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Nomenclature

We adopt the usual vector notation, where bold letters,v, are column vectors, capital bold
letters,A, are matrices, and a transpose is denoted byvT. A list of used abbreviations and
symbols is given in alphabetical order.

Abbreviations

CMA Covariance Matrix Adaptation

EMNA Estimation of Multivariate Normal Algorithm

ES Evolution Strategy

(µ/µ{I,W}, λ)-ES, Evolution Strategy withµ parents, with recombination of allµ parents,
either Intermediate or Weighted, andλ offspring.

RHS Right Hand Side.

Greek symbols

λ ≥ 2, population size, sample size, number of offspring, see (5).

µ ≤ λ parent number, number of (positively) selected search points in the population, num-
ber of strictly positive recombination weights, see (6).

µeff =
(∑µ

i=1 w
2
i

)−1
, the variance effective selection mass for the mean, see (8).

∑
wj =

∑λ
i=1 wi, sum of all weights, note thatwi ≤ 0 for i > µ, see also (30) and (53).

∑ |wi|+ =
∑µ

i=1 wi = 1, sum of all positive weights.
∑ |wi|− = −(∑wj −

∑ |wi|+) = −∑λ
i=µ+1 wi ≥ 0, minus the sum of all negative

weights.

σ(g) ∈ R>0, step-size.

Latin symbols

B ∈ R
n, an orthogonal matrix. Columns ofB are eigenvectors ofC with unit length and

correspond to the diagonal elements ofD.

C(g) ∈ R
n×n, covariance matrix at generationg.

cii, diagonal elements ofC.

cc ≤ 1, learning rate for cumulation for the rank-one update of thecovariance matrix, see
(24) and (45), and Table1.

c1 ≤ 1− cµ, learning rate for the rank-one update of the covariance matrix update, see (28),
(30), and (47), and Table1.

cµ ≤ 1 − c1, learning rate for the rank-µ update of the covariance matrix update, see (16),
(30), and (47), and Table1.

cσ < 1, learning rate for the cumulation for the step-size control, see (31) and (43), and
Table1.
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D ∈ R
n, a diagonal matrix. The diagonal elements ofD are square roots of eigenvalues of

C and correspond to the respective columns ofB.

di > 0, diagonal elements of diagonal matrixD, d2i are eigenvalues ofC.

dσ ≈ 1, damping parameter for step-size update, see (32), (37), and (44).

E Expectation value

f : Rn → R,x 7→ f(x), objective function (fitness function) to be minimized.

fsphere : R
n → R,x 7→ ‖x‖2 = xTx =

∑n
i=1 x

2
i .

g ∈ N0, generation counter, iteration number.

I ∈ R
n×n, Identity matrix, unity matrix.

m(g) ∈ R
n, mean value of the search distribution at generationg.

n ∈ N, search space dimension, seef .

N (0, I), multivariate normal distribution with zero mean and unitycovariance matrix. A
vector distributed according toN (0, I) has independent,(0, 1)-normally distributed
components.

N (m,C) ∼ m + N (0,C), multivariate normal distribution with meanm ∈ R
n and

covariance matrixC ∈ R
n×n. The matrixC is symmetric and positive definite.

R>0, strictly positive real numbers.

p ∈ R
n, evolution path, a sequence of successive (normalized) steps, the strategy takes over

a number of generations.

wi, wherei = 1, . . . , λ, recombination weights, see (6) and (16) and (49)–(53).

x
(g+1)
k ∈ R

n, k-th offspring/individual from generationg + 1. We also refer tox(g+1), as
search point, or object parameters/variables, commonly used synonyms are candidate
solution, or design variables.

x
(g+1)
i:λ , i-th best individual out ofx(g+1)

1 , . . . ,x
(g+1)
λ , see (5). The indexi : λ denotes the

index of thei-th ranked individual andf(x(g+1)
1:λ ) ≤ f(x

(g+1)
2:λ ) ≤ · · · ≤ f(x

(g+1)
λ:λ ),

wheref is the objective function to be minimized.

y
(g+1)
k = (x

(g+1)
k −m(g))/σ(g) corresponding toxk = m+ σyk.

0 Preliminaries

This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands for Covariance
Matrix Adaptation.1 The CMA-ES is a stochastic, orrandomized, method for real-parameter
(continuous domain) optimization of non-linear, non-convex functions (see also Section0.3

1Parts of this material have also been presented in [11] and [13], in the context ofEstimation of Distribution
AlgorithmsandAdaptive Encoding, respectively. An introduction deriving CMA-ES from the information-geometric
concept of a natural gradient can be found in [15].
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below).2 We try to motivate and derive the algorithm from intuitive concepts and from re-
quirements of non-linear, non-convex search in continuousdomain. For a concise algorithm
description see AppendixA. A respective Matlab source code is given in AppendixC.

Before we start to introduce the algorithm in Sect.1, a few required fundamentals are
summed up.

0.1 Eigendecomposition of a Positive Definite Matrix

A symmetric, positive definite matrix,C ∈ R
n×n, is characterized in that for allx ∈ R

n\{0}
holdsxTCx > 0. The matrixC has an orthonormal basis of eigenvectors,B = [b1, . . . , bn],
with corresponding eigenvalues,d21, . . . , d

2
n > 0.

That means for eachbi holds
Cbi = d2ibi . (1)

The important message from (1) is thateigenvectors are not rotatedby C. This feature
uniquely distinguishes eigenvectors. Because we assume the orthogonal eigenvectors to be

of unit length,bTi bj = δij =

{

1 if i = j
0 otherwise

, andBTB = I (obviously this means

B−1 = BT, and it followsBBT = I). An basis of eigenvectors is practical, because
for anyv ∈ R

n we can find coefficientsαi, such thatv =
∑

i αibi, and then we have
Cv =

∑

i d
2
iαibi.

The eigendecomposition ofC obeys

C = BD2BT , (2)

where

B is an orthogonal matrix,BTB = BBT = I. Columns ofB form an orthonormal basis
of eigenvectors.

D2 = DD = diag(d1, . . . , dn)
2 = diag(d21, . . . , d

2
n) is a diagonal matrix with eigenvalues

of C as diagonal elements.
D = diag(d1, . . . , dn) is a diagonal matrix with square roots of eigenvalues ofC as diagonal

elements.

The matrix decomposition (2) is unique, apart from signs of columns ofB and permutations
of columns inB andD2 respectively, given all eigenvalues are different.3

Given the eigendecomposition (2), the inverseC−1 can be computed via

C−1 =
(
BD2BT

)−1

= BT−1
D−2B−1

= B D−2BT

= B diag

(
1

d21
, . . . ,

1

d2n

)

BT .

2While CMA variants formulti-objectiveoptimization andelitistic variants have been proposed, this tutorial is
solely dedicated to single objective optimization and non-elitistic truncation selection, also referred to as comma-
selection.

3Givenm eigenvalues are equal, any orthonormal basis of theirm-dimensional subspace can be used as column
vectors. Form > 1 there are infinitely many such bases.
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Figure 1: Ellipsoids depicting one-σ lines of equal density of six different normal distributions,
whereσ ∈ R>0, D is a diagonal matrix, andC is a positive definite full covariance matrix.
Thin lines depict possible objective function contour lines

From (2) we naturally define the square root ofC as

C
1
2 = BDBT (3)

and therefore

C− 1
2 = BD−1BT

= B diag

(
1

d1
, . . . ,

1

dn

)

BT

0.2 The Multivariate Normal Distribution

A multivariate normal distribution,N (m,C), has a unimodal, “bell-shaped” density, where
the top of the bell (the modal value) corresponds to the distribution mean,m. The distribution
N (m,C) is uniquely determined by its meanm ∈ R

n and its symmetric and positive definite
covariance matrixC ∈ R

n×n. Covariance (positive definite) matrices have an appealing
geometrical interpretation: they can be uniquely identified with the (hyper-)ellipsoid{x ∈
R

n |xTC−1x = 1}, as shown in Fig.1. The ellipsoid is a surface of equal density of the
distribution. The principal axes of the ellipsoid correspond to the eigenvectors ofC, the
squared axes lengths correspond to the eigenvalues. The eigendecomposition is denoted by
C = B (D)

2
BT (see Sect.0.1). If D = σI, whereσ ∈ R>0 andI denotes the identity

matrix,C = σ2
I and the ellipsoid is isotropic (Fig.1, left). If B = I, thenC = D2 is a

diagonal matrix and the ellipsoid is axis parallel oriented(middle). In the coordinate system
given by the columns ofB, the distributionN (0,C) is always uncorrelated.
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The normal distributionN (m,C) can be written in different ways.

N (m,C) ∼ m+N (0,C)

∼ m+C
1
2N (0, I)

∼ m+BDBTN (0, I)
︸ ︷︷ ︸

∼N(0,I)

∼ m+BDN (0, I)
︸ ︷︷ ︸

∼N(0,D2)

, (4)

where “∼” denotes equality in distribution, andC
1
2 = BDBT. The last row can be well

interpreted, from right to left

N (0, I) produces an spherical (isotropic) distribution as in Fig.1, left.

D scales the spherical distribution within the coordinate axes as in Fig.1, middle.DN (0, I) ∼
N
(
0,D2

)
hasn independent components. The matrixD can be interpreted as (indi-

vidual) step-size matrix and its diagonal entries are the standard deviations of the com-
ponents.

B defines a new orientation for the ellipsoid, where the new principal axes of the ellipsoid
correspond to the columns ofB. Note thatB hasn2−n

2 degrees of freedom.

Equation (4) is useful to computeN (m,C) distributed vectors, becauseN (0, I) is a vector
of independent(0, 1)-normally distributed numbers that can easily be realized on a computer.

0.3 Randomized Black Box Optimization

We consider the black box search scenario, where we want tominimize an objective function
(or costfunction orfitnessfunction)

f : R
n → R

x 7→ f(x) .

Theobjective is to find one or more search points (candidate solutions),x ∈ R
n, with a func-

tion value,f(x), as small as possible. We do not state the objective of searching for a global
optimum, as this is often neither feasible nor relevant in practice. Black boxoptimization
refers to the situation, where function values of evaluatedsearch points are the only accessible
information onf .4 The search points to be evaluated can be freely chosen. We define the
search costsas the number of executed function evaluations, in other words the amount of
information we needed to aquire fromf5. Any performance measure must consider the search
coststogetherwith the achieved objective function value.6

A randomized black box search algorithm is outlined in Fig.2. In the CMA Evolution

4Knowledge about the underlying optimization problem mightwell enter the composition off and the chosen
problemencoding.

