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Nomenclature

We adopt the usual vector notation, where bold lettersare column vectors, capital bold
letters, A, are matrices, and a transpose is denotea hyA list of used abbreviations and
symbols is given in alphabetical order.

Abbreviations

CMA Covariance Matrix Adaptation
EMNA Estimation of Multivariate Normal Algorithm
ES Evolution Strategy

(1/ pgr,wy> A)-ES, Evolution Strategy withu parents, with recombination of gl parents,
either Intermediate or Weighted, andffspring.

RHS Right Hand Side.

Greek symbols

A > 2, population size, sample size, number of offspring, &¢e (

1 < A parent number, number of (positively) selected searchtpairthe population, num-
ber of strictly positive recombination weights, sé& (

—1 . . .
Leff = ( e w?) , the variance effective selection mass for the mean,&ee (

dw; = Z?:l w;, sum of all weights, note that; < 0 fori > u, see also30) and 63).

S |wi| T =3 w; =1, sum of all positive weights.

> |wi|’_ = —w; = X |wit) = _Z;\:M+l w; > 0, minus the sum of all negative
weights.

o9 € R, step-size.

Latin symbols
B € R"™, an orthogonal matrix. Columns @ are eigenvectors af with unit length and
correspond to the diagonal elementd»f
C9) ¢ R™*™, covariance matrix at generatign
¢;i, diagonal elements af'.

c. < 1, learning rate for cumulation for the rank-one update ofdbeariance matrix, see
(24) and @5), and Tablel.

c1 < 1—¢,, learning rate for the rank-one update of the covarianceixapdate, seeg),
(30), and @7), and Tablel.

cu < 1 —c¢1, learning rate for the rank-update of the covariance matrix update, sE@),(
(30), and @7), and Tablel.

¢, < 1, learning rate for the cumulation for the step-size contsek 81) and @3), and
Tablel.



D € R", a diagonal matrix. The diagonal elementddfare square roots of eigenvalues of
C and correspond to the respective columng3of

d; > 0, diagonal elements of diagonal matii, d? are eigenvalues af'.

d, ~ 1, damping parameter for step-size update, 82k (37), and @4).

E Expectation value

f:R* = R,z — f(x), objective function (fitness function) to be minimized.
fphere 1 R" = R,z o 2| = 2T = 350, of.

g € Ny, generation counter, iteration number.

I € R™*", Identity matrix, unity matrix.

m(9) ¢ R", mean value of the search distribution at generagion

n € N, search space dimension, sée

N (0,T), multivariate normal distribution with zero mean and uriariance matrix. A
vector distributed according t&/(0,I) has independent0, 1)-normally distributed
components.

N(m,C) ~ m + N(0,C), multivariate normal distribution with meam € R™ and
covariance matribC € R™*". The matrixC' is symmetric and positive definite.

R, strictly positive real numbers.

p € R™, evolution path, a sequence of successive (normalizepd stee strategy takes over
a number of generations.

w;, wherei = 1, ..., A\, recombination weights, se6)(@and (6) and 49)—(53).

:n,(f“) € R, k-th offspring/individual from generation + 1. We also refer tac(9*1), as
search point, or object parameters/variables, commordg sgnonyms are candidate
solution, or design variables.

2%, i-th best individual out ofe!**" ... 2" see B). The indexi : A denotes the
index of thei-th ranked individual and'(z'%") < (@) < ... < f@{1Y),

wheref is the objective function to be minimized.

Y9 = (29— m @) /59 corresponding tac;, = m + oy

0 Preliminaries

This tutorial introduces the CMA Evolution Strategy (ESheve CMA stands for Covariance
Matrix Adaptation! The CMA-ES is a stochastic, candomizegdmethod for real-parameter
(continuous domain) optimization of non-linear, non-cexfunctions (see also Secti®n3

Iparts of this material have also been presented ihdnd [L3], in the context ofEstimation of Distribution
AlgorithmsandAdaptive Encodingrespectively. An introduction deriving CMA-ES from théanmation-geometric
concept of a natural gradient can be foundlif][



below)? We try to motivate and derive the algorithm from intuitivencepts and from re-
quirements of non-linear, non-convex search in continutmmsain. For a concise algorithm
description see AppendiX. A respective Matlab source code is given in Apperdix

Before we start to introduce the algorithm in Sdgta few required fundamentals are
summed up.

0.1 Eigendecomposition of a Positive Definite Matrix

A symmetric, positive definite matrix;’ € R"*", is characterized in that for al € R™\{0}
holdsz"Cz > 0. The matrixC has an orthonormal basis of eigenvectd@s= [by, ..., b,],
with corresponding eigenvalues,, . . ., d? > 0.
That means for each; holds
Cb; = dib; . 1)
The important message fron)(is thateigenvectors are not rotateay C. This feature
uniquely distinguishes eigenvectors. Because we asswngttipgonal eigenvectors to be

of unit length,b/b; = §;; = { Loifi= ,and BT B = I (obviously this means

0 otherwise

B~! = BT, and it follows BBT = I). An basis of eigenvectors is practical, because
for anyv € R™ we can find coefficients;, such thatw = 3. a;b;, and then we have
C’U = ZZ dfoelbl

The eigendecomposition @F obeys
C = BD’B" | (2)
where

B is an orthogonal matrixB™ B = BB = 1. Columns ofB form an orthonormal basis
of eigenvectors.

D? = DD = diag(ds,...,d,)* = diag(d?, ..., d?) is a diagonal matrix with eigenvalues
of C as diagonal elements.

D = diag(ds, ..., d,) is adiagonal matrix with square roots of eigenvalue§'as diagonal
elements.

The matrix decompositior?] is unique, apart from signs of columns Bf and permutations
of columns inB and D? respectively, given all eigenvalues are differént.
Given the eigendecompositio)( the inverseC'~! can be computed via

c' = (BD*B")"
- B" 'D 2B
= BD2BT
1

1
— Bdiag<?,...,d—2)BT .
1 n

2While CMA variants formulti-objectiveoptimization ancelitistic variants have been proposed, this tutorial is
solely dedicated to single objective optimization and eétistic truncation selection, also referred to as comma-
selection.

3Givenm eigenvalues are equal, any orthonormal basis of thettimensional subspace can be used as column
vectors. Forn > 1 there are infinitely many such bases.




J\/(O, 021)

N(0,C)

Figure 1: Ellipsoids depicting onelines of equal density of six different normal distributgn
whereo € R+, D is a diagonal matrix, an@’ is a positive definite full covariance matrix.
Thin lines depict possible objective function contour fine

From @) we naturally define the square root@fas

C? = BDB" 3)
and therefore
Cc* = BD!'BT
1 1
= Bdi — ....— | BT
la’g <d17 ’dn)

0.2 The Multivariate Normal Distribution

A multivariate normal distribution)'(m, C), has a unimodal, “bell-shaped” density, where
the top of the bell (the modal value) corresponds to theibigion meany. The distribution

N (m, C) is uniquely determined by its mean € R™ and its symmetric and positive definite
covariance matrixC' € R™*™. Covariance (positive definite) matrices have an appealing
geometrical interpretation: they can be uniquely idertifigth the (hyper-)ellipsoidx €
R"|z"C~'x = 1}, as shown in Figl. The ellipsoid is a surface of equal density of the
distribution. The principal axes of the ellipsoid corresgdo the eigenvectors af, the
squared axes lengths correspond to the eigenvalues. Téredeigomposition is denoted by
C = B(D)’> BT (see Sec0.1). If D = oI, wheres € R~ andI denotes the identity
matrix, C = o2I and the ellipsoid is isotropic (Fid, left). If B = I, thenC = D?is a
diagonal matrix and the ellipsoid is axis parallel orien@adddle). In the coordinate system
given by the columns aB, the distribution\V'(0, C) is always uncorrelated.



The normal distributiooV (m, C) can be written in different ways.

N(m,C) ~ m+N(0,C)
~ m+C3N(0,1)
~ m+ BD BTN (0,1)
N———
~ N(0,1)
~ m+BDN(0,I) , (4)
N—_——

~ N(0,D2)

where ‘~" denotes equality in distribution, an@> = BDBT. The last row can be well
interpreted, from right to left

N(0,1I) produces an spherical (isotropic) distribution as in Eideft.

D scales the spherical distribution within the coordinatsaas in Figl, middle. DA (0, 1) ~
J\/(O, D2) hasn independent components. The matfixcan be interpreted as (indi-
vidual) step-size matrix and its diagonal entries are thedsrd deviations of the com-
ponents.

B defines a new orientation for the ellipsoid, where the newgipial axes of the ellipsoid

correspond to the columns &. Note thatB has”2;” degrees of freedom.

Equation 8) is useful to computéd\/(m, C) distributed vectors, becaudé(0,I) is a vector
of independent0, 1)-normally distributed numbers that can easily be realized computer.

0.3 Randomized Black Box Optimization

We consider the black box search scenario, where we wanirtionize an objective function
(or costfunction orfitnessfunction)

f: R"=R
x— f(x) .

