into account. 

Hint.  The updating terms are cumulated after each tour construction. 

  

 

2. Particle Swarm Optimization (PSO) 

 

PSO is a metaheuristic used for continuous function optimization inspired by the behavior of bird 

swarms. It uses a population of m “particles”, each particle i being characterized by its position  

(xi) and its velocity (vi). Moreover, each particle memorizes the best position it visited up to the 

current moment (xbesti). There is also another variable which contains the best position found up 

to the current iteration by the entire swarm (xbest).  The evolutionary process consists in the 

change, at each generation t, of the position of all particles in the population according to the 

following rules:  

 

)1()()1(

)))()(1,0())()(1,0()(()1( 21





tvtxtx

txxbestrandrtxxbestrandrtvtv

iii

iiiii 
 

 

where:   

 gamma is a constriction factor (a typical value for gamma is 0.7) 

 r1 and r2 are two constant values (e.g. r1=r2=2.05) 

 

Besides this variant, where xbest is the global best element from the swarm, there is also another 

variant where for each particle i, xbest(i) is selected as the best element from the neighborhood of 

the particle i.  The neighborhood of a particle can be defined by various topologies, one of the 

most used is the ring topology (in this case the neighborhood of size K of particle i is represented 

by the particles having the indices {i-K,i-K+1,...,i-1,i,i+1,...,i+K-1,i+K}).   

 

Application 2. Implement a PSO algorithm (using the above eqs.) and test its behavior for a 

unimodal function (e.g. sphere) and for a multimodal function (e.g. Griewank).  

 

Hint. See function PSO.m 

 

Exercise.  Change PSO.m such that it implements the “local best” variant using a ring topology to 

define the neighbourhood. 

 

 

3. Differential Evolution (DE).  

 

DE is a popular optimization technique based on a simple rule of constructing new candidates by 

using differences between elements of the current population. The basic idea is to construct for 

each population element x(i) a new trial element following the steps: 

 Construct a “mutant” vector, y, by combining several elements of the population. Two of 

the most used approaches are: 

o DE/rand/1/bin:  y=x(r1)+F*(x(r2)-x(r3))  where  r1,r2,r3 are distinct random 

indices 

o DE/best/1/bin:  y=x(ibest)+F*(x(r2)-x(r3)) where x(ibest) is the best element of 

the population  



Rmk: in both cases, F is a scale factor taking values in (0,2). 

 Construct a trial element, z, by crossing over the components of the mutant y with  those 

of the current element, x(i),  by following the rule (known as binomial crossover): 

o z(j)=y(j)  with probability CR 

o z(j)=x(i,j) with probability 1-CR 

Rmk: CR (with values in (0,1)) is a crossover probability 

  

 

Application 3. Implement the DE algorithm (both variants) and analyze its performance in 

comparison with that of an evolution strategy  (see lab 3). 

 

 