5Also f is sometimes denoted ascost function, but it should not to be confused with thesearch costs.
6A performance measure can be obtained from a number of trialsas, for example, the mean number of function

evaluations to reach a given function value, or the median best function value obtained after a given number of
function evaluations.
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Initialize distribution parametersθ(0)

For generationg = 0, 1, 2, . . .
Sampleλ independent points from distributionP

(
x|θ(g)

)
→ x1, . . . ,xλ

Evaluate the samplex1, . . . ,xλ onf
Update parametersθ(g+1) = Fθ(θ

(g), (x1, f(x1)), . . . , (xλ, f(xλ)))
break, if termination criterion met

Figure 2: Randomized black box search.f : Rn → R is the objective function

Strategy the search distribution,P , is a multivariate normal distribution. Given all variances
and covariances, the normal distribution has the largest entropy of all distributions inRn.
Furthermore, coordinate directions are not distinguishedin any way. Both makes the normal
distribution a particularly attractive candidate for randomized search.

Randomized search algorithms are regarded to be robust in a rugged search landscape,
which can comprise discontinuities, (sharp) ridges, or local optima. The covariance matrix
adaptation (CMA) in particular is designed to tackle, additionally, ill-conditioned and non-
separable7 problems.

0.4 Hessian and Covariance Matrices

We consider the convex-quadratic objective functionfH : x 7→ 1
2x

THx, where the Hessian
matrixH ∈ R

n×n is a positive definite matrix. Given a search distributionN (m,C), there is
a close relation betweenH andC: SettingC = H−1 onfH is equivalent to optimizing the
isotropic functionfsphere(x) = 1

2x
Tx = 1

2

∑

i x
2
i (whereH = I) with C = I.8 That is, on

convex-quadratic objective functions, setting the covariance matrix of the search distribution
to the inverse Hessian matrix is equivalent to rescaling theellipsoid function into a spherical
one. Consequently, we assume that the optimal covariance matrix equals to the inverse Hessian
matrix, up to a constant factor.9 Furthermore, choosing a covariance matrix or choosing a
respective affine linear transformation of the search space(i.e.of x) is equivalent [10], because
for any full rankn× n-matrixA we find a positive definite Hessian such that1

2 (Ax)TAx =
1
2x

TATAx = 1
2x

THx.
The finalobjectiveof covariance matrix adaptation is to closelyapproximate the contour

lines of the objective functionf . On convex-quadratic functions this amounts to approximating
the inverse Hessian matrix, similar to a quasi-Newton method.

In Fig. 1 the solid-line distribution in the right figure follows the objective function con-
tours most suitably, and it is easy to foresee that it will aidto approach the optimum the most.

Thecondition number of a positive definite matrixA is defined via the Euclidean norm:

cond(A)
def
= ‖A‖ × ‖A−1‖, where‖A‖ = sup‖x‖=1 ‖Ax‖. For a positive definite (Hessian

or covariance) matrixA holds‖A‖ = λmax andcond(A) = λmax

λmin
≥ 1, whereλmax and

λmin are the largest and smallest eigenvalue ofA.

7An n-dimensionalseparableproblem can be solved by solvingn 1-dimensional problems separately, which is a
far easier task.

8Also the initial mean valuem has to be transformed accordingly.
9Even though there is good intuition and strong empirical evidence for this statement, a rigorous proof is missing.
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1 Basic Equation: Sampling

In the CMA Evolution Strategy, a population of new search points (individuals, offspring) is
generated by sampling a multivariate normal distribution.10 The basic equation for sampling
the search points, for generation numberg = 0, 1, 2, . . . , reads11

x
(g+1)
k ∼ m(g) + σ(g)N

(

0,C(g)
)

for k = 1, . . . , λ (5)

where

∼ denotes the same distribution on the left and right side.

N(0,C(g)) is a multivariate normal distribution with zero mean and covariance matrixC(g),
see Sect.0.2. It holdsm(g) + σ(g)N(0,C(g)) ∼ N

(
m(g), (σ(g))2C(g)

)
.

x
(g+1)
k ∈ R

n, k-th offspring (individual, search point) from generationg + 1.

m(g) ∈ R
n, mean value of the search distribution at generationg.

σ(g) ∈ R>0, “overall” standard deviation, step-size, at generationg.

C(g) ∈ R
n×n, covariance matrix at generationg. Up to the scalar factorσ(g)2, C(g) is the

covariance matrix of the search distribution.

λ ≥ 2, population size, sample size, number of offspring.

To define the complete iteration step, the remaining question is, how to calculatem(g+1),
C(g+1), andσ(g+1) for the next generationg + 1. The next three sections will answer
these questions, respectively. An algorithm summary with all parameter settings andMAT-
LAB source code are given in AppendixA andC, respectively.

2 Selection and Recombination: Moving the Mean

The new meanm(g+1) of the search distribution is aweighted average ofµ selected points
from the samplex(g+1)

1 , . . . ,x
(g+1)
λ :

m(g+1) =

µ
∑

i=1

wi x
(g+1)
i:λ (6)

µ
∑

i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0 (7)

where
10Recall that, given all (co-)variances, the normal distribution has the largest entropy of all distributions inRn.
11Framed equations belong to the final algorithm of a CMA Evolution Strategy.
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µ ≤ λ is the parent population size,i.e. the number of selected points.
wi=1...µ ∈ R>0, positive weight coefficients for recombination. Forwi=1...µ = 1/µ, Equa-

tion (6) calculates the mean value ofµ selected points.

x
(g+1)
i:λ , i-th best individual out ofx(g+1)

1 , . . . ,x
(g+1)
λ from (5). The indexi : λ denotes the

index of thei-th ranked individual andf(x(g+1)
1:λ ) ≤ f(x

(g+1)
2:λ ) ≤ · · · ≤ f(x

(g+1)
λ:λ ),

wheref is the objective function to be minimized.

Equation (6) implementstruncation selectionby choosingµ < λ out of λ offspring points.
Assigningdifferentweightswi should also be interpreted as a selection mechanism. Equation
(6) implementsweighted intermediate recombinationby takingµ > 1 individuals into account
for a weighted average.

The measure12

µeff =

(‖w‖1
‖w‖2

)2

=
‖w‖21
‖w‖22

=
(
∑µ

i=1 |wi|)2
∑µ

i=1 w
2
i

=
1

∑µ
i=1 w

2
i

(8)

will be repeatedly used in the following and can be paraphrased asvariance effective selection
mass. From the definition ofwi in (7) we derive1 ≤ µeff ≤ µ, andµeff = µ for equal
recombination weights,i.e. wi = 1/µ for all i = 1 . . . µ. Usually,µeff ≈ λ/4 indicates a
reasonable setting ofwi. A simple and reasonable setting could bewi ∝ µ − i + 1, and
µ ≈ λ/2.

The final equation rewrites (6) as anupdateof m,

m(g+1) = m(g) + cm

µ
∑

i=1

wi (x
(g+1)
i:λ −m(g)) (9)

where

cm ≤ 1 is a learning rate, usually set to1.

Equation (9) generalizes (6). If cm
∑µ

i=1 wi = 1, as it is the case with the default parameter
setting (compare Table1 in AppendixA), −m(g) cancels outm(g), and Equations (9) and
(6) are identical. Choosingcm < 1 can be advantageous on noisy functions. With optimal
step-size,i.e.σ ∝ 1/cm, in effect the “test steps” in (5) are increased whereas the update step
in (9) remains unchanged.13

3 Adapting the Covariance Matrix

In this section, the update of the covariance matrix,C, is derived. We will start out estimating
the covariance matrix from a single population of one generation (Sect.3.1). For small pop-
ulations this estimation is unreliable and an adaptation procedure has to be invented (rank-µ-
update, Sect.3.2). In the limit case only a single point can be used to update (adapt) the covari-
ance matrix at each generation (rank-one-update, Sect.3.3). This adaptation can be enhanced

12Later, the vectorw will have λ ≥ µ elements. Here, for computing the norm, we assume that any additional
λ− µ elements are zero.

13In the literature the notationκ = 1/cm is common andκ is used as multiplier in (5) instead of in (9).
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by exploiting dependencies between successive steps applying cumulation (Sect.3.3.2). Fi-
nally we combine the rank-µ and rank-one updating methods (Sect.3.4).

3.1 Estimating the Covariance Matrix From Scratch

For the moment we assume that the population contains enoughinformation to reliably es-
timate a covariance matrix from the population.14 For the sake of convenience we assume
σ(g) = 1 (see (5)) in this section. Forσ(g) 6= 1 the formulae hold except for a constant factor.

We can (re-)estimate the original covariance matrixC(g) using the sampled population
from (5), x(g+1)

1 . . .x
(g+1)
λ , via the empirical covariance matrix

C(g+1)
emp =

1

λ− 1

λ∑

i=1



x
(g+1)
i − 1

λ

λ∑

j=1

x
(g+1)
j







x
(g+1)
i − 1

λ

λ∑

j=1

x
(g+1)
j





T

. (10)

The empirical covariance matrixC(g+1)
emp is an unbiased estimator ofC(g): assuming the

x
(g+1)
i , i = 1 . . . λ, to be random variables (rather than a realized sample), we have that

E
[
C

(g+1)
emp

∣
∣C(g)

]
= C(g). Consider now a slightly different approach to get an estimator for

C(g).

C
(g+1)
λ =

1

λ

λ∑

i=1

(

x
(g+1)
i −m(g)

)(

x
(g+1)
i −m(g)

)T

(11)

Also the matrixC(g+1)
λ is an unbiased estimator ofC(g). The remarkable difference between

(10) and (11) is the reference mean value. ForC
(g+1)
emp it is the mean of theactually realized

sample. ForC(g+1)
λ it is the true mean value,m(g), of the sampled distribution (see (5)).

Therefore, the estimatorsC(g+1)
emp andC(g+1)

λ can be interpreted differently: whileC(g+1)
emp

estimates the distribution variancewithin the sampled points, C(g+1)
λ estimates variances of

sampledsteps, x(g+1)
i −m(g).