Theobijectiveis to find one or more search points (candidate solutiang) R™, with a func-
tion value, f(x), as small as possible. We do not state the objective of segrébr a global
optimum, as this is often neither feasible nor relevant iacpce. Black boxoptimization
refers to the situation, where function values of evaluagatch points are the only accessible
information onf.* The search points to be evaluated can be freely chosen. Wesdbé
search costsas the number of executed function evaluations, in othedsvtiite amount of
information we needed to aquire froffi. Any performance measure must consider the search
coststogetherwith the achieved objective function valfe.

A randomized black box search algorithm is outlined in RigIn the CMA Evolution

4Knowledge about the underlying optimization problem migletl enter the composition of and the chosen
problemencoding

5Also f is sometimes denoted aest function but it should not to be confused with teearch costs

6A performance measure can be obtained from a number of &alfor example, the mean number of function
evaluations to reach a given function value, or the mediast famction value obtained after a given number of
function evaluations.



Initialize distribution paramete@®®)

For generatioy = 0, 1,2, ...
Sample) independent points from distributidd (z|69)) — @1,..., z\
Evaluate the sample;, ...,z onf
Update paramete®9+t!) = (09 (xy, f(x1)),..., (zx, f(x))))
break, if termination criterion met

Figure 2: Randomized black box seargh. R™ — R is the objective function

Strategy the search distributioR, is a multivariate normal distribution. Given all variasce
and covariances, the normal distribution has the largesogy of all distributions inR™.
Furthermore, coordinate directions are not distinguishexthy way. Both makes the normal
distribution a particularly attractive candidate for rantdzed search.

Randomized search algorithms are regarded to be robustugged search landscape,
which can comprise discontinuities, (sharp) ridges, oalaptima. The covariance matrix
adaptation (CMA) in particular is designed to tackle, aiddilly, ill-conditioned and non-
separabléproblems.

0.4 Hessian and Covariance Matrices

We consider the convex-quadratic objective functfen: « — %a:THa:, where the Hessian
matrix H € R™*" is a positive definite matrix. Given a search distributidfrm, C), there is

a close relation betweeH andC': SettingC = H~! on fx is equivalent to optimizing the
isotropic functionfspnere () = &'z = £ 3=, 22 (whereH = I) with C = 1.8 Thatis, on
convex-quadratic objective functions, setting the camre matrix of the search distribution
to the inverse Hessian matrix is equivalent to rescalingethigsoid function into a spherical
one. Consequently, we assume that the optimal covariantixmauals to the inverse Hessian
matrix, up to a constant factdr.Furthermore, choosing a covariance matrix or choosing a
respective affine linear transformation of the search sfiagef x) is equivalent] (], because
for any full rankn x n-matrix A we find a positive definite Hessian such t%éﬂw)TAw =
%wTATAiL‘ = %wTHiL‘.

The finalobjective of covariance matrix adaptation is to closelyproximate the contour
lines of the objective functiofi On convex-quadratic functions this amounts to approximgat
the inverse Hessian matrix, similar to a quasi-Newton nmektho

In Fig. 1 the solid-line distribution in the right figure follows thdjective function con-
tours most suitably, and it is easy to foresee that it willtaidpproach the optimum the most.

Thecondition number of a positive definite matri is defined via the Euclidean norm:

cond(A) def |A|l x [A~"]|, where|| A|| = sup),—; | Az|. For a positive definite (Hessian

or covariance) matriX4 holds||A|| = Amax @andcond(A) = ’}“A > 1, where\ ., and
Amin are the largest and smallest eigenvalueiof

7An n-dimensionakeparablegproblem can be solved by solving1-dimensional problems separately, which is a
far easier task.

8Also the initial mean valuen has to be transformed accordingly.

9Even though there is good intuition and strong empiricadlente for this statement, a rigorous proof is missing.



1 Basic Equation: Sampling

In the CMA Evolution Strategy, a population of new searcmp®{individuals, offspring) is
generated by sampling a multivariate normal distribui®The basic equation for sampling
the search points, for generation numbet 0, 1,2, ..., read$!

20t L @ 4 a<g>/\/(0, C<9>) fork=1,...,\ (5

where

~ denotes the same distribution on the left and right side.

N(0, C9)) is a multivariate normal distribution with zero mean andariance matrixC'(9),
see Sec®.2 Itholdsm(¥) + ¢WA(0,CW) ~ N (m9), (¢9))2C9).

:cgﬁ_l) € R, k-th offspring (individual, search point) from generatipn- 1.
m(9) € R™, mean value of the search distribution at generagion

a9 € R, “overall” standard deviation, step-size, at generation

C9) ¢ R™", covariance matrix at generatign Up to the scalar factar®)?, C(9) is the
covariance matrix of the search distribution.

A > 2, population size, sample size, number of offspring.

To define the complete iteration step, the remaining quessiohow to calculaten (911,
Ct)), ando9tD for the next generatiog + 1. The next three sections will answer
these questions, respectively. An algorithm summary witiparameter settings andat-
LAB source code are given in AppendixandC, respectively.

2 Selection and Recombination: Moving the Mean

The new meann (91 of the search distribution is aeighted average gi selected points

from the samplec{?™, . . ,mf\”l):
m
mlt Zwl wl(_:g;rl) )
=1
I
Zwizl, w12w22...2wu>0 (7)
=1

where

10Recall that, given all (co-)variances, the normal distiimi has the largest entropy of all distributionskift .
11Framed equations belong to the final algorithm of a CMA EvotuStrategy.



1 < Ais the parent population sizeg. the number of selected points.

wi=1..,, € Rso, positive weight coefficients for recombination. kot ,, = 1/u, Equa-
tion (6) calculates the mean value pfselected points.

2% i-th best individual out of{*™™ ... 2{?™™ from (5). The indexi : A denotes the
index of thei-th ranked individual and'(z'%™") < f(@¢f™) < ... < f@{1Y),
wheref is the objective function to be minimized.

Equation 6) implementgruncation selectiorby choosingu < A out of A offspring points.
Assigningdifferentweightsw; should also be interpreted as a selection mechanism. Bquati
(6) implementsveighted intermediate recombinatiby taking,: > 1 individuals into account
for a weighted average.

The measurgé

2
o = (L) Ll ol ) ©
. _ ot _ -
fwllz) ~ w3~ T uE T S

will be repeatedly used in the following and can be parapdasvariance effective selection
mass From the definition ofw; in (7) we derivel < peg < p, andu.g = p for equal
recombination weightd,e. w; = 1/u forall i = 1...u. Usually, ueg = A/4 indicates a
reasonable setting ab;. A simple and reasonable setting coulddbg x © — ¢ + 1, and
e A/2.

The final equation rewrite$) as anupdateof m,

n
mYt) = m@ 4o Z w; (wl(_fz;rl) —m9) (9
i=1

where
cm < 1is alearning rate, usually set 1o

Equation @) generalizes®). If ¢, > i, w; = 1, as it is the case with the default parameter
setting (compare Tablg in AppendixA), —m(9) cancels ouim(?), and Equations9) and

(6) are identical. Choosing,, < 1 can be advantageous on noisy functions. With optimal
step-sizej.e.o « 1/cn, in effect the “test steps” ing) are increased whereas the update step
in (9) remains unchanged.

3 Adapting the Covariance Matrix

In this section, the update of the covariance mattixjs derived. We will start out estimating
the covariance matrix from a single population of one geimrgSect.3.1). For small pop-
ulations this estimation is unreliable and an adaptatiocgadure has to be invented (rapk-
update, SecB.2). In the limit case only a single point can be used to updates) the covari-
ance matrix at each generation (rank-one-update, S&t.This adaptation can be enhanced

12| ater, the vectorw will have A > p elements. Here, for computing the norm, we assume that adtificaghl
A — p elements are zero.
13n the literature the notatior = 1/c,, is common andk is used as multiplier ing) instead of in 9).



by exploiting dependencies between successive stepsiagmymulation (SecB.3.2. Fi-
nally we combine the rank-and rank-one updating methods (S&ct).

3.1 Estimating the Covariance Matrix From Scratch

For the moment we assume that the population contains enatmimation to reliably es-

timate a covariance matrix from the populatFHnFor the sake of convenience we assume

o9 =1 (see B)) in this section. For(9) £ 1 the formulae hold except for a constant factor.
We can (re-)estimate the original covariance ma@i%) using the sampled population

from (5), 2™ ... 2"V, via the empirical covariance matrix
RN PRS- oreY ) I ) '
+1) _ g+1 g+1 q+1 (g+1
CO =2 (=" -5 e —;Z - (10)
=1 =1 j=1

The empirical covariance matri@ﬁ?,f;l) is an unbiased estimator @(9): assuming the
mgﬁ”,z‘ = 1...), to be random variables (rather than a realized sample), ave that

E[Cit) | €@ ] = C). Consider now aslightly different approach to get an estimrfar
C,

o ! i (%) — m) (mgw —m)’ (11)

Also the matrGC (91) is an unbiased estimator 6f(). The remarkable difference between
(10) and (1) is the reference mean value. Rﬁ’é‘”” it is the mean of thactually realized
sample. ForC("+1) it is the true mean valuem(9), of the sampled distribution (se8)J.
Therefore, the estlmato(s“e%?;l) andC """ can be interpreted differently: while{%5"
estimates the distribution varianesgthin the sampled pom,t(;‘f\‘”l) estimates variances of
sampledsteps (¢! —

A minor difference betweenl(Q) and (1) is the different normaliza’[ion:f(i—1 versus:,
necessary to get an unbiased estimator in both caseslOjroe degree of freedom is
already taken by the inner summand. In order to getaximum likelihoodestimator, in
both cases must be used.

m 9.