A minor difference between (10) and (11) is the different normalizations 1
λ−1

versus1
λ

,
necessary to get an unbiased estimator in both cases. In (10) one degree of freedom is
already taken by the inner summand. In order to get amaximum likelihoodestimator, in
both cases1

λ
must be used.

Equation (11) re-estimatesthe originalcovariance matrix. To “estimate” a “better” covari-
ance matrix, the same,weighted selectionmechanism as in (6) is used [17].

C(g+1)
µ =

µ
∑

i=1

wi

(

x
(g+1)
i:λ −m(g)

)(

x
(g+1)
i:λ −m(g)

)T

(12)

The matrixC(g+1)
µ is an estimator for the distribution ofselected steps, just asC(g+1)

λ is an

estimator of the original distribution of steps before selection. Sampling fromC(g+1)
µ tends to

reproduce selected,i.e. successfulsteps, giving a justification for what a “better” covariance
matrix means.

14To re-estimate the covariance matrix,C, from aN (0, I) distributed sample such thatcond(C) < 10 a sample
sizeλ ≥ 4n is needed, as can be observed in numerical experiments.
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Following [11], we compare (12) with the Estimation of Multivariate Normal Algorithm
EMNAglobal [26, 27]. The covariance matrix in EMNAglobal reads, similar to (10),

C
(g+1)
EMNAglobal

=
1

µ

µ
∑

i=1

(

x
(g+1)
i:λ −m

(g+1)
)(

x
(g+1)
i:λ −m

(g+1)
)

T

, (13)

wherem(g+1) = 1
µ

∑µ
i=1 x

(g+1)
i:λ . Similarly, applying the so-called Cross-Entropy method

to continuous domain optimization [30] yields the covariance matrixµ
µ−1

C
(g+1)
EMNAglobal

,
i.e. theunbiasedempirical covariance matrix of theµ best points. In both cases the subtle,
but most important difference to (12) is, again, the choice of the reference mean value.15

Equation (13) estimates the variancewithin the selected population while (12) estimates
selected steps. Equation (13) reveals always smaller variances than (12), because its ref-
erence mean value is the minimizer for the variances. Moreover, in most conceivable
selection situations (13) decreases the variances compared toC(g).

Figure3 demonstrates the estimation results ona linearobjective function forλ = 150,
µ = 50, andwi = 1/µ. Equation (12) geometrically increases the expected variance
in direction of the gradient (where the selection takes place, here the diagonal), given
ordinary settings for parent numberµ and recombination weightsw1, . . . , wµ. Equation
(13) always decreases the variance in gradient direction geometrically fast! Therefore, (13)
is highly susceptible to premature convergence, in particular with small parent populations,
where the population cannot be expected to bracket the optimum at any time. However,
for large values ofµ in large populations with large initial variances, the impact of the
different reference mean value can become marginal.

In order to ensure with (5), (6), and (12), thatC(g+1)
µ is areliable estimator, the variance

effective selection massµeff (cf. (8)) must be large enough: getting condition numbers (cf.
Sect.0.4) smaller than ten forC(g)

µ onfsphere(x) =
∑n

i=1 x
2
i , requiresµeff ≈ 10n. The next

step is to circumvent this restriction onµeff .

3.2 Rank-µ-Update

To achievefastsearch (opposite tomore robustor more globalsearch), e.g. competitive per-
formance onfsphere : x 7→ ∑

x2
i , the population sizeλ must be small. Because typically

(and ideally)µeff ≈ λ/4 alsoµeff must be small and we may assume, e.g.,µeff ≤ 1 + lnn.
Then, it is not possible to get areliable estimator for a good covariance matrix from (12).
As a remedy, information from previous generations is used additionally. For example, after
a sufficient number of generations, the mean of the estimatedcovariance matrices from all
generations,

C(g+1) =
1

g + 1

g
∑

i=0

1

σ(i)2
C(i+1)

µ (14)

becomes a reliable estimator for the selected steps. To makeC
(g)
µ from different generations

comparable, the differentσ(i) are incorporated. (Assumingσ(i) = 1, (14) resembles the
covariance matrix from the Estimation of Multivariate Normal Algorithm EMNAi [27].)

15Taking a weighted sum,
∑µ

i=1 wi . . . , instead of the mean,1
µ

∑µ
i=1 . . . , is an appealing, but less important,

difference.
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C
(g+1)
µ

C
(g+1)
EMNAglobal

sampling estimation new distribution

Figure 3: Estimation of the covariance matrix onflinear(x) = −∑2
i=1 xi to be minimized.

Contour lines (dotted) indicate that the strategy should move toward the upper right corner.
Above: estimation ofC(g+1)

µ according to (12), wherewi = 1/µ. Below: estimation of

C
(g+1)
EMNAglobal

according to (13). Left: sample ofλ = 150 N (0, I) distributed points. Middle:
theµ = 50 selected points (dots) determining the entries for the estimation equation (solid
straight lines). Right: search distribution of the next generation (solid ellipsoids). Givenwi =

1/µ, estimation viaC(g+1)
µ increasesthe expected variance in gradient direction for allµ <

λ/2, while estimation viaC(g+1)
EMNAglobal

decreasesthis variance for anyµ < λ geometrically
fast

In (14), all generation steps have the same weight. To assign recent generations a higher
weight, exponential smoothing is introduced. ChoosingC(0) = I to be the unity matrix and a
learning rate0 < cµ ≤ 1, thenC(g+1) reads

C(g+1) = (1− cµ)C
(g) + cµ

1

σ(g)2
C(g+1)

µ

= (1− cµ)C
(g) + cµ

µ
∑

i=1

wi y
(g+1)
i:λ y

(g+1)
i:λ

T

, (15)

where

cµ ≤ 1 learning rate for updating the covariance matrix. Forcµ = 1, no prior information is

retained andC(g+1) = 1
σ(g)2

C
(g+1)
µ . Forcµ = 0, no learning takes place andC(g+1) =

C(0). Here,cµ ≈ min(1, µeff/n
2) is a reasonably choice.

w1...µ ∈ R such thatw1 ≥ · · · ≥ wµ > 0 and
∑

iwi = 1.

12



y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g).

z
(g+1)
i:λ = C(g)−1/2

y
(g+1)
i:λ is the mutation vector expressed in the unique coordinate system

where the sampling is isotropic and the respective coordinate system transformation
does not rotate the original principal axes of the distribution.

This covariance matrix update is called rank-µ-update [19], because the sum of outer products
in (15) is of rankmin(µ, n) with probability one (givenµ non-zero weights). This sum can
even consist of a single term, ifµ = 1.

Finally, we generalize (15) to λ weight values which need neither sum to1, nor be non-
negative anymore [24, 23],

C(g+1) = (1− cµ
∑

wi)C
(g) + cµ

λ∑

i=1

wiy
(g+1)
i:λ y

(g+1)
i:λ

T

(16)

= C(g)1/2

(

I+ cµ

λ∑

i=1

wi

(

z
(g+1)
i:λ z

(g+1)
i:λ

T

− I

))

C(g)1/2 ,

where

w1...λ ∈ R such thatw1 ≥ · · · ≥ wµ > 0 ≥ wµ+1 ≥ wλ, and usually
∑µ

i=1 wi = 1 and
∑λ

i=1 wi ≈ 0.
∑

wi =
∑λ

i=1 wi

The second line of (16) expresses the update in the natural coordinate system, an idea already
considered in [8]. The identity covariance matrix is updated and a coordinate system transfor-

mation is applied afterwards by multiplication withC(g)1/2 on both sides. Equation (16) uses
λ weights,wi, of which about half are negative. If the weights are chosen such that

∑
wi = 0,

the decay onC(g) disappears and changes are only made along axes in which samples are
realized.

Negative values for the recombination weights in the covariance matrix update have been
introduced in the seminal paper of Jastrebski and Arnold [24] asactivecovariance matrix
adaptation. Non-equal negative weight values have been used in [23] together with a rather
involved mechanism to make up for different vector lengths.The default recombination
weights as defined in Table1 in AppendixA are somewhere in between these two propos-
als, but closer to [24]. Slightly deviating from (16) later on, vector lengths associated with
negative weights will be rescaled to a (direction dependent) constant, see (46) and (47) in
AppendixA. This allows toguarantypositive definiteness ofC(g+1). Conveniently, it also
alleviates a selection error which usually makes directions associated with longer vectors
worse.

The number1/cµ is thebackward time horizon that contributes roughly63% of the overall
information.
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Because (16) expands to the weighted sum

C
(g+1) = (1− cµ)

g+1
C

(0) + cµ

g
∑

i=0

(1− cµ)
g−i 1

σ(i)2
C

(i+1)
µ , (17)

the backward time horizon,∆g, where about63% of the overall weight is summed up, is
defined by

cµ

g
∑

i=g+1−∆g

(1− cµ)
g−i ≈ 0.63 ≈ 1− 1

e
. (18)

Resolving the sum yields

(1− cµ)
∆g ≈ 1

e
, (19)

and resolving for∆g, using the Taylor approximation forln, yields

∆g ≈ 1

cµ
. (20)

That is, approximately37% of the information inC(g+1) is older than1/cµ generations,
and, according to (19), the original weight is reduced by a factor of0.37 after approxi-
mately1/cµ generations.16

The choice ofcµ is crucial. Small values lead to slow learning, too large values lead to a
failure, because the covariance matrix degenerates. Fortunately, a good setting seems to be
largely independent of the function to be optimized.17 A first order approximation for a good
choice iscµ ≈ µeff/n

2. Therefore, the characteristic time horizon for (16) is roughlyn2/µeff .
Experiments suggest thatcµ ≈ µeff/n

2 is a rather conservative setting for large values of
n, whereasµeff/n

1.5 appears to be slightly beyond the limit of stability. The best, yet robust
choice of the exponent remains to be an open question.

Even for the learning ratecµ = 1, adapting the covariance matrix cannot be accomplished
within one generation. The effect of the original sample distribution does not vanish until a
sufficient number of generations. Assuming fixed search costs (number of function evalua-
tions), a small population sizeλ allows a larger number of generations and therefore usually
leads to a faster adaptation of the covariance matrix.

3.3 Rank-One-Update

In Section3.1we started by estimating the complete covariance matrix from scratch, using all
selected steps from asingle generation. We now take an opposite viewpoint. We repeatedly
update the covariance matrix in the generation sequence using a single selected steponly.
First, this perspective will give another justification of the adaptation rule (16). Second, we
will introduce the so-called evolution path that is finally used for a rank-one update of the
covariance matrix.

16This can be shown more easily, because(1 − cµ)g = exp ln(1 − cµ)g = exp(g ln(1 − cµ)) ≈ exp(−gcµ)
for smallcµ, and forg ≈ 1/cµ we get immediately(1− cµ)g ≈ exp(−1).

17We use the sphere modelfsphere(x) =
∑

i x
2
i to empirically find a good setting for the parametercµ, dependent

onn andµeff . The found setting was applicable to any non-noisy objective function we tried so far.
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3.3.1 A Different Viewpoint

We consider a specific method to producen-dimensional normal distributions with zero mean.
Let the vectorsy1, . . . ,yg0 ∈ R

n, g0 ≥ n, spanRn and letN (0, 1) denote independent(0, 1)-
normally distributed random numbers, then

N (0, 1)y1 + · · ·+N (0, 1)yg0 ∼ N
(

0,

g0∑

i=1

yiy
T

i

)

(21)

is a normally distributed random vector with zero mean and covariance matrix
∑g0

i=1 yiy
T

i .
The random vector (21) is generated by adding “line-distributions”N (0, 1)yi. The singu-
lar distributionN (0, 1)yi ∼ N(0,yiy

T

i ) generates the vectoryi with maximum likelihood
considering all normal distributions with zero mean.

The line distribution that generates a vectory with the maximum likelihood must “live” on
a line that includesy, and therefore the distribution must obeyN(0, 1)σy ∼ N(0, σ2yyT).
Any other line distribution with zero mean cannot generatey at all. Choosingσ reduces to
choosing the maximum likelihood of‖y‖ for the one-dimensional gaussianN(0, σ2‖y‖2),
which isσ = 1.

The covariance matrixyyT has rank one, its only eigenvectors are{αy |α ∈ R\0}
with eigenvalue‖y‖2. Using equation (21), any normal distribution can be realized if
yi are chosen appropriately. For example, (21) resembles (4) with m = 0, using the
orthogonal eigenvectorsyi = diibi, for i = 1, . . . , n, wherebi are the columns ofB.
In general, the vectorsyi need not to be eigenvectors of the covariance matrix, and they
usually are not.

Considering (21) and a slight simplification of (16), we try to gain insight into the adapta-
tion rule for the covariance matrix. Let the sum in (16) consist of a single summand only (e.g.

µ = 1), and letyg+1 =
x

(g+1)
1:λ −m(g)

σ(g) . Then, the rank-one update for the covariance matrix
reads

C(g+1) = (1− c1)C
(g) + c1 yg+1yg+1

T (22)

The right summand is of rank one and adds the maximum likelihood term foryg+1 into the
covariance matrixC(g). Therefore the probability to generateyg+1 in the next generation
increases.

An example of the first two iteration steps of (22) is shown inFigure 4. The distribution
N(0,C(1)) tends to reproducey1 with a larger probability than the initial distributionN(0, I);
the distributionN(0,C(2)) tends to reproducey2 with a larger probability thanN(0,C(1)),
and so forth. Wheny1, . . . ,yg denote the formerly selected, favorable steps,N(0,C(g))
tends to reproduce these steps. The process leads to an alignment of the search distribution
N(0,C(g)) to the distribution of the selected steps. If both distributions become alike, as
under random selection, in expectation no further change ofthe covariance matrix takes place
[9].

3.3.2 Cumulation: Utilizing the Evolution Path

We have used the selected steps,y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g), to update the covariance

matrix in (16) and (22). BecauseyyT = −y(−y)T, the sign of the steps is irrelevantfor the
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N
(
0,C(0)

)
N
(
0,C(1)

)
N
(
0,C(2)

)

Figure 4: Change of the distribution according to the covariance matrix update (22). Left:
vectorse1 ande2, andC(0) = I = e1e

T

1 + e2e
T

2 . Middle: vectors0.91 e1, 0.91 e2, and
0.41y1 (the coefficients deduce fromc1 = 0.17), andC(1) = (1 − c1) I + c1 y1y

T
1 , where

y1 =
(
−0.59
−2.2

)
. The distribution ellipsoid is elongated into the direction of y1, and therefore

increases the likelihood ofy1. Right:C(2) = (1− c1)C
(1) + c1 y2y

T

2 , wherey2 =
(
0.97
1.5

)
.

update of the covariance matrix—that is, the sign information is lost when calculatingC(g+1).
To reintroduce the sign information, a so-calledevolution pathis constructed [20, 22].

We call a sequence of successive steps, the strategy takes over a number of generations,
an evolution path. An evolution path can be expressed by a sumof consecutive steps. This
summation is referred to ascumulation. To construct an evolution path, the step-sizeσ is
disregarded. For example, an evolution path of three steps of the distribution meanm can be
constructed by the sum

m(g+1) −m(g)

σ(g)
+

m(g) −m(g−1)

σ(g−1)
+

m(g−1) −m(g−2)

σ(g−2)
. (23)

In practice, to construct the evolution path,pc ∈ R
n, we use exponential smoothing as in (16),

and start withp(0)
c = 0.18

p(g+1)
c = (1− cc)p

(g)
c +

√

cc(2 − cc)µeff
m(g+1) −m(g)

σ(g)
(24)

where

p
(g)
c ∈ R

n, evolution path at generationg.

cc ≤ 1. Again, 1/cc is the backward time horizon of the evolution pathpc that contains
roughly63% of the overall weight (compare derivation of (20)). A time horizon between√
n andn is effective.

The factor
√

cc(2− cc)µeff is a normalization constant forpc. For cc = 1 andµeff = 1, the

factor reduces to one, andp(g+1)
c = (x

(g+1)
1:λ −m(g))/σ(g).

18In the final algorithm (24) is still slightly modified, compare (45).
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The factor
√

cc(2− cc)µeff is chosen, such that

p
(g+1)
c ∼ N (0,C) (25)

if

p
(g)
c ∼ x

(g+1)
i:λ −m(g)

σ(g)
∼ N (0,C) for all i = 1, . . . , µ . (26)

To derive (25) from (26) and (24) remark that

(1− cc)
2 +

√

cc(2− cc)
2
= 1 and

µ
∑

i=1

wiNi(0,C) ∼ 1√
µeff

N(0,C) . (27)

The (rank-one) update of the covariance matrixC(g) via the evolution pathp(g+1)
c reads [20]

C(g+1) = (1− c1)C
(g) + c1p

(g+1)
c p(g+1)

c

T

. (28)

An empirically validated choice for the learning rate in (28) is c1 ≈ 2/n2. For cc = 1 and
µ = 1, Equations (28), (22), and (16) are identical.

Using the evolution path for the update ofC is a significant improvement of (16) for
smallµeff , because correlations between consecutive steps are heavily exploited. The leading
signs of steps, and the dependencies between consecutive steps play a significant role for the
resulting evolution pathp(g+1)

c .

We consider the two most extreme situations, fully correlated steps and entirely anti-
correlated steps. The summation in (24) reads for positive correlations

g
∑

i=0

(1− cc)
i → 1

cc
(for g → ∞) ,

and for negative correlations

g
∑

i=0

(−1)i(1− cc)
i =

⌊g/2⌋
∑

i=0

(1− cc)
2i −

(g−1)/2
∑

i=0

(1− cc)
2i+1

=

⌊g/2⌋
∑

i=0

(1− cc)
2i − (1− cc)

(g−1)/2
∑

i=0

(1− cc)
2i

= cc

⌊g/2⌋
∑

i=0

(

(1− cc)
2)i + (1− cc)

g((g + 1) mod 2)

→ cc
1− (1− cc)2

=
1

2− cc
(for g → ∞) .

Multipling these by
√

cc(2− cc), which is applied to each input vector, we find that the
length of the evolution path is modulated by the factor of up to

√

2− cc
cc

≈ 1√
cc

(29)

due to the positive correlations, or its inverse due to negative correlations, respectively [15,
Equations (48) and (49)].
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With
√
n ≤ 1/cc ≤ n/2 the number of function evaluations needed to adapt a nearly optimal

covariance matrix on cigar-like objective functions becomesO(n), despite a learning rate of
c1 ≈ 2/n2 [15]. A plausible interpretation of this effect is two-fold. First, the desired axis is
represented in the path (much) more accurately than in single steps. Second, the learning rate
c1 is modulated: the increased length of the evolution path as computed in (29) acts in effect
similar to an increased learning rate by a factor of up toc

−1/2
c .

As a last step, we combine (16) and (28).

3.4 Combining Rank-µ-Update and Cumulation

The final CMA update of the covariance matrix combines (16) and (28).

C(g+1) = (1− c1 − cµ
∑

wj
︸ ︷︷ ︸

can be close or equal to0

)C(g)

+ c1 p(g+1)
c p(g+1)

c

T

︸ ︷︷ ︸

rank-one update

+ cµ

λ∑

i=1

wi y
(g+1)
i:λ

(

y
(g+1)
i:λ

)T

︸ ︷︷ ︸

rank-µ update

(30)

where

c1 ≈ 2/n2.

cµ ≈ min(µeff/n
2, 1− c1).

y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g).

∑
wj =

∑λ
i=1 wi ≈ −c1/cµ, but see also (53) and(46) in AppendixA.

Equation (30) reduces to (16) for c1 = 0 and to (28) for cµ = 0. The equation combines the
advantages of (16) and (28). On the one hand, the information from the entire population is
used efficiently by the so-called rank-µ update. On the other hand, information of correlations
betweengenerations is exploited by using the evolution path for therank-one update. The for-
mer is important in large populations, the latter is particularly important in small populations.

4 Step-Size Control

The covariance matrix adaptation, discussed in the last section, does not explicitly control the
“overall scale” of the distribution, the step-size. The covariance matrix adaptation increases
or decreases the scale onlyin a single directionfor each selected step—or it decreases the
scale by fading out old information by a given, non-adaptivefactor. Less informally, we have
two specific reasons to introduce a step-size control in addition to the adaptation rule (30) for
C(g).