Equation (1) re-estimatethe originalcovariance matrix. To “estimate” a “better” covari-
ance matrix, the samejeighted selectiomechanism as irgj is used [L7].

0 S e ) () o2

i=1

The matrGC("+1)|s an estimator for the distribution sklected stepgust asC (01 is an

estimator of the original distribution of steps before séten. Sampling frorrCH"“) tends to
reproduce selectedge. successfudteps, giving a justification for what a “better” covariance
matrix means.

14To re-estimate the covariance mati, from a/ (0, I) distributed sample such thasnd(C) < 10 a sample
size\ > 4n is needed, as can be observed in numerical experiments.

10



Following [11], we compare 12) with the Estimation of Multivariate Normal Algorithm
EMNA g08q1 [26, 27]. The covariance matrix in EMNA.»q: reads, similar toX0),

1 & T
CliNayins = 35 2o (28 =mT D) (2l = m)
1=1

wherem 9+ = % e mg?jl). Similarly, applying the so-called Cross-Entropy method
to continuous domain optimizatioi(] yields the covariance matrix‘ CI(EQJI}I)AQLMZ'
i.e.theunbiasedempirical covariance matrix of the best points. In both cases the subtle,
but most important difference td?) is, again, the choice of the reference mean vaiue.
Equation (3) estimates the varianaeithin the selected population whild2) estimates
selected steps. Equatioh3j reveals always smaller variances thad)( because its ref-
erence mean value is the minimizer for the variances. Mamean most conceivable
selection situationsl@) decreases the variances compare@t6 .

Figure3 demonstrates the estimation resultsadimear objective function fot\ = 150,
u = 50, andw; = 1/u. Equation (2) geometrically increases the expected variance
in direction of the gradient (where the selection takes goldwre the diagonal), given
ordinary settings for parent numbgrand recombination weights, ..., w,. Equation
(13) always decreases the variance in gradient direction geimaléy fast! Therefore,13)
is highly susceptible to premature convergence, in pdatiuith small parent populations,
where the population cannot be expected to bracket the optiat any time. However,
for large values ofu in large populations with large initial variances, the iropaf the
different reference mean value can become marginal.

In order to ensure withg), (6), and (2), thath{’“) is areliable estimator, the variance
effective selection mass.¢ (cf. (8)) must be large enough: getting condition numbers (cf.
Sect.0.4) smaller than ten fonf’) ON fephere(T) = Y1, @7, requireSueg ~ 10n. The next
step is to circumvent this restriction @ny.

3.2 Rank--Update

To achievefastsearch (opposite tmore robusior more globalsearch), e.g. competitive per-
formance onfspnere : @ — Y 27, the population size. must be small. Because typically
(and ideally)ues =~ \/4 alsou.sx must be small and we may assume, eugg < 1 + Inn.
Then, it is not possible to get eliable estimator for a good covariance matrix froi2).
As a remedy, information from previous generations is usktit@nally. For example, after
a sufficient number of generations, the mean of the estimaiedriance matrices from all
generations,

1 & 1 .
Cclo+l) — E —— G+ 14
g+1 OR (14)

i=0 7
becomes a reliable estimator for the selected steps. To m’é‘ﬂe‘rom different generations
comparable, the different(”) are incorporated. (Assuming(” = 1, (14) resembles the
covariance matrix from the Estimation of Multivariate NalIlgorithm EMNA, [27].)

15Taking a weighted sumy_t | w; ..., instead of the mean;; >, ..., is an appealing, but less important,
difference.

11



CEL'(H_I)

" ‘;‘ C(g+1)

EMNA ji0bal

sampling estimation new distribution

Figure 3: Estimation of the covariance matrix fifhear () = — Zle z; to be minimized.
Contour lines dotted indicate that the strategy should move toward the uppét ggrner.

Above: estimation ofC’,(f“) according to 12), wherew; = 1/u. Below. estimation of

ngﬁ&glow according to £3). Left: sample of\ = 150 N(0, I) distributed points. Middle:
the u = 50 selected pointsdpty determining the entries for the estimation equatisali¢l
straight lineg. Right: search distribution of the next generatisal(d ellipsoid$. Givenw; =
1/u, estimation viaC,(f“) increasedhe expected variance in gradient direction for;akk
A/2, while estimation viaCfE"l\ng&global decreaseshis variance for any, < A geometrically

fast

In (14), all generation steps have the same weight. To assigntrgearrations a higher
weight, exponential smoothing is introduced. Choogi§) = I to be the unity matrix and a
learning raté) < ¢, < 1, thenC¥9+1) reads

CUt) = (1-¢,)CY +¢, QC(LQH)
0'(9) F
“ T
= (1-¢)CY +¢, Z Wi yzgf;)\+1)y§f;)\+1) : (15)
i=1

where

¢, < 1learning rate for updating the covariance matrix. Epr= 1, no prior information is
retained and>(#+1) = —L_C¥™), Forc, = 0, no learning takes place a@¢+) =

o2 H

C). Here,c,, ~ min(1, e /n?) is a reasonably choice.

wi.., € Rsuchthat; >--- >w, >0and)_, w;, = 1.

12



Y = (@5 — mi®)/60)

(‘7+1) =C" 1z ("“) is the mutation vector expressed in the unique coordinatesy
Where the sampllng is isotropic and the respective cootelisgstem transformation
does not rotate the original principal axes of the distidut

This covariance matrix update is called ramspdate [L9], because the sum of outer products
in (15) is of rankmin(u, n) with probability one (given: non-zero weights). This sum can
even consist of a single term,if= 1.

Finally, we generalizel) to A weight values which need neither sumlitonor be non-
negative anymorefd, 23],

i
CUtt = (1-e w)C¥ +c Zw Yyl (16)

1=1
— Cv(g)l/2 <I+C#Zwl< q+1) lq/\+1)T_I)> 0(9)1/2 ’

where

wi..x € Rsuchthatw; > -+ > w, > 0> w,41 > wy, and usuallyz _,w; = Land
Zjﬂ w; ~ 0.

Zwl = Zz 1 Wi

The second line ofl(6) expresses the update in the natural coordinate systerdearalready
considered in{]. The identity covariance matrix is updated and a coor@isgstem transfor-

mation is applied afterwards by multiplication Wiﬁ‘l(9>1/2 on both sides. Equatioi§) uses
A weights,w;, of which about half are negative. If the weights are choseh shaty w; = 0,
the decay orC'9) disappears and changes are only made along axes in whichesaanp
realized.

Negative values for the recombination weights in the cawvareé matrix update have been
introduced in the seminal paper of Jastrebski and Arndigids activecovariance matrix
adaptation. Non-equal negative weight values have beehin§23] together with a rather
involved mechanism to make up for different vector lengthke default recombination
weights as defined in Tablein AppendixA are somewhere in between these two propos-
als, but closer to44]. Slightly deviating from 16) later on, vector lengths associated with
negative weights will be rescaled to a (direction dependamistant, see4f) and @7) in
AppendixA. This allows toguarantypositive definiteness &9+, Conveniently, it also
alleviates a selection error which usually makes direstiassociated with longer vectors
worse.

The numbet /¢, is thebackward time horizon that contributes roughl§3% of the overall
information.
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Because16) expands to the weighted sum

g
ot — (1=c)C® 4o, Z(l ) 1 cl+ (17)

(4) 2 2
i=0 g

the backward time horizor) g, where abou63% of the overall weight is summed up, is
defined by

g
i 1
Y (1—cu)? "~ 063~ 1— . (18)
i=g+1-Ag

Resolving the sum yields

(=en)® o 19)

and resolving forAg, using the Taylor approximation fon, yields
Ag~ — . (20)

That is, approximatel7% of the information inC“*") is older thanl /c,, generations,
and, according to1Q), the original weight is reduced by a factor @B7 after approxi-
mately1/c, generationsg?

The choice ofc, is crucial. Small values lead to slow learning, too largeueallead to a
failure, because the covariance matrix degenerates. riigly, a good setting seems to be
largely independent of the function to be optimiZéd first order approximation for a good
choice isc,, & per/n?. Therefore, the characteristic time horizon foéis roughlyn?/ e

Experiments suggest that ~ p.r/n? is a rather conservative setting for large values of
n, whereasi.q/n'-° appears to be slightly beyond the limit of stability. Thethgst robust
choice of the exponent remains to be an open question.

Even for the learning ratg, = 1, adapting the covariance matrix cannot be accomplished
within one generation. The effect of the original samplérdiation does not vanish until a
sufficient number of generations. Assuming fixed searchsdgatmber of function evalua-
tions), a small population size allows a larger number of generations and therefore usually
leads to a faster adaptation of the covariance matrix.

3.3 Rank-One-Update

In Section3.1we started by estimating the complete covariance matrim§oratch, using all
selected steps fromsingle generationWe now take an opposite viewpoint. We repeatedly
update the covariance matrix in the generation sequenog assingle selected stepnly.
First, this perspective will give another justification betadaptation rulel@). Second, we
will introduce the so-called evolution path that is finallged for a rank-one update of the
covariance matrix.