1. Theoptimal overall step length cannot be well approximated by (30), in particular if
µeff is chosen larger than one.
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Figure 5: Three evolution paths of respectively six steps from different selection situations
(idealized). The lengths of thesinglesteps are all comparable. The length of the evolution
paths (sum of steps) is remarkably different and is exploited for step-size control

For example, onfsphere(x) =
∑n

i=1 x
2
i , given C(g) = I and λ ≤ n, the op-

timal step-sizeσ equals approximatelyµ
√

fsphere(x)/n with equal recombination
weights [4, 29] and1.25µeff

√

fsphere(x)/n with optimal recombination weights [2].
This dependency onµ or µeff can not be realized by (16) or (30).

2. The largest reliable learning rate for the covariance matrix update in (30) is too slow to
achieve competitive change rates for the overall step length.

To achieve optimal performance onfsphere with an Evolution Strategy with weighted
recombination, the overall step length must decrease by a factor of aboutexp(0.25) ≈
1.28 within n function evaluations, as can be derived from progress formulas as in
[2] and [4, p. 229]. That is, the time horizon for the step length changemust be pro-
portional ton or shorter. From the learning ratesc1 andcµ in (30) follows that the
adaptation is too slow to perform competitive onfsphere wheneverµeff ≪ n. This
can be validated by simulations even for moderate dimensions, n ≥ 10, and small
µeff ≤ 1 + lnn.

To control the step-sizeσ(g) we utilize an evolution path,i.e. a sum of successive steps (see
also Sect.3.3.2). The method can be applied independently of the covariancematrix update
and is denoted ascumulative path length control, cumulative step-size control, orcumulative
step length adaptation (CSA). The length of an evolution path is exploited, based on the
following reasoning, as depicted in Fig.5.

• Whenever the evolution path is short, single steps cancel each other out (Fig.5, left).
Loosely speaking, they are anti-correlated. If steps extinguish each other, the step-size
should be decreased.

• Whenever the evolution path is long, the single steps are pointing to similar directions
(Fig. 5, right). Loosely speaking, they are correlated. Because the steps are similar, the
same distance can be covered by fewer but longer steps into the same directions. In the
limit case, when consecutive steps have identical direction, they can be replaced by any
of the enlarged single step. Consequently, the step-size should be increased.
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• In the desired situation the steps are (approximately) perpendicular in expectation and
therefore uncorrelated (Fig.5, middle).

To decide whether the evolution path is “long” or “short”, wecompare the length of the path
with its expected length under random selection19, where consecutive steps are independent
and therefore uncorrelated (uncorrelated steps are the desired situation). If selection biases the
evolution path to be longer then expected,σ is increased, and, vice versa, if selection biases
the evolution path to be shorter than expected,σ is decreased. In the ideal situation, selection
does not bias the length of the evolution path and the length equals its expected length under
random selection.

In practice, to construct the evolution path,pσ, the same techniques as in (24) are applied.
In contrast to (24), a conjugateevolution path is constructed, because the expected length
of the evolution pathpc from (24) depends on its direction (compare (25)). Initialized with
p
(0)
σ = 0, the conjugate evolution path reads

p(g+1)
σ = (1− cσ)p

(g)
σ +

√

cσ(2− cσ)µeff C(g)−
1
2 m(g+1) −m(g)

σ(g)
(31)

where

p
(g)
σ ∈ R

n is the conjugate evolution path at generationg.

cσ < 1. Again,1/cσ is the backward time horizon of the evolution path (compare (20)). For
smallµeff , a time horizon between

√
n andn is reasonable.

√

cσ(2− cσ)µeff is a normalization constant, see (24).

C(g)−
1
2 def

= B(g)D(g)−1
B(g)T, whereC(g) = B(g)

(
D(g)

)2
B(g)T is an eigendecompo-

sition of C(g), whereB(g) is an orthonormal basis of eigenvectors, and the diagonal
elements of the diagonal matrixD(g) are square roots of the corresponding positive
eigenvalues (cf. Sect.0.1).

For C(g) = I, we haveC(g)−
1
2 = I and (31) replicates (24). The transformationC(g)−

1
2

re-scales the stepm(g+1) −m(g) within the coordinate system given byB(g).

The single factors of the transformationC(g)−
1
2= B(g)D(g)−1

B(g)T can be explained
as follows (from right to left):

B(g)T rotates the space such that the columns ofB(g), i.e. the principal axes of the
distributionN(0,C(g)), rotate into the coordinate axes. Elements of the resulting
vector relate to projections onto the corresponding eigenvectors.

D(g)−1
applies a (re-)scaling such that all axes become equally sized.

B(g) rotates the result back into the original coordinate system. This last transforma-
tion ensures that the principal axes of the distribution arenot rotated by the overall
transformation and directions of consecutive steps are comparable.

19Random selection means that the indexi : λ (compare (6)) is independent of the value ofx(g+1)
i:λ for all i =

1, . . . , λ, e.g.i : λ = i.
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Consequently, the transformationC(g)−
1
2 makes the expected length ofp

(g+1)
σ independent of

its direction, and for any sequence of realized covariance matricesC(g)
g=0,1,2,... we have under

random selectionp(g+1)
σ ∼ N (0, I), givenp(0)

σ ∼ N (0, I) [9].
To updateσ(g), we “compare”‖p(g+1)

σ ‖ with its expected lengthE‖N (0, I) ‖, that is

lnσ(g+1) = lnσ(g) +
cσ
dσ

(

‖p(g+1)
σ ‖

E‖N (0, I) ‖ − 1

)

, (32)

where

dσ ≈ 1, damping parameter, scales the change magnitude oflnσ(g). The factorcσ/dσ/E‖N (0, I) ‖
is based on in-depth investigations of the algorithm [9].

E‖N (0, I) ‖ =
√
2 Γ(n+1

2 )/Γ(n2 ) ≈
√
n+O(1/n), expectation of the Euclidean norm of a

N (0, I) distributed random vector.

For ‖p(g+1)
σ ‖ = E‖N (0, I) ‖ the second summand in (32) is zero, andσ(g) is unchanged,

while σ(g) is increased for‖p(g+1)
σ ‖ > E‖N (0, I) ‖, andσ(g) is decreased for‖p(g+1)

σ ‖ <
E‖N (0, I) ‖.

Alternatively, we might use the squared norm‖p(g+1)
σ ‖2 in (32) and compare with its

expected valuen [3]. In this case (32) would read

ln σ(g+1) = ln σ(g) +
cσ
2dσ

(

‖p(g+1)
σ ‖2
n

− 1

)

. (33)

This update performs rather similar to (32), while it presumable leads to faster step-size
increments and slower step-size decrements.

The step-size change is unbiased on the log scale, becauseE
[
lnσ(g+1)

∣
∣σ(g)

]
= lnσ(g)

for p
(g+1)
σ ∼ N (0, I). The role of unbiasedness is discussed in Sect.5. Equations (31)

and (32) cause successive steps of the distribution meanm(g) to be approximatelyC(g)−1
-

conjugate.

In order to show that successive steps are approximatelyC(g)−1
-conjugate first we re-

mark that (31) and (32) adaptσ such that the length ofp(g+1)
σ equals approximately

E‖N (0, I) ‖. Starting from (E‖N (0, I) ‖)2 ≈ ‖p(g+1)
σ ‖2 = p

(g+1)
σ

T

p
(g+1)
σ =

RHSTRHS of (31) and assuming that the expected squaredlengthof C(g)−
1
2 (m(g+1) −

m(g)) is unchanged by selection (unlike its direction) we get

p
(g)
σ

T

C
(g)−

1
2 (m(g+1) −m

(g)) ≈ 0 , (34)

and
(

C
(g)

1
2 p

(g)
σ

)

T

C
(g)−1

(

m
(g+1) −m

(g)
)

≈ 0 . (35)

Given1/(c1 + cµ) ≫ 1 and (34) we assume alsop(g−1)
σ

T

C(g)−
1
2 (m(g+1) −m(g)) ≈ 0

and derive
(

m
(g) −m

(g−1)
)

T

C
(g)−1

(

m
(g+1) −m

(g)
)

≈ 0 . (36)
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That is, the steps taken by the distribution mean become approximatelyC(g)−1
-conjugate.

Becauseσ(g) > 0, (32) is equivalent to

σ(g+1) = σ(g) exp

(

cσ
dσ

(

‖p(g+1)
σ ‖

E‖N (0, I) ‖ − 1

))

(37)

The length of the evolution path is an intuitive and empirically well validated goodness
measure for the overall step length. Forµeff > 1 it is the best measure to our knowledge.20

Nevertheless, it fails to adapt nearly optimal step-sizes on very noisy objective functions [5].

5 Discussion

The CMA-ES is an attractive option for non-linear optimization, if “classical” search meth-
ods, e.g. quasi-Newton methods (BFGS) and/or conjugate gradient methods, fail due to a
non-convex or rugged search landscape (e.g. sharp bends, discontinuities, outliers, noise, and
local optima). Learning the covariance matrix in the CMA-ESis analogous to learning the in-
verse Hessian matrix in a quasi-Newton method. In the end, any convex-quadratic (ellipsoid)
objective function is transformed into the spherical functionfsphere. This can reduce the num-
ber off -evaluations needed to reach a targetf -value on ill-conditioned and/or non-separable
problems by orders of magnitude.

The CMA-ES overcomes typical problems that are often associated with evolutionary al-
gorithms.

1. Poor performance on badly scaled and/or highly non-separable objective functions.
Equation (30) adapts the search distribution to badly scaled and non-separable prob-
lems.

2. The inherent need to use large population sizes. A typical, however intricate to diagnose
reason for the failure of population based search algorithms is the degeneration of the
population into a subspace.21 This is usually prevented by non-adaptive components in
the algorithm and/or by a large population size (considerably larger than the problem
dimension). In the CMA-ES, the population size can be freelychosen, because the
learning ratesc1 andcµ in (30) prevent the degeneration even for small population sizes,
e.g.λ = 9. Small population sizes usually lead to faster convergence, large population
sizes help to avoid local optima.

3. Premature convergence of the population. Step-size control in (37) prevents the pop-
ulation to converge prematurely. It does not prevent the search to end up in a local
optimum.

20Recently, two-point adaptation has shown to achieve similar performance [16].
21The same problem can be observed with the downhill simplex method [28] in dimension, say, larger than ten.
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Therefore, the CMA-ES is highly competitive on a considerable number of test functions
[9, 17, 19, 21, 22] and was successfully applied to many real world problems.22

Finally, we discuss a fewbasic design principlesthat were applied in the previous sec-
tions.

Change rates We refer to a change rate as the expected parameter changeper sampled
search point, given a certain selection situation. To achieve competitive performance on a
wide range of objective functions, the possible change rates of the adaptive parameters need
to be adjusted carefully. The CMA-ES separately controls change rates for the mean value of
the distribution,m, the covariance matrix,C, and the step-size,σ.

• The change rate for the mean valuem, relative to the given sample distribution, is
determined bycm, and by the parent number and the recombination weights. Thelarger
µeff , the smaller is the possible change rate ofm.23 Similar holds for most evolutionary
algorithms.

• The change rate of the covariance matrixC is explicitly controlled by the learning rates
c1 andcµ and therefore detached from parent number and population size. The learning
rate reflects the model complexity. In evolutionary algorithms, the explicit control of
change rates of the covariances, independently of population size and mean change, is
a rather unique feature.

• The change rate of the step-sizeσ is explicitly controlled by the damping parameterdσ
and is in particular independent from the change rate ofC. The time constant1/cσ ≤ n
ensures a sufficiently fast change of the overall step lengthin particular with small
population sizes.

Invariance Invariance properties of a search algorithm denote identical behavior on a set, or
a class of objective functions. Invariance is an important property of the CMA-ES.24 Trans-
lation invariance should be taken for granted in continuousdomain optimization. Translation
invariance means that the search behavior on the functionx 7→ f(x + a), x(0) = b − a, is
independent ofa ∈ R

n. Further invariances, e.g. invariance to certain linear transformations
of the search space, are highly desirable: they imply uniform performance on classes of func-
tions25 and therefore allow for generalization of empirical results. In addition to translation
invariance, the CMA-ES exhibits the following invariances.

• Invariance to order preserving (i.e. strictly monotonic) transformations of the objective
function value. The algorithm only depends onthe rankingof function values.

22http://www.lri.fr/ ˜ hansen/cmaapplications.pdf provides a list of applications published be-
fore 2010.

23Given λ 6≫ n, then the mean change per generation is roughly proportional to σ/
√
µeff , while the optimal

step-sizeσ is roughly proportional toµeff . Therefore, the net changewith optimal step-sizeis proportional to
√
µeff

per generation. Now considering the effect on the resultingconvergence rate, a closer approximation of the gradient
adds another factor of

√
µeff , such that the generational progress rate is proportional to µeff . Givenλ/µeff ≈ 4, we

have the remarkable result that the convergence rateperf -evaluationis roughly independent ofλ.
24Special acknowledgments to Iván Santibá n̄ez-Koref for pointing this out to me.
25However, most invariances are linked to a state space transformation. Therefore, uniform performance is only

observedafter the state of the algorithm has been adapted.
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• Invariance to angle preserving (rigid) transformations ofthe search space (rotation, re-
flection, and translation) if the initial search point is transformed accordingly.

• Scale invariance if the initial scaling, e.g.σ(0), and the initial search point,m(0), are
chosen accordingly.

• Invariance to a scaling of variables (diagonal invariance)if the initial diagonal covari-
ance matrixC(0), and the initial search point,m(0), are chosen accordingly.

• Invariance to any invertible linear transformation of the search space,A, if the initial

covariance matrixC(0) = A−1
(
A−1

)T
, and the initial search point,m(0), are trans-

formed accordingly. Together with translation invariance, this can also be referred to as
affine invariance, i.e. invariance to affine search space transformations.

Invariance should be a fundamental design criterion for anysearch algorithm. Together with
the ability to efficiently adapt the invariance governing parameters, invariance is a key to
competitive performance.

Stationarity or Unbiasedness An important design criterion for arandomizedsearch proce-
dure isunbiasednessof variations of object and strategy parameters [6, 22]. Consider random
selection, e.g. the objective functionf(x) = rand to be independent ofx. Then the popula-
tion mean is unbiased if its expected value remains unchanged in the next generation, that is
E
[
m(g+1)

∣
∣m(g)

]
= m(g). For the population mean, stationarity under random selection is

a rather intuitive concept. In the CMA-ES, stationarity is respected for all parameters that ap-
pear in the basic equation (5). The distribution meanm, the covariance matrixC, andlnσ are
unbiased. Unbiasedness oflnσ does not imply thatσ is unbiased. Under random selection,
E
[
σ(g+1)

∣
∣σ(g)

]
> σ(g), compare (32).26

For distribution variances (or step-sizes) a bias toward increase or decrease entails the
risk of divergence or premature convergence, respectively, whenever the selection pressure is
low or when no improvements are observed. On noisy problems,a properly controlled bias
towards increase can be appropriate. It has the non-negligible disadvantage that the decision
for termination becomes more difficult.
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[26] Larrañaga P. A review on estimation of distribution algorithms. In P. Larrañaga and J. A.
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A Algorithm Summary: The (µ/µW, λ)-CMA-ES

Figure6 outlines the complete algorithm27, summarizing (5), (9), (24), (30), (31), and (37).
Used symbols, in order of appearance, are:

yk ∼ N (0,C), for k = 1, . . . , λ, are realizations from a multivariate normal distribution
with zero mean and covariance matrixC.

B,D result from an eigendecomposition of the covariance matrixC with C = BD2BT =
BDDBT (cf. Sect.0.1). Columns ofB are an orthonormal basis of eigenvectors. Di-
agonal elements of the diagonal matrixD are square roots of the corresponding positive
eigenvalues. While (39) can certainly be implemented using a Cholesky decomposition
of C, the eigendecomposition is needed to correctly computeC− 1

2 = BD−1BT for
(43) and (46).

xk ∈ R
n, for k = 1, . . . , λ. Sample ofλ search points.

〈y〉w =
∑µ

i=1 wi yi:λ, step of the distribution mean disregarding step-sizeσ.

yi:λ = (xi:λ −m)/σ, seexi:λ below.

xi:λ ∈ R
n, i-th best point out ofx1, . . . ,xλ from (40). The indexi : λ denotes the index of

thei-th ranked point, that isf(x1:λ) ≤ f(x2:λ) ≤ · · · ≤ f(xλ:λ).

µ = |{wi |wi > 0}| = ∑λ
i=1 1(0,inf)(wi) ≥ 1 is the number of strictly positive recombina-

tion weights.

µeff =
(∑µ

i=1 w
2
i

)−1
is the variance effective selection mass, see (8). Because

∑µ
i=1 |wi| =

1, we have1 ≤ µeff ≤ µ.

C− 1
2

def
= BD−1BT, seeB,D above. The matrixD can be inverted by inverting its di-

agonal elements. From the definitions we find thatC− 1
2 yi = Bzi, andC− 1

2 〈y〉w =
B
∑µ

i=1 wi zi:λ.

E‖N (0, I) ‖ =
√
2 Γ(n+1

2 )/Γ(n2 ) ≈
√
n
(
1− 1

4n + 1
21n2

)
.

hσ =

{

1 if ‖pσ‖√
1−(1−cσ)2(g+1)

< (1.4 + 2
n+1 )E‖N (0, I) ‖

0 otherwise
, whereg is the generation

number. The Heaviside functionhσ stalls the update ofpc in (45) if ‖pσ‖ is large.
This prevents a too fast increase of axes ofC in a linear surrounding,i.e. when the
step-size is far too small. This is useful when the initial step-size is chosen far too small
or when the objective function changes in time.

δ(hσ) = (1 − hσ)cc(2 − cc) ≤ 1 is of minor relevance. In the (unusual) case ofhσ = 0, it
substitutes for the second summand from (45) in (47).

∑
wj =

∑λ
i=1 wi is the sum of the recombination weights, see (49)–(53). We have−c1/cµ ≤∑

wj ≤ 1 and for the default population sizeλ, we meet the lower boundcµ
∑

wj =
−c1.

27With negative recombination weights in the covariance matrix, chosen here by default, the algorithm is sometimes
denoted as aCMA-ES for active CMA [24].
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Set parameters

Set parametersλ, wi=1...λ, cσ, dσ, cc, c1, andcµ according to Table1.

Initialization

Set evolution pathspσ = 0, pc = 0, covariance matrixC = I, andg = 0.

Choose distribution meanm ∈ R
n and step-sizeσ ∈ R>0 problem dependent.1

Until termination criterion met , g ← g + 1

Sample new population of search points, fork = 1, . . . , λ

zk ∼ N (0, I) (38)

yk = BDzk ∼ N (0,C) (39)

xk = m+ σyk ∼ N
(
m, σ2C

)
(40)

Selection and recombination

〈y〉w =

µ
∑

i=1

wi yi:λ where
µ
∑

i=1

wi = 1, wi > 0 for i = 1 . . . µ (41)

m ← m+ cmσ 〈y〉w equals
µ
∑

i=1

wi xi:λ if cm = 1 (42)

Step-size control

pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µeff C− 1
2 〈y〉w (43)

σ ← σ × exp

(
cσ
dσ

( ‖pσ‖
E‖N (0, I) ‖ − 1

))

(44)

Covariance matrix adaptation

pc ← (1− cc)pc + hσ

√

cc(2− cc)µeff 〈y〉w (45)

w◦
i = wi × (1 if wi ≥ 0 elsen/‖C− 1

2yi:λ‖2) (46)

C ← (1 + c1δ(hσ)− c1 − cµ
∑

wj
︸ ︷︷ ︸

usually equals to0

)C + c1pcp
T

c + cµ

λ∑

i=1

w◦
i yi:λy

T

i:λ (47)

1The optimum should presumably be within the initial cubem ± 3σ(1, . . . , 1)T. If the optimum is ex-

pected to be in the initial search interval[a, b]n we may choose the initial search point,m, uniformly randomly

in [a, b]n, andσ = 0.3(b − a). Different search intervals∆si for different variables can be reflected by a

different initialization ofC, in that the diagonal elements ofC obeycii = (∆si)
2. However, the∆si should

not disagree by several orders of magnitude. Otherwise a scaling of the variables should be applied.