16This can be shown more easily, beca(se- c,,)9 = expIn(1l — ¢,)9 = exp(gIn(1l — cu)) ~ exp(—gecu)
for smallc,,, and forg ~ 1/c,, we getimmediately(1 — ¢, )9 ~ exp(—1).

1"We use the sphere modebhere () = >, mf to empirically find a good setting for the parametgr dependent
onn andpu.g. The found setting was applicable to any non-noisy objediinction we tried so far.
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3.3.1 A Different Viewpoint

We consider a specific method to produedimensional normal distributions with zero mean.
Letthe vectorgs, ..., y4 € R", go > n, spanR™ and let\/(0, 1) denote independefft, 1)-
normally distributed random numbers, then

90
=1

is a normally distributed random vector with zero mean ancadance matrixy %, y,y!.
The random vector2(l) is generated by adding “line-distributiond” (0, 1) y,. The singu-
lar distributionA\/'(0,1) y; ~ N(0,y,y[) generates the vectgy; with maximum likelihood

considering all normal distributions with zero mean.

The line distribution that generates a veagarith the maximum likelihood must “live” on
aline that includeg, and therefore the distribution must ob&Y0, 1)oy ~ N0, c2yy").
Any other line distribution with zero mean cannot genegatd all. Choosingr reduces to
choosing the maximum likelihood ¢y || for the one-dimensional gaussiaf0, o2 ||y|?),
which iso = 1.

The covariance matriyy’ has rank one, its only eigenvectors drey |« € Ryo}
with eigenvalue||y|>. Using equationZ1), any normal distribution can be realized if
y,; are chosen appropriately. For exampl2l)(resembles4) with m = 0, using the
orthogonal eigenvectorg; = d;;b;, fori = 1,...,n, whereb; are the columns oBB.

In general, the vectorg,; need not to be eigenvectors of the covariance matrix, and the
usually are not.

Considering 21) and a slight simplification ofl(6), we try to gain insight into the adapta-
tion rule for the covariance matrix. Let the sum &6} consist of a single summand onky.¢.

(941 (9)

)

p = 1), and letyg; =
reads

. Then, the rank-one update for the covariance matrix

CUt) = (1—¢))CD ¢ ygi1yger” (22)

The right summand is of rank one and adds the maximum liketiterm fory,., into the
covariance matrixC'(9). Therefore the probability to generajg4, in the next generation
increases.

An example of the first two iteration steps @2 is shown inFigure 4. The distribution
N{(0,C™) tends to reproducg, with a larger probability than the initial distributiox(0, I);
the distribution\(0, C?) tends to reproducg, with a larger probability thamv{0, C(")),
and so forth. Wherny,...,y, denote the formerly selected, favorable step$0, C)
tends to reproduce these steps. The process leads to amafignf the search distribution
N(0,C9) to the distribution of the selected steps. If both distiitg become alike, as
under random selection, in expectation no further changieeofovariance matrix takes place

(]

3.3.2 Cumulation: Utilizing the Evolution Path

We have used the selected step$, " = (247" — m(9))/5(), to update the covariance
matrix in (16) and @2). Becauseyy' = —y(—vy)T, the sign of the steps is irrelevafur the

15



N(0,C?) N (0,CcM) N(0,C?)

Figure 4: Change of the distribution according to the carmmre matrix update2Q). Left:
vectorse; andes, andC®) = T = eje] + esel. Middle: vectors).91 e, 0.91 es, and
0.41y; (the coefficients deduce from = 0.17), andC™) = (1 — ¢;) I + ¢; y1y{, where

y1 = (~%%)). The distribution ellipsoid is elongated into the direatiof y;, and therefore

2.2
increases the likelihood gf;. Right: C®? = (1 — ¢;) CY + ¢; yoyl, wherey, = (577).

update of the covariance matrix —that s, the sign inforovais lost when calculating'(9+1),
To reintroduce the sign information, a so-cal®dlution paths constructed40, 27].

We call a sequence of successive steps, the strategy takes oumber of generations,
an evolution path. An evolution path can be expressed by adfuronsecutive steps. This
summation is referred to asimulation To construct an evolution path, the step-sizés
disregarded. For example, an evolution path of three stefedistribution meamn can be
constructed by the sum

mtD) — @) @) =1 (9= gy (9-2) 23)

@) T TS 5-2)

In practice, to construct the evolution pagh, < R™, we use exponential smoothing as i),
and start witp'”) = 0.18

mtD — m9

P = (1= c)pl? + Ve = e 24

0'(9)

where

p£9> € R™, evolution path at generatign

c. < 1. Again, 1/c. is the backward time horizon of the evolution paththat contains
roughly63% of the overall weight (compare derivation @0)). A time horizon between
/n andn is effective.

The factory/c.(2 — cc) e IS @ normalization constant far.. Forc, = 1 anducg = 1, the
factor reduces to one, apd’ ") = (2% — m @) /o9,

18|n the final algorithm 24) is still slightly modified, compare4s).
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The factory/c.(2 — cc)uesr is chosen, such that
Pt~ N(0,C) (25)

(0 @y —m

o o) ~N(,C) foralli=1,...,u . (26)
a
To derive @5) from (26) and @4) remark that

(1-c)’+/e@—c) =1 and iwm(o,cw\/l_N(o,C) . @7
i=1

e

The (rank-one) update of the covariance mai) via the evolution patmgg“) reads P(]

CEtD — (1 — )@ +clpgg+1)p£g+1)T . (28)

An empirically validated choice for the learning rate 28(is ¢; ~ 2/n?. Forc. = 1 and
u = 1, Equations28), (22), and (L6) are identical.
Using the evolution path for the update 6f is a significant improvement ofL§) for

small ¢, because correlations between consecutive steps ardyhegloited. The leading
signs of steps, and the dependencies between consecefgepthy a significant role for the

resulting evolution patp?™™.

We consider the two most extreme situations, fully corezlasteps and entirely anti-
correlated steps. The summation 24 reads for positive correlations

g9

dl-c) = ci (for g — o0) |

i=0 ¢

and for negative correlations

g ) _ Lg/2] - (g=b)/2 )
DD M=) = D> (=)= Y (-
=0 =0 1=0
Lg/2] (9—1)/2
= > (-c)=(1-c) D, (1-c)
i=0 =0
lg/2]

= > ((1=c)’) +(1—c)’((g+1) mod 2)
1=0
Cc 1
- 1—(1—c)? T2 e (forg — o) -

Multipling these by,/c.(2 — ¢.), which is applied to each input vector, we find that the
length of the evolution path is modulated by the factor ofap t
2 — ce N 1
cc e

due to the positive correlations, or its inverse due to riegabrrelations, respectively p,
Equations (48) and (49)].

(29)
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With \/n < 1/¢. < n/2 the number of function evaluations needed to adapt a neptigal
covariance matrix on cigar-like objective functions beesi®?(n), despite a learning rate of
c1 ~ 2/n?[15). A plausible interpretation of this effect is two-fold.rBf, the desired axis is
represented in the path (much) more accurately than inesstgps. Second, the learning rate
c1 iIs modulated: the increased length of the evolution pattoagpeited in 29) acts in effect
similar to an increased learning rate by a factor of up{tw.

As a last step, we combin&®) and @8).

3.4 Combining Rank-:-Update and Cumulation
The final CMA update of the covariance matrix combink® @nd @8).

clth)  — (l—cl—cHij)C(g)
—————

can be close or equal t

A
T T
+c1 pggH)ngH) +cu E w; yz('f])\+l) (yz('f];l)) (30
~——— —

rank-one update
rank- update

where
c1 ~2/n%
¢, ~ min(per/n%, 1 — c1).

v = @ =m0 /oo,

(B

Sw,; = 2?21 w; & —c1/c,, but see also53) and@6) in AppendixA.

Equation 80) reduces toX6) for ¢; = 0 and to 8) for ¢, = 0. The equation combines the
advantages ofl) and £8). On the one hand, the information from the entire poputeiso
used efficiently by the so-called rankupdate. On the other hand, information of correlations
betweergenerations is exploited by using the evolution path for#mk-one update. The for-
mer is important in large populations, the latter is patéidy important in small populations.

4 Step-Size Control

The covariance matrix adaptation, discussed in the latibsedoes not explicitly control the
“overall scale” of the distribution, the step-size. The @oance matrix adaptation increases
or decreases the scale onitya single directionfor each selected step—or it decreases the
scale by fading out old information by a given, non-adapfaator. Less informally, we have
two specific reasons to introduce a step-size control intiaidio the adaptation rule3() for
C9),

1. Theoptimal overall step length cannot be well approximated 8§),in particular if
et 1S Cchosen larger than one.

18



e

Figure 5: Three evolution paths of respectively six stepsnfdifferent selection situations
(idealized). The lengths of th&ingle steps are all comparable. The length of the evolution
paths (sum of steps) is remarkably different and is expldite step-size control

n

For example, ONfsphere(x) = S.7, 27, given C'¥ = T and\ < n, the op-
timal step-sizer equals approximately +/ fsphere () /n With equal recombination

weights I, 29] and 1.25 e / fsphere () /n With optimal recombination weight&].
This dependency op or p.x can not be realized byL6) or (30).

2. The largest reliable learning rate for the covarianceimapdate in 80) is too slow to
achieve competitive change rates for the overall step kengt

To achieve optimal performance gpnere With an Evolution Strategy with weighted
recombination, the overall step length must decrease Isterfaf abouexp(0.25) ~
1.28 within n function evaluations, as can be derived from progress fasnas in
[2] and [4, p. 229]. That is, the time horizon for the step length chamgst be pro-
portional ton or shorter. From the learning rates andc,, in (30) follows that the
adaptation is too slow to perform competitive fijnere Wheneverues < n. This
can be validated by simulations even for moderate dimessior>> 10, and small
et < 1+ 1nn.

To control the step-size(?) we utilize an evolution path,e. a sum of successive steps (see
also Sect3.3.9. The method can be applied independently of the covariarateix update
and is denoted asumulative path length controtumulative step-size control, oumulative
step length adaptation (CSA) The length of an evolution path is exploited, based on the
following reasoning, as depicted in Fig.

e Whenever the evolution path is short, single steps cano#l ether out (Fig5, left).
Loosely speaking, they are anti-correlated. If steps gxish each other, the step-size
should be decreased.

e Whenever the evolution path is long, the single steps anetipgito similar directions
(Fig. 5, right). Loosely speaking, they are correlated. Becausetips are similar, the
same distance can be covered by fewer but longer steps m&athe directions. In the
limit case, when consecutive steps have identical directleey can be replaced by any
of the enlarged single step. Consequently, the step-samélébe increased.
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¢ In the desired situation the steps are (approximately)guatigular in expectation and
therefore uncorrelated (Fi§, middle).

To decide whether the evolution path is “long” or “short”, wempare the length of the path
with its expected length under random selectfpmwhere consecutive steps are independent
and therefore uncorrelated (uncorrelated steps are tiredsguation). If selection biases the
evolution path to be longer then expecteds increased, and, vice versa, if selection biases
the evolution path to be shorter than expectet$ decreased. In the ideal situation, selection
does not bias the length of the evolution path and the lenglals its expected length under
random selection.

In practice, to construct the evolution path,, the same techniques as R are applied.
In contrast to 24), a conjugateevolution path is constructed, because the expected length
of the evolution pathp. from (24) depends on its direction (compaZs)). Initialized with

pgf” = 0, the conjugate evolution path reads

_1
pgﬁl) = (1- Ca)pgg) + Vo (2 = ¢o) prest cl* n

(g+1) _ g (9)

o'(g) (31

where

pg") € R™ is the conjugate evolution path at generaton

¢, < 1. Again,1/¢, is the backward time horizon of the evolution path (compa@)( For
small uogr, @ time horizon betweegn andn is reasonable.

¢ (2 — ¢y ) e IS @ NOrmalization constant, se&y.

c ™ ¥ B pWw ' BW' wherec® — B (D(-‘J))QB(-‘J)T is an eigendecompo-
sition of C¥), where B(9) is an orthonormal basis of eigenvectors, and the diagonal
elements of the diagonal matri®(9) are square roots of the corresponding positive
eigenvalues (cf. Sed.1).

_1 _1
ForC =1, we haveC¥)" 2 = I and @1) replicates 24). The transformatioC(9) 2
re-scales the stem (9t — m(9) within the coordinate system given (9.

_1 _
The single factors of the transformati@i® 2= B@ D@ ' BT can be explained
as follows (from right to left):

B®T7 rotates the space such that the columngBdf’, i.e. the principal axes of the
distribution N(0, C'9), rotate into the coordinate axes. Elements of the resulting
vector relate to projections onto the corresponding eigetors.

D@} applies a (re-)scaling such that all axes become equakiylsiz

B9 rotates the result back into the original coordinate syst@inis last transforma-
tion ensures that the principal axes of the distributionrexterotated by the overall
transformation and directions of consecutive steps arepacable.

19Random selection means that the index\ (compare §)) is independent of the value afz(.:g;l) forall i =
1,...,\egi: A=1.
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_1
Consequently, the transformati6GH¢) 2 makes the expected length ) independent of
its direction, and for any sequence of realized covariarmeinesC_ff’:)O,m,m we have under

random selectiop’ ™ ~ N (0, I) glvenp,(,o) ~ N(0,1) [9].

To updat H with its expected lengtk||A(0,1) ||, that is
Ino@tt) =1n o) + — < Hp(ﬁl)” 1) (32)
E[N(0, D) ’
where

d, ~ 1, damping parameter, scales the change magnitudesdf). The factor, /d, /E||N(0,T) ||
is based on in-depth investigations of the algorittin [

EIN(0,I) || = v2T(22)/T(2) = /n+ O(1/n), expectation of the Euclidean norm of a
N (0,1) distributed random vector.

For ||ps (g+1) | = E|NV(0,I)| the second summand i82) is zero, andr(9) is unchanged,
while 5@ is increased fofip!’ ™| > E|A/(0,1) ||, ando'@ is decreased foip Y™ || <
E|N(0,T) |.

Alternatively, we might use the squared noﬂpﬁ,g“)u2 in (32) and compare with its
expected value [3]. In this case 82) would read

(94+1) 2
ot — <g)+2<i; (lp . I _1> . (33)

This update performs rather similar t82], while it presumable leads to faster step-size
increments and slower step-size decrements.
The step-size change is unbiased on the log scale, beBauise 9V |¢(9) | = Ino(9)
for ps ) N(0,I). The role of unbiasedness is discussed in SectEquations 31)

and @2) cause successive steps of the distribution medf! to be approximately> (@ -
conjugate.

In order to show that successive steps are approximﬁ'éf\}fl-conjugate first we re-
mark that 81) and 32) adapto such that the length oﬁ(g“) equals approximately

) T
EIN(0,T) . Starting from (E[IN'(0,1) [)* ~ [[p&*|* = pi prth

1 N
RHSTRHS of (31) and assuming that the expected squéeedthof C9 ™ 2 (m (91 —
m'9) is unchanged by selection (unlike its direction) we get

PP TCO T (o) _ @)y 1 (34)
and T
<C<g>%pgg>) o (m<9+1> - m<9)) ~0 . (35)

Given1/(c1 +¢,) > 1and @4) we assume alsp? ™" C@) ( @+ _m@) x 0
and derive

(m<g> _ m(g—l))T @ (m@“) _ m(g)) ~0 (36)
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That s, the steps taken by the distribution mean becomeajppatelyC(?’ 71-conjugate.

Becauser'9) > 0, (32 is equivalent to

1) — o0 ey [ o (P (37
o =ocWexp| — | = —
do \ E[N(0,T) ||

The length of the evolution path is an intuitive and empihycavell validated goodness
measure for the overall step length. FQg > 1 it is the best measure to our knowledde.
Nevertheless, it fails to adapt nearly optimal step-sizegasy noisy objective functionsy.

5 Discussion

The CMA-ES is an attractive option for non-linear optimirat if “classical” search meth-
ods, e.g. quasi-Newton methods (BFGS) and/or conjugatiegramethods, fail due to a

non-convex or rugged search landscape (e.g. sharp besdsntnuities, outliers, noise, and
local optima). Learning the covariance matrix in the CMA4{E@&nalogous to learning the in-

verse Hessian matrix in a quasi-Newton method. In the endcanvex-quadratic (ellipsoid)

objective function is transformed into the spherical fimetf;,nee. This can reduce the num-
ber of f-evaluations needed to reach a tarfietalue on ill-conditioned and/or non-separable

problems by orders of magnitude.
The CMA-ES overcomes typical problems that are often aasediwith evolutionary al-
gorithms.

1. Poor performance on badly scaled and/or highly non-séyparobjective functions.
Equation 80) adapts the search distribution to badly scaled and noarabfe prob-
lems.

2. Theinherent need to use large population sizes. A tydicalever intricate to diagnose
reason for the failure of population based search algostlnthe degeneration of the
population into a subspaéé This is usually prevented by non-adaptive components in

the algorithm and/or by a large population size (considgriaoger than the problem

dimension). In the CMA-ES, the population size can be fredtlgsen, because the
learning rates; andc,, in (30) prevent the degeneration even for small population sizes,

e.g.A = 9. Small population sizes usually lead to faster convergdaoge population
sizes help to avoid local optima.

3. Premature convergence of the population. Step-sizealdnt(37) prevents the pop-
ulation to converge prematurely. It does not prevent thecbetn end up in a local
optimum.

20Recently, two-point adaptation has shown to achieve sirp#aformance [6].
21The same problem can be observed with the downhill simplethoad2¢] in dimension, say, larger than ten.
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Therefore, the CMA-ES is highly competitive on a considé&gatumber of test functions
[9, 17,19, 21, 27] and was successfully applied to many real world probléns.

Finally, we discuss a fewasic design principlesthat were applied in the previous sec-
tions.