Figure 6: The(µ/µW, λ)-CMA Evolution Strategy. Symbols: see text
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Default Parameters The (external) strategy parameters areλ, wi=1...λ, cσ, dσ, cc, c1, and
cµ. Default strategy parameter values are given in Table1. An in-depth discussion of most
parameters is given in [22].

The setting for the defaultnegative weightsis new (since 2016). The setting is somewhat
similar to the uniform weights from [24], deviating significantly from mirroring the positive
weight values as in [2, 23]. The choice is a compromise between avoiding a large variance
reduction in a single direction inC while still giving emphasis on the selectiondifferencesin
particular for weights close to the median rank. We attempt to scale all negative weights such
that the factor in front ofC in (47) becomes1. That is, we have by default no decay onC and
the variance added to the covariance matrix by the positive updates equals, in expectation, to
the variance removed by the negative updates.

Specifically, we want to achievec1 + cµ
∑

wj = 0, that is

c1 = −cµ
∑

wj

c1/cµ = −
(

∑

|wj |+ −
∑

|wj |−
)

c1/cµ = −1 +
∑

|wj |−

1 + c1/cµ =
∑

|wj |− ,

hence the multiplierα−
µ in (53) is set to1 + c1/cµ.

Choosing
∑ |wj |− in the order of1 is only viable ifµeff 6≫ µ−

eff =
(

∑λ
i=µ+1 wi

)2

/
∑λ

i=µ+1 wi
2,

that is, if the variance effective update information from positive weights,µeff , is not much
larger than that from negative weights,µ−

eff . In the default setting,µ−
eff is about1.2 to 1.5

timeslarger thanµeff , because the curvewi versusi flattens out for increasingi. In (53)
we use the boundα−

µeff
, see (51), to (i) get a meaningful value for any choices ofw′

i, and
(ii) preserve the effect from lettingcµ go to zero (eventually turning off the covariance
matrix adaptation entirely).

The apparent circular dependency betweenwi, α−
µ , cµ, µeff , and againwi can be re-

solved: the variance effective selection massµeff depends only on therelativerelation be-
tween thepositiveweights, such thatµeff(w1...λ) = µeff (w1...µ) = (

∑µ
i=1 wi)

2/
∑µ

i=1 w
2
i =

µeff (w
′
1...µ). That is,µeff andµ−

eff can be computed already fromw′
i of (49), from which

cµ can be computed, from whichα−
µ can be computed, from which the remaining negative

weightswi can be computed.

Finally, we also bound the negative weights via (53) to guaranty positive definiteness ofC
via (46), thereby, possibly, re-introducing a decay onC. With the default setting for popu-
lation sizeλ and the default raw weight values,α−

pos def in Equation (53) leaves the weights
unchanged.

Specifically, to guaranty positive definiteness of the covariance matrix, we can bound the
maximal variance subtracted in a single direction by the variance remaining after the decay
onC is applied in (47). Defining

∑ |wi|− =
∑λ

i=µ+1 |wi| to be the sum of the absolute
values of all negative weights, and assuming a (Mahalanobis-)variance ofn from each
negative summand of the weighted sum in (47), we require

ncµ
∑

|wi|− < 1− c1 −
∑

wjcµ = 1− c1 − cµ + cµ
∑

|wi|− . (59)
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Table 1: Default Strategy Parameters, whereµ = |{wi > 0}| = ⌊λ/2⌋, µeff =
(
∑µ

i=1 w′

i)
2

∑µ
i=1 w′2

i

∈

[1, µ], µ−
eff =

(
∑

λ
i=µ+1 w′

i)
2

∑
λ
i=µ+1 w′2

i

,
∑µ

i=1 wi = 1, and
∑ |wj |+ is the sum of all positive, and

−∑ |wj |− the sum of all negativewj-values, i.e.,α−
µ =

∑ |w′
j |− ≥ 0. Apart fromwi

for i > µ, all parameters are taken from [12] with only minor modifications
Selection and Recombination:

λ = 4 + ⌊3 lnn⌋ can be increased (48)

w′
i = ln

λ+ 1

2
− ln i for i = 1, . . . , λ preliminary convex shape (49)

α−
µ = 1+ c1/cµ let c1 + cµ

∑
wi = c1 + cµ− cµ

∑ |wi|− be0 (50)

α−
µeff

= 1+
2µ−

eff

µeff + 2
bound

∑ |wi|− to be compliant withcµ(µeff) (51)

α−
pos def =

1− c1 − cµ
n cµ

bound
∑ |wi|− to guaranty positive

definiteness
(52)

wi =







1
∑ |w′

j |+
w′

i if w′
i ≥ 0 positive weights sum to one

min(α−
µ , α

−
µeff

, α−
pos def)

∑ |w′
j |−

w′
i if w′

i < 0
negative weights usually
sum to−α−

µ

(53)

cm = 1 (54)

Step-size control:

cσ =
µeff + 2

n+ µeff + 5

dσ = 1 + 2 max

(

0,

√

µeff − 1

n+ 1
− 1

)

+ cσ

(55)

Covariance matrix adaptation:

cc =
4 + µeff/n

n+ 4 + 2µeff/n
(56)

c1 =
αcov

(n+ 1.3)2 + µeff
with αcov = 2 (57)

cµ = min

(

1− c1, αcov
µeff − 2 + 1/µeff

(n+ 2)2 + αcovµeff/2

)

with αcov = 2 (58)
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Solving for
∑ |wi|− yields

∑

|wi|− <
1− c1 − cµ
(n− 1)cµ

. (60)

We usemin(. . . ,
1−c1−cµ

ncµ
) as multiplier for settingwi=µ+1...λ in (53) and normalize

the variance from each respective summandyi:λy
T

i:λ via (46) to n, thereby bounding the
variance reduction from negative weight values to the factor n−1

n
.

The default parameters of (53)–(58) are in particular chosen to be a robust setting and
therefore, to our experience, applicable to a wide range of functions to be optimized.We do not
recommend to change this setting, apart from increasing the population sizeλ in (48),28 and
possible decreasingαcov on noisy functions. If theλ-dependent default values forwi are used
as advised, the population sizeλ has a significant influence on the global search performance
[17]. Increasingλ usually improves the global search capability and the robustness of the
CMA-ES, at the price of a reduced convergence speed. The convergence speed decreases at
most linearly withλ. Independent restarts with increasing population size [1], automated or
manually conducted, are a useful policy to perform well on most problems.

B Implementational Concerns

We discuss a few implementational questions.

B.1 Multivariate normal distribution

Let the vectorz ∼ N (0, I) have independent,(0, 1)-normally distributed components that
can easily be sampled on a computer. To generate a random vector y ∼ N(0,C) for (39),
we sety = BDz (see above symbol descriptions ofB andD and Sects.0.1 and0.2, and
compare lines 52–53 and 83–84 in the source code below). Given yk = BDzk andC− 1

2 =
BD−1BT we haveC− 1

2 〈y〉w = B
∑µ

i=1 wi zi:λ (compare (43) and lines 61 and 64 in the
source code below).

B.2 Strategy internal numerical effort

In practice, the re-calculation ofB andD needs to be done not until aboutmax(1, ⌊1/(10n(c1+
cµ))⌋) generations. For reasonablec1 + cµ values, this reduces the numerical effort due to the
eigendecomposition fromO(n3) to O(n2) per generated search point, that is the effort of a
matrix vector multiplication.

On a Pentium 4, 2.5 GHz processor the overall strategy internal time consumption is
roughly3× (n+ 5)2 × 10−8 seconds per function evaluation [25].

Remark that it is not sufficient to compute a Cholesky decomposition ofC, because then
(43) cannot be computed correctly.

28Decreasingλ is not recommended. Too small values have strong adverse effects on the performance.
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B.3 Termination criteria

In general, the algorithm should be stopped whenever it becomes a waste of CPU-time to con-
tinue, and it would be better to restart (eventually with increased population size [1]) or to
reconsidering the encoding and/or objective function formulation. We recommend the follow-
ing termination criteria [1, 12] that are mostly related to numerical stability:

• NoEffectAxis : stop if adding a0.1-standard deviation vector in any principal axis
direction ofC does not changem.29

• NoEffectCoord : stop if adding0.2-standard deviations in any single coordinate does
not changem (i.e.mi equalsmi + 0.2 σci,i for anyi).

• ConditionCov : stop if the condition number of the covariance matrix exceeds1014.

• EqualFunValues : stop if the range of the best objective function values of the last
10 + ⌈30n/λ⌉ generations is zero.

• Stagnation : we track a history of the best and the median fitness in each iteration
over the last 20% but at least120+30n/λ and no more than20 000 iterations. We stop,
if in both histories the median of the last (most recent) 30% values is not better than the
median of the first 30%.

• TolXUp : stop ifσ×max(diag(D)) increased by more than104. This usually indicates
a far too small initialσ, or divergent behavior.

Two other useful termination criteria should be consideredproblem dependent:

• TolFun : stop if the range of the best objective function values of the last10+⌈30n/λ⌉
generations and all function values of the recent generation is belowTolFun . Choosing
TolFun depends on the problem, while10−12 is a conservative first guess.

• TolX : stop if the standard deviation of the normal distribution is smaller than in all
coordinates andσpc is smaller thanTolX in all components. By default we setTolX
to 10−12 times the initialσ.

B.4 Flat fitness

In the case of equal function values for several individualsin the population, it is feasible
to increase the step-size (see lines 92–96 in the source codebelow). This method can inter-
fere with the termination criterionTolFun . In practice, observation of a flat fitness should
be rather a termination criterion and consequently lead to areconsideration of the objective
function formulation.

29More formally, we terminate ifm equals tom + 0.1σdiibi, wherei = (g mod n) + 1, andd2ii andbi are
respectively thei-th eigenvalue and eigenvector ofC, with ‖bi‖ = 1.
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B.5 Boundaries and Constraints

The handling of boundaries and constraints is to a certain extend problem dependent. We
discuss a few principles and useful approaches.

Best solution strictly inside the feasible domainIf the optimal solution isnot too close to
the infeasible domain, a simple and sufficient way to handle any type of boundaries and
constraints is

1. setting the fitness as

ffitness(x) = fmax + ‖x− xfeasible‖ , (61)

wherefmax is larger than the worst fitness in the feasible population orin the
feasible domain (in case of minization) andxfeasible is a constant feasible point,
preferably in the middle of the feasible domain.

2. re-sampling any infeasible solutionx until it become feasible.

Repair available as for example with box-constraints.

Simple repair It is possible to simply repair infeasible individuals before the update
equations are applied. This is not recommended, because theCMA-ES makes
implicit assumptions on the distribution of solution points, which can be heavily
violated by a repair. The main resulting problem might be divergence or too fast
convergence of the step-size. However, a (re-)repair of changed or injected so-
lutions for their use in the update seems to solve the problemof divergence [14]
(clipping the Mahalanobis distance of the step length to obey ‖x −m‖σ2C ≤√
n+2n/(n+2) seems to be sufficient). Note also that repair mechanisms might

be intricate to implement, in particular ify or z are used for implementing the
update equations in the original code.

Penalization We evaluate the objective function on a repaired search point, xrepaired,
and add a penalty depending on the distance to the repaired solution.

ffitness(x) = f(xrepaired) + α ‖x− xrepaired‖2 . (62)

The repaired solution is disregarded afterwards.
In case of box-boundaries,xrepaired is set to the feasible solution with the smallest
distance‖x− xrepaired‖. In other words, components that are infeasible inx are
set to the (closest) boundary value inxrepaired. A similar boundary handling with
a component-wise adaptiveα is described in [18].

No repair mechanism availableThe fitness of the infeasible search pointx might similarly
compute to

ffitness(x) = foffset + α
∑

i

11ci>0 × ci(x)
2 (63)

where, w.l.o.g., the (non-linear) constraintsci : R
n → R,x 7→ ci(x) are satisfied for

ci(x) ≤ 0 , and the indicator function11ci>0 equals to one forci(x) > 0, zero other-
wise, andfoffset = mediankf(xk) equals, for example, to the median or25%-tile or
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best function value of the feasible points in the same generation. If no other information
is available,ci(x) might be computed as the squared distance ofx to the best or the
closest feasible solution in the population or the closest known feasible solution. The
latter is reminiscent to the boundary repair above. This approach has not yet been ex-
perimentally evaluated by the author. A different, slightly more involved approach is
given in [7].

In either case of (62) and (63), α should be chosen such that the differences inf and the
differences in the second summand have a similar magnitude.
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C MATLAB Source Code
This code does not implement negative weights, that is,wi = 0 for i > µ in Table1.

1 function xmin=purecmaes
2 % CMA-ES: Evolution Strategy with Covariance Matrix Adapt ation for
3 % nonlinear function minimization.
4 %
5 % This code is an excerpt from cmaes.m and implements the key parts
6 % of the algorithm. It is intendend to be used for READING and
7 % UNDERSTANDING the basic flow and all details of the CMA * algorithm * .
8 % Computational efficiency is sometimes disregarded.
9

10 % -------------------- Initialization -------------- ------------------
11
12 % User defined input parameters (need to be edited)
13 strfitnessfct = ’felli’; % name of objective/fitness fun ction
14 N = 10; % number of objective variables/problem dimension
15 xmean = rand(N,1); % objective variables initial point
16 sigma = 0.5; % coordinate wise standard deviation (step-s ize)
17 stopfitness = 1e-10; % stop if fitness < stopfitness (mini mization)
18 stopeval = 1e3 * Nˆ2; % stop after stopeval number of function evaluations
19
20 % Strategy parameter setting: Selection
21 lambda = 4+floor(3 * log(N)); % population size, offspring number
22 mu = lambda/2; % lambda=12; mu=3; weights = ones(mu,1); wo uld be (3_I,12)-ES
23 weights = log(mu+1/2)-log(1:mu)’; % muXone recombinati on weights
24 mu = floor(mu); % number of parents/points for recombinat ion
25 weights = weights/sum(weights); % normalize recombinat ion weights array
26 mueff=sum(weights)ˆ2/sum(weights.ˆ2); % variance-ef fective size of mu
27
28 % Strategy parameter setting: Adaptation
29 cc = (4+mueff/N) / (N+4 + 2 * mueff/N); % time constant for cumulation for C
30 cs = (mueff+2)/(N+mueff+5); % t-const for cumulation for sigma control
31 c1 = 2 / ((N+1.3)ˆ2+mueff); % learning rate for rank-one up date of C
32 cmu = 2 * (mueff-2+1/mueff) / ((N+2)ˆ2+2 * mueff/2); % and for rank-mu update
33 damps = 1 + 2 * max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma
34
36 % Initialize dynamic (internal) strategy parameters and constants
37 pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C an d sigma
38 B = eye(N); % B defines the coordinate system
39 D = eye(N); % diagonal matrix D defines the scaling
40 C = B* D* (B * D)’; % covariance matrix
41 eigeneval = 0; % B and D updated at counteval == 0
42 chiN=Nˆ0.5 * (1-1/(4 * N)+1/(21 * Nˆ2)); % expectation of
43 % ||N(0,I)|| == norm(randn(N,1))
44
45 % -------------------- Generation Loop -------------- ------------------
46
47 counteval = 0; % the next 40 lines contain the 20 lines of int eresting code
48 while counteval < stopeval
49
50 % Generate and evaluate lambda offspring
51 for k=1:lambda,
52 arz(:,k) = randn(N,1); % standard normally distributed v ector
53 arx(:,k) = xmean + sigma * (B * D * arz(:,k)); % add mutation % Eq. 40
54 arfitness(k) = feval(strfitnessfct, arx(:,k)); % objec tive function call
55 counteval = counteval+1;
56 end
57
58 % Sort by fitness and compute weighted mean into xmean
59 [arfitness, arindex] = sort(arfitness); % minimization
60 xmean = arx(:,arindex(1:mu)) * weights; % recombination % Eq. 42
61 zmean = arz(:,arindex(1:mu)) * weights; % == Dˆ-1 * B’ * (xmean-xold)/sigma
62
63 % Cumulation: Update evolution paths
64 ps = (1-cs) * ps + (sqrt(cs * (2-cs) * mueff)) * (B * zmean); % Eq. 43
65 hsig = norm(ps)/sqrt(1-(1-cs)ˆ(2 * counteval/lambda))/chiN < 1.4+2/(N+1);
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66 pc = (1-cc) * pc + hsig * sqrt(cc * (2-cc) * mueff) * (B * D* zmean); % Eq. 45
67
68 % Adapt covariance matrix C
69 C = (1-c1-cmu) * C ... % regard old matrix % Eq. 47
70 + c1 * (pc * pc’ ... % plus rank one update
71 + (1-hsig) * cc * (2-cc) * C) ... % minor correction
72 + cmu ... % plus rank mu update
73 * (B * D* arz(:,arindex(1:mu))) ...
74 * diag(weights) * (B * D* arz(:,arindex(1:mu)))’;
75
76 % Adapt step-size sigma
77 sigma = sigma * exp((cs/damps) * (norm(ps)/chiN - 1)); % Eq. 44
78
79 % Update B and D from C
80 if counteval - eigeneval > lambda/(cone+cmu)/N/10 % to ac hieve O(Nˆ2)
81 eigeneval = counteval;
82 C=triu(C)+triu(C,1)’; % enforce symmetry
83 [B,D] = eig(C); % eigen decomposition, B==normalized eig envectors
84 D = diag(sqrt(diag(D))); % D contains standard deviation s now
85 end
86
87 % Break, if fitness is good enough
88 if arfitness(1) <= stopfitness
89 break;
90 end
91
92 % Escape flat fitness, or better terminate?
93 if arfitness(1) == arfitness(ceil(0.7 * lambda))
94 sigma = sigma * exp(0.2+cs/damps);
95 disp(’warning: flat fitness, consider reformulating th e objective’);
96 end
97
98 disp([num2str(counteval) ’: ’ num2str(arfitness(1))] );
99

100 end % while, end generation loop
101
102 % -------------------- Final Message --------------- ------------------
103
104 disp([num2str(counteval) ’: ’ num2str(arfitness(1)) ]);
105 xmin = arx(:, arindex(1)); % Return best point of last gen eration.
106 % Notice that xmean is expected to be even
107 % better.
108
109 % ----------------------------------------------- ----------------
110 function f=felli(x)
111 N = size(x,1); if N < 2 error(’dimension must be greater on e’); end
112 f=1e6.ˆ((0:N-1)/(N-1)) * x.ˆ2; % condition number 1e6
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D Reformulation of Learning Parameter ccov
For sake of consistency and clarity, we have reformulated the learning coefficients in (47) and
replaced

ccov
µcov

with c1 (64)

ccov

(

1− 1

µcov

)

with cµ and (65)

1− ccov with 1− c1 − cµ , (66)

and chosen (in (57) and (58))

c1 =
2

(n+ 1.3)2 + µcov
(67)

cµ = min

(

2
µcov − 2 + 1

µcov

(n+ 2)2 + µcov
, 1− c1

)

, (68)

The resulting coefficients are quite similar to the previous. In contrast to the previous formu-
lation,c1 becomes monotonic inµ−1

eff andc1 + cµ becomes virtually monotonic inµeff .
Another alternative, depending only on the degrees of freedom in the covariance matrix

and additionally correcting for very smallλ, reads

c1 =
min(1, λ/6)

m+ 2
√
m+ µeff

n

(69)

cµ = min

(

1− c1 ,
α0
µ + µeff − 2 + 1

µeff

m+ 4
√
m+ µeff

2

)

(70)

α0
µ = 0.3 , (71)

wherem = n2+n
2 is the degrees of freedom in the covariance matrix. Forµeff = 1, the

coefficientcµ is now chosen to be larger than zero, asα0
µ > 0. Figure7 compares the new

learning rates with the old ones.
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Figure 7: Learning ratesc1, cµ (solid) andccov (dash-dotted) versusµeff . Above: Equations
(67) etc. forn = 3; 10. Below: Equations (69) etc. forn = 2; 40. Black: c1 + cµ and
ccov; blue: c1 and ccov/µcov; green: cµ and (1 − 1/µcov)ccov; cyan: 2/(n2 +

√
2); red:

(c1 + cµ)/ccov, above divided by ten. Forµcov ≈ 2 the difference is maximal, becausec1
decreases much slower with increasingµcov andccov is non-monotonic inµcov (a main reason
for the new formulation).
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