Change rates We refer to a change rate as the expected parameter clpgngampled
search pointgiven a certain selection situation. To achieve competipierformance on a
wide range of objective functions, the possible changesrat¢he adaptive parameters need
to be adjusted carefully. The CMA-ES separately controtnge rates for the mean value of
the distributionymn, the covariance matrix(, and the step-size,.

e The change rate for the mean value, relative to the given sample distribution, is
determined by,,,, and by the parent number and the recombination weightslarger
Lest, the smaller is the possible change rateaf® Similar holds for most evolutionary
algorithms.

e The change rate of the covariance maithis explicitly controlled by the learning rates
¢ andce, and therefore detached from parent number and populatienshe learning
rate reflects the model complexity. In evolutionary alduoris, the explicit control of
change rates of the covariances, independently of popualaize and mean change, is
a rather unique feature.

e The change rate of the step-sizés explicitly controlled by the damping parametgr
and is in particular independent from the change ratg oT he time constant/c, < n
ensures a sufficiently fast change of the overall step lemgfarticular with small
population sizes.

Invariance Invariance properties of a search algorithm denote ideahtiehavior on a set, or
a class of objective functions. Invariance is an importanpprty of the CMA-ES? Trans-
lation invariance should be taken for granted in continudrsain optimization. Translation
invariance means that the search behavior on the funatien f(x + a), z(¥) = b — a, is
independent ot € R™. Further invariances, e.g. invariance to certain linemmgformations
of the search space, are highly desirable: they imply umifperformance on classes of func-
tions?® and therefore allow for generalization of empirical resulin addition to translation
invariance, the CMA-ES exhibits the following invariances

e Invariance to order preservingd. strictly monotonic) transformations of the objective
function value. The algorithm only dependsthie rankingof function values.

22http:/fwww.lri.fr/ ~hansen/cmaapplications.pdf provides a list of applications published be-
fore 2010.

23Given A ¥ n, then the mean change per generation is roughly propottiona/ /7ieer, While the optimal
step-sizer is roughly proportional tq..¢. Therefore, the net changéth optimal step-sizés proportional to,/fics
per generation. Now considering the effect on the resultmgergence rate, a closer approximation of the gradient
adds another factor Qf/iiesr, Such that the generational progress rate is proportionalg. Given\/peg =~ 4, we
have the remarkable result that the convergencepeté-evaluationis roughly independent of.

24gpecial acknowledgments to Ivan Santiba nez-Korefdinting this out to me.

25However, most invariances are linked to a state space tnanafion. Therefore, uniform performance is only
observedafter the state of the algorithm has been adapted.
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e Invariance to angle preserving (rigid) transformationghef search space (rotation, re-
flection, and translation) if the initial search point istséormed accordingly.

e Scale invariance if the initial scaling, e.¢(”), and the initial search pointn(?, are
chosen accordingly.

e Invariance to a scaling of variables (diagonal invariant#je initial diagonal covari-
ance matrixC(*), and the initial search pointp(?), are chosen accordingly.

e Invariance to any invertible linear transformation of tleaich spaceA, if the initial
covariance matribxC(® = A=1 (A=1)", and the initial search pointn(©), are trans-
formed accordingly. Together with translation invariartbés can also be referred to as
affine invariancei.e. invariance to affine search space transformations.

Invariance should be a fundamental design criterion forssarch algorithm. Together with
the ability to efficiently adapt the invariance governinggraeters, invariance is a key to
competitive performance.

Stationarity or Unbiasedness Animportant design criterion formndomizedearch proce-
dure isunbiasednessf variations of object and strategy parametérs’p]. Consider random
selection, e.g. the objective functigitz) = rand to be independent . Then the popula-
tion mean is unbiased if its expected value remains unclthimgthe next generation, that is
E[mt) |m9 | = m(9). For the population mean, stationarity under random selecs
a rather intuitive concept. In the CMA-ES, stationarityaspected for all parameters that ap-
pear in the basic equatioB)( The distribution meam, the covariance matri€’, andln o are
unbiased. Unbiasednesslafo does not imply that is unbiased. Under random selection,
E[cle*D) |0l ] > o9, compare§2).2®

For distribution variances (or step-sizes) a bias towaoteiase or decrease entails the
risk of divergence or premature convergence, respectiwgignever the selection pressure is
low or when no improvements are observed. On noisy problanpsoperly controlled bias
towards increase can be appropriate. It has the non-nelglidisadvantage that the decision
for termination becomes more difficult.
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A Algorithm Summary: The (u/pw, A)-CMA-ES

Figure6 outlines the complete algoritti) summarizing %), (9), (24), (30), (31), and @7).
Used symbols, in order of appearance, are:

yr ~ N(0,C), fork = 1,..., ), are realizations from a multivariate normal distribution
with zero mean and covariance mat€x

B, D result from an eigendecomposition of the covariance méirixith C = BD*B" =
BDDBT (cf. Sect0.1). Columns ofB are an orthonormal basis of eigenvectors. Di-
agonal elements of the diagonal matfixare square roots of the corresponding positive
eigenvalues. While39) can certainly be implemented using a Cholesky decompositi
of C, the eigendecomposition is needed to correctly comﬁhté = BD 'BT for
(43) and @46).

x, € R", fork =1,...,\. Sample of\ search points.

(y),, = Dt wiy;.x, step of the distribution mean disregarding step-size

Yix = (Tin — m) /o, Seex;., below.

x;.» € R™, i-th best point out of4, ..., x, from (40). The index; : A denotes the index of
thei-th ranked point, that ig (x1.)) < f(x2.2) < -+ < f(@an).

w=Hw;|w; >0} = Z?:l 1(0,inf)(w;) > 1 is the number of strictly positive recombina-
tion weights.

_ % 2\~ 1. ; ; ; I _
Heff = ( i wi) is the variance effective selection mass, $)eBecause /" | |w;| =
1, we havel < g < p.

c: ¥ BD 'BT, seeB, D above. The matrixD can be inverted by inverting its di-

agonal elements. From the definitions we find taat: y; = Bz;, andC 2 (Y)y =
B Z?:l Wi Zg:\-

EIN(O.L) [ = V2T (%) /T(5) = Vi (1 = 5 + a15)-

1 if ——ABel (144 -2 )E|N(0,I
{ V1=(1=cp)2+D) ( 1) V@D , Whereg is the generation

0 otherwise
number. The Heaviside functiah, stalls the update gp. in (45) if ||p,| is large.
This prevents a too fast increase of axeddin a linear surrounding,e. when the
step-size is far too small. This is useful when the initiapssize is chosen far too small
or when the objective function changes in time.

d(hy) = (1 — he)ee(2 — c.) < 1is of minor relevance. In the (unusual) casehgf= 0, it
substitutes for the second summand fre¥s) (in (47).

dw,; = Z?:l w; is the sum of the recombination weights, sé8{(53). We have-c, /¢, <
> w; < 1 and for the default population size we meet the lower bound, w; =
—C1.

he =

27\ith negative recombination weights in the covariance imathosen here by default, the algorithm is sometimes
denoted as aCMA-ES for active CMA{].
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Set parameters

Set parameters, wi—1...», ¢s, do, Cc, c1, andc,, according to Tabld.

Initialization

Set evolution pathg, = 0, p. = 0, covariance matrbdC' = I, andg = 0.

Choose distribution meaim € R™ and step-size € R~ problem dependerit.

Until termination criterion met , g < g + 1

Sample new population of search points,foe 1,..., A
zr ~ N(0,I) (38)
Y = BDzk NN(O,C) (39)
z, = m+oy, ~N(m,o*C) (40)

Selection and recombination

(V)

" "
= Zwiym whereZwizl, w; >0fori=1...pu (41)
=1 i=1

I
— m+cno(y), equalsz w; Tia if ey = 1 (42)
=1

Step-size control

P (1 - Co)pa + v CO’(2 - CU),“eff Ci% <y>w (43)

Co [r:2a]

o axexp(—(i—l (44)

dy \E[IN(0,T) ||

Covariance matrix adaptation
pe — (I—co)pe+hov/ce(2 — CC)NeH <y>w (45)
wS = w; x (1if w; > 0elsen/||C~ 2 yix|?) (46)
A
C + (1+c18(ho) —c1—cudw;)C+cipepl + ¢, Zw;’ Yirliy (47)
usually equals t® =1

IThe optimum should presumably be within the initial cutae+ 35(1,...,1)T. If the optimum is ex{

pected to be in the initial search interyal ] we may choose the initial search point,, uniformly randomly|
in [a,b]™, ando = 0.3(b — a). Different search intervald\s; for different variables can be reflected by
different initialization ofC, in that the diagonal elements 6f obeyc;; = (As;)2. However, theAs; should
not disagree by several orders of magnitude. OtherwiseliagaeH the variables should be applied.

Figure 6: Theu/ 1w, A)-CMA Evolution Strategy. Symbols: see text
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Default Parameters The (external) strategy parameters arev;—1...x, ¢y, dy, Cc, ¢1, and
cu. Default strategy parameter values are given in Tablén in-depth discussion of most
parameters is given ir2p].

The setting for the defaultegative weightds new (since 2016). The setting is somewhat
similar to the uniform weights from2[], deviating significantly from mirroring the positive
weight values as in7, 23]. The choice is a compromise between avoiding a large vegian
reduction in a single direction i@ while still giving emphasis on the selectidifferencesn
particular for weights close to the median rank. We attemgtale all negative weights such
that the factor in front o” in (47) becomed. That s, we have by default no decay 6rand
the variance added to the covariance matrix by the posifiates equals, in expectation, to
the variance removed by the negative updates.

Specifically, we want to achieve + ¢, > w; = 0, that is

c/en =— (Z ;[T =" |wj|7)
cfen=—1+> |w;|”
Lteifen =) lwl™

hence the multipliery,, in (53) is set tol + ¢1/c,.

Choosing>”, |w;|~ in the order oft is only viable if e % p_; = (ZLHH wi)Q/ S wi
that is, if the variance effective update information froasjive weights g, is not much
larger than that from negative weighis,;. In the default settingy_; is aboutl.2 to 1.5
timeslarger than u.s, because the curve; versusi flattens out for increasing In (53)
we use the bound,,_, see 61), to (i) get a meaningful value for any choicesudf, and
(i) preserve the effect from letting, go to zero (eventually turning off the covariance
matrix adaptation entirely).

The apparent circular dependency betweenca,, , c,, pes, and againy; can be re-
solved: the variance effective selection masg depends only on theslativerelation be-
tween thepositiveweights, such thateg (w1...x) = pes (w1....) = (S, wi)? />0 wi =
et (w1, ). Thatis,pes andu_; can be computed already fromf of (49), from which
cu can be computed, from whieky, can be computed, from which the remaining negative
weightsw; can be computed.

Finally, we also bound the negative weights Vi&3)(to guaranty positive definiteness ©f
via (46), thereby, possibly, re-introducing a decay ©n With the default setting for popu-
lation size and the default raw weight values, . ;. in Equation 63) leaves the weights
unchanged.

Specifically, to guaranty positive definiteness of the ciavare matrix, we can bound the
maximal variance subtracted in a single direction by thevae remaining after the decay
on C is applied in 47). Defining>_ |w;|~ = ijuﬂ |w;| to be the sum of the absolute
values of all negative weights, and assuming a (Mahalarebisance ofn from each
negative summand of the weighted sum4)( we require

ncuzmir<1—01—ijcuzl—q—cu—i—cuzmir . (59)
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_Zh w£)2

Table 1: Default Strategy Parameters, where |[{w; > 0} = | \/2], pog = S €
A AT ) o ‘

L, pl, pog = % ! w; = 1,and}" |w;|T is the sum of all positive, and
i=pn 7

—>_ |w;|~ the sum of all negativev;-values, i.e.a, = > |w}j|[~ > 0. Apart fromw;
fori > pu, all parameters are taken frorm7 with only minor modifications

Selection and Recombination:
A = 44 [31nn] can be increased (48)
/ A+l : . i
w; = In —5 = Ini fori=1,..., X preliminary convex shape (49)
a, =l+ci/e, letcy +c, > w; =c1+c¢,—c, > Jw;|~ bel (50)
- 2 - ; ;
Qe =14 o+ 2 bound}" |w;|~ to be compliant witre,, (fter) (51)
_ 1-— Cc1 —C = .
O def = . w 32#2%2?;' to guaranty positive (52)
i
1 , o iy :
=W, if w; >0 positive weights sum to one
> |wj|Jr
w; = N — — ; ; (53)
min(a,, o 0 cqer) ., negative weights usually
w; ifw <0 _
IR d i sum to—ay,
Cm =1 (54)
Step-size control:
c. = feft + 2
7 n+ fe + 5
Heft e (55)
de =1+ 2 max |0, ° —1|4+cs
n+1
Covariance matrix adaptation:
4+ :ueff/n
= 56
Ce n—+ 4+ 2ue/n (56)
Aoy .
1= ————— With aeoy = 2 57
YT 13)2 + penr ¢ (®7)
. Heff — 2 + 1/,“/eff .
L= 1—c1,acov with aeoy = 2 58
¢ mln( c1, Qe CET LR~ Qe (58)

31



Solving fory " |w;|~ yields

S il < 1(‘7‘ . (60)

n—1)c,

We usemin(. .., ~=2=¢) as multiplier for settingw,—,1. . in (53) and normalize

7LCM
the variance from each respective summgndy., via (46) to n, thereby bounding the
variance reduction from negative weight values to the fa&e".

The default parameters 053—(58) are in particular chosen to be a robust setting and
therefore, to our experience, applicable to a wide rangeraftfons to be optimizedie do not
recommend to change this settjrpart from increasing the population sixén (48),%8 and
possible decreasing.,, on noisy functions. If the--dependent default values far;, are used
as advised, the population sixeéhas a significant influence on the global search performance
[17]. Increasing\ usually improves the global search capability and the rimmss of the
CMA-ES, at the price of a reduced convergence speed. Theeogence speed decreases at
most linearly withA. Independent restarts with increasing population sifegutomated or
manually conducted, are a useful policy to perform well orsthpsoblems.

B Implementational Concerns

We discuss a few implementational questions.

B.1 Multivariate normal distribution

Let the vectorz ~ N(0,I) have independent), 1)-normally distributed components that
can easily be sampled on a computer. To generate a randoor yeet N(0, C) for (39),
we sety = BDz (see above symbol descriptions Bfand D and Sects0.1and0.2, and
compare lines 52-53 and 83-84 in the source code below)nGive- BDz;, andC~2 =
BD BT we haveC~: (y),, = BY ", w; z;:» (compare43) and lines 61 and 64 in the
source code below).

B.2 Strategy internal numerical effort

In practice, the re-calculation @& andD needs to be done not until abauax(1, |1/(10n(c;+
¢u))]) generations. For reasonalle+ ¢, values, this reduces the numerical effort due to the
eigendecomposition fror®(n?) to O(n?) per generated search point, that is the effort of a
matrix vector multiplication.

On a Pentium 4, 2.5 GHz processor the overall strategy iatgime consumption is
roughly3 x (n + 5)? x 108 seconds per function evaluatiotd].

Remark that it is not sufficient to compute a Cholesky decasitjpm of C, because then
(43) cannot be computed correctly.

28Decreasing\ is not recommended. Too small values have strong adversetfin the performance.
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B.3 Termination criteria

In general, the algorithm should be stopped whenever itines@ waste of CPU-time to con-
tinue, and it would be better to restart (eventually withr@ased population size]) or to
reconsidering the encoding and/or objective function fdation. We recommend the follow-
ing termination criterial, 17 that are mostly related to numerical stability:

e NoEffectAxis : stop if adding &.1-standard deviation vector in any principal axis
direction ofC does not changen.?®

e NoEffectCoord : stop if adding).2-standard deviations in any single coordinate does
not changen (i.e.m; equalsn, + 0.2 o¢; ; for anys).

e ConditionCov : stop if the condition number of the covariance matrix exisd®'4.

e EqualFunValues : stop if the range of the best objective function values efldst
10 4 [30n/X] generations is zero.

e Stagnation : we track a history of the best and the median fitness in eacétibn
over the last 20% but at leak20 + 30n/\ and no more tha0 000 iterations. We stop,
if in both histories the median of the last (most recent) 3@#aes is not better than the
median of the first 30%.

e TolXUp : stop ifo x max(diag(D)) increased by more thai*. This usually indicates
a far too small initiabr, or divergent behavior.

Two other useful termination criteria should be considgnexblem dependent:

e TolFun : stop if the range of the best objective function values efifst10+ [30n/\]
generations and all function values of the recent generatioelowTolFun . Choosing
TolFun depends on the problem, whil®é~'2 is a conservative first guess.

e TolX : stop if the standard deviation of the normal distributisrsmaller than in all
coordinates andp. is smaller tharTolX in all components. By default we s€blX
to 10~ 12 times the initialo.

B.4 Flatfithess

In the case of equal function values for several individuralthe population, it is feasible
to increase the step-size (see lines 92—-96 in the sourcebedol@). This method can inter-
fere with the termination criteriomolFun . In practice, observation of a flat fitness should
be rather a termination criterion and consequently leadrecansideration of the objective
function formulation.

29More formally, we terminate ifn equals tom + 0.1 od;; b;, wherei = (g mod n) + 1, anddfi andb; are
respectively the-th eigenvalue and eigenvector 6F, with ||b;|| = 1.
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B.5 Boundaries and Constraints

The handling of boundaries and constraints is to a certai@nexproblem dependent. We
discuss a few principles and useful approaches.

Best solution strictly inside the feasible domainlf the optimal solution isot too close to
the infeasible domaira simple and sufficient way to handle any type of boundarids a
constraints is

1. setting the fitness as

fﬁtncss(m) - fmax + ||.’13 - mfcasiblc” 5 (61)

where f,.x iS larger than the worst fitness in the feasible populatiomahe
feasible domain (in case of minization) a®g .1 IS @ constant feasible point,
preferably in the middle of the feasible domain.

2. re-sampling any infeasible solutianuntil it become feasible.
Repair available as for example with box-constraints.

Simple repair It is possible to simply repair infeasible individuals befdhe update
equations are applied. This is not recommended, becauseNifeES makes
implicit assumptions on the distribution of solution painivhich can be heavily
violated by a repair. The main resulting problem might beedjence or too fast
convergence of the step-size. However, a (re-)repair ofigba or injected so-
lutions for their use in the update seems to solve the probledivergence 4]
(clipping the Mahalanobis distance of the step length toydhe — m|/,2c <
vn+2n/(n+ 2) seems to be sufficient). Note also that repair mechanismistmig
be intricate to implement, in particular if or z are used for implementing the
update equations in the original code.

Penalization We evaluate the objective function on a repaired searcht,pgigpaircd,
and add a penalty depending on the distance to the repailigtbso

fﬁtncss(m) = f(mrcpaircd) + a H:B - mrcpaircdHQ . (62)

The repaired solution is disregarded afterwards.

In case of box-boundaries,cpaireq is Set to the feasible solution with the smallest
distance|x — @ epaireal|- 1N Other words, components that are infeasible iare
set to the (closest) boundary valuedp.pai-ea. A similar boundary handling with

a component-wise adaptiveis described ind].

No repair mechanism available The fithess of the infeasible search paintight similarly
compute to

fﬁtness(w) = foffset + az Il-ci,>0 X Ci(w)Q (63)

where, w.l.o.g., the (non-linear) constraints: R" — R,z — ¢;(x) are satisfied for
¢i(z) < 0, and the indicator functiofl,~( equals to one fot;(x) > 0, zero other-
wise, andfomset = mediang f () equals, for example, to the median25i%-tile or
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best function value of the feasible points in the same gé¢ioerdf no other information
is available;(x) might be computed as the squared distance ¢ the best or the
closest feasible solution in the population or the closestn feasible solution. The
latter is reminiscent to the boundary repair above. Thig@ggh has not yet been ex-
perimentally evaluated by the author. A different, slightiore involved approach is
givenin [7].

In either case of@2) and €3), o should be chosen such that the differenceg and the
differences in the second summand have a similar magnitude.
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C MATLAB Source Code

This code does not implement negative weights, thabis= 0 for ¢ > p in Table1.

1 function xmin=purecmaes

2 % CMA-ES: Evolution Strategy with Covariance Matrix Adapt ation for

3 % nonlinear function minimization.

4 %

5 % This code is an excerpt from cmaes.m and implements the key parts

6 % of the algorithm. It is intendend to be used for READING and

7 % UNDERSTANDING the basic flow and all details of the CMA *algorithm  «.
8 % Computational efficiency is sometimes disregarded.

9

10 % - Initialization -------------- e

11

12 % User defined input parameters (need to be edited)

13 strfitnessfct = ‘felli’; % name of objective/fitness fun ction

14 N = 10; % number of objective variables/problem dimension

15  xmean = rand(N,1); % objective variables initial point

16  sigma = 0.5; % coordinate wise standard deviation (step-s ize)
17  stopfitness = 1le-10; % stop if fitness < stopfitness (mini mization)

18 stopeval = 1le3 *N"2; % stop after stopeval number of function evaluations
19

20 % Strategy parameter setting: Selection

21  lambda = 4+floor(3  *log(N)); % population size, offspring number

22 mu = lambda/2; % lambda=12; mu=3; weights = ones(mu,1); wo uld be (3_1,12)-ES
23  weights = log(mu+1/2)-log(1:mu)’; % muXone recombinati on weights

24  mu = floor(mu); % number of parents/points for recombinat ion

25  weights = weights/sum(weights); % normalize recombinat ion weights array
26  mueff=sum(weights)"2/sum(weights."2); % variance-ef fective size of mu

27

28 % Strategy parameter setting: Adaptation
29 cc = (4+mueff/N) / (N+4 + 2 *mueff/N); % time constant for cumulation for C

30 cs = (mueff+2)/(N+mueff+5); % t-const for cumulation for sigma control
31 ¢l = 2/ ((N+1.3)"2+mueff); % learning rate for rank-one up date of C
32 cmu = 2 * (mueff-2+1/mueff) / ((N+2)"2+2 *mueff/2); % and for rank-mu update

33 damps = 1 + 2+*max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

36 % Initialize dynamic (internal) strategy parameters and constants

37  pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C an d sigma

38 B = eye(N); % B defines the coordinate system

39 D = eye(N); % diagonal matrix D defines the scaling

40 C = B*D+(B*D)} % covariance matrix

41  eigeneval = 0; % B and D updated at counteval == 0

42 chiN=N"0.5 =(1-1/(4 *N)+1/(21 *N"2)); % expectation of

43 % |IN(O,)|]] == norm(randn(N,1))

44

45 % - Generation Loop -------------- e

46

47  counteval = 0; % the next 40 lines contain the 20 lines of int eresting code

48  while counteval < stopeval

49

50 % Generate and evaluate lambda offspring

51 for k=1:lambda,

52 arz(;,k) = randn(N,1); % standard normally distributed v ector

53 arx(;,k) = xmean + sigma * (B+*D * arz(:,k)); % add mutation % Eq. 40
54 arfitness(k) = feval(strfitnessfct, arx(:,k)); % objec tive function call

55 counteval = counteval+1;

56 end

57

58 % Sort by fitness and compute weighted mean into xmean

59 [arfitness, arindex] = sort(arfitness); % minimization

60 xmean = arx(:,arindex(1:mu)) *weights; % recombination % Eq. 42
61 zmean = arz(:,arindex(1l:mu)) xweights; % == D™-1 B’ *(xmean-xold)/sigma

62

63 % Cumulation: Update evolution paths

64 ps = (1-cs) =*ps + (sgrt(cs *(2-cs) *mueff)) =+ (B * zmean); % Eq. 43
65 hsig = norm(ps)/sqrt(1-(1-cs)’(2 * counteval/lambda))/chiN < 1.4+2/(N+1);
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pc = (1-cc) =*pc + hsig * sqgrt(cc *(2-cc) *mueff) * (B*Dxzmean); % Eq.

% Adapt covariance matrix C

C = (1-cl-cmu) * C .. % regard old matrix % Eq.
+ cl * (pc*pc .. % plus rank one update
+ (1-hsig) * ccx(2-cc) * C) .. % minor correction
+ cmu ... % plus rank mu update

* (B*Drarz(:,arindex(1:mu))) ...
*  diag(weights) * (B *Drarz(:,arindex(1:mu)))’;

% Adapt step-size sigma
sigma = sigma * exp((cs/damps) *(norm(ps)/chiN - 1)); % Eq.

% Update B and D from C

if counteval - eigeneval > lambda/(cone+cmu)/N/10 % to ac hieve O(N"2)
eigeneval = counteval;
C=triu(C)+triu(C,1)’; % enforce symmetry

[B,D] = eig(C); % eigen decomposition, B==normalized eig envectors
D = diag(sqrt(diag(D))); % D contains standard deviation S now
end

% Break, if fitness is good enough
if arfitness(1) <= stopfitness

break;
end

% Escape flat fitness, or better terminate?
if arfitness(1) == arfitness(ceil(0.7 *lambda))

sigma = sigma * exp(0.2+cs/damps);

disp('warning: flat fitness, consider reformulating th e objective’);
end

disp([num2str(counteval) = ' num2str(arfitness(1))] );

end % while, end generation loop

L e Final Message --------------- e

disp([num2str(counteval) ": ' num2str(arfitness(1)) ;

xmin = arx(:, arindex(1)); % Return best point of last gen eration.
% Notice that xmean is expected to be even
% Dbetter.

72—
function f=felli(x)
N = size(x,1); if N < 2 error('dimension must be greater on e’); end
f=1e6.7((0:N-1)/(N-1)) * X."2; % condition number 1e6
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D Reformulation of Learning Parameter c.,

For sake of consistency and clarity, we have reformulatedaarning coefficients ind{) and
replaced

Ccov

with (6] (64)
Hecov
1 .
Ceov (1 - ) with ¢, and (65)
/’LCOV
1 —cCeov with 1—c1—¢, , (66)
and chosen (in57) and 68))
2
= 67
C1 (n T 1.3)2 T feoy ( )
cov 2 + !
¢, = min 2H—“C°V,1—cl , (68)
(n + 2)2 + Heov

The resulting coefficients are quite similar to the previdascontrast to the previous formu-
lation, ¢; becomes monotonic ip;ﬂ} andc; + ¢, becomes virtually monotonic i .

Another alternative, depending only on the degrees of fyaeth the covariance matrix
and additionally correcting for very smal| reads

min(1, \/6)
a = m+ 2y/m + Lt (69)
040 + Heft — 2 + L
¢y, = min (1 -1, l;n Y éeff (70)
a® = 03, (71)

wherem = ”2% is the degrees of freedom in the covariance matrix. jeor = 1, the
coefficientc,, is now chosen to be larger than zero,a§§> 0. Figure7 compares the new
learning rates with the old ones.
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Figure 7: Learning rates, ¢, (solid) andc... (dash-dotted) versys.¢. Above: Equations
(67) etc. forn = 3;10. Below: Equations@9) etc. forn = 2;40. Black: ¢; + ¢, and
Ceov; DIUEI €1 and ceoy/ficov; green:c, and (1 — 1/pcoyv)Ceov; Cyan: 2/(n? + V2); red:
(1 + ¢u)/ccov, above divided by ten. Faqi.., ~ 2 the difference is maximal, because
decreases much slower with increasing, andc., is non-monotonic in..., (a main reason
for the new formulation).
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