
Metaheuristic Algorithms.  
 
Lab 3:  Implementation of Evolutionary Algorithms 

 Combinatorial optimization (Genetic Algorithms - GAs)  
 Continuous optimization (Evolution Strategies - ESs).  

______________________________________________________________________________ 
 
 
1.  Implementation of GAs  
 
Let us consider the case when the elements of the population are binary strings. Problems for 
which such an encoding is appropriate are optimization problems involving Boolean functions 
(e.g. ONEMAX,  satisfiability problems) or selection problems (e.g. knapsack problem).  
 
In order to implement a GA there are several components (implemented as separate modules or 
functions) which should be designed: 
 

 Population initialization: usually the population elements are randomly selected from the 
search space (in the case of binary encoding the search space is {0,1}n ). 

 Population evaluation: computes the fitness of each element in the population; the way 
the fitness is computed depends highly on the problem to be solved. Particular attention 
should be given to constrained optimization problems (in such a case, the constraints can 
be included in the objective function). 

 Selection of parents/survivors: use a stochastic selection procedure;  the typical variants 
are: 

o Proportional selection: the selection probability is proportional with the fitness 
value; the indices of the selected elements are generated using the method of 
inverting the probability distribution function (e.g. roulette or stochastic universal 
sampler) 

o Rank based selection: the selection probability is proportional with the rank of 
the element in the increasingly sorted  (by fitness – if the fitness should be 
maximized) population; 

o Tournament selection:  several elements are randomly chosen  (with or without 
replacement) from the population and the best one of them is selected; in practice 
samples of small size are used (in most cases the sample consists of 2 elements); 

o Uniform selection: the elements are randomly selected, independent of their 
fitness values (it can be used only for the selection of parents). 

 Crossover: starting from two parents constructs two offspring (children): 
o One cut-point: for parents x=(x1,x2,…, xn) and y=( y1,y2,…, yn) and a cut point k, 

the children will be c1=( x1,x2,…,xk,yk+1,… yn) and c2=( y1,y2,…,yk,xk+1,… xn) 
o Two cut-points: for parents x=(x1,x2,…, xn) and y=( y1,y2,…, yn) and the cut 

points k1 and k2, the children will be c1=( x1,x2,…,xk1,yk1+1,… yk2, xk1+1,… ,xn) 
and c2=( y1,y2,…,yk1,xk1+1,… xk2, yk1+1,… ,yn). 

o Uniform: the components of the offspring are taken randomly from the parents, 
i.e. the parent which provides the value of each component of the first child is 
selected randomly (usually with probability 0.5); the value of the component in 
the second child will be taken from the other parent. 

 
 
 



 Mutation: 
o Chromosome-based:  for each chromosome it is decided (based on the mutation 

probability) if it should be mutated or not; if the chromosome should be mutated 
choose a random component and mutate it (by complementing its value). 

o Gene pool-based: scan all genes (all components of all elements in the 
population) and decide based on the mutation probability which genes should be 
mutated. 

 
Application 1. ONEMAX problem 
 
Find the binary sequence (x1, x2,…, xn) which maximizes x1+ x2+…+ xn. 
 
Hint:  see function onemaxGA.sci 
 
Exercise:   Analyze the influence of the population size and of the mutation probability on the 
quality of the estimated solution. 
 
Application 2. Knapsack problem 
 
Find the binary sequence (x1, x2,…, xn) which:  

 Satisfies the constraint:  w1*x1+w2*x2+…+ wn*xn<=C  (the total weight of the selected 
objects is smaller than the knapsack capacity) 

 Maximizes the function: v1*x1+v2*x2+…+ vn*xn (the total value of the selected objects is 
maximized) 

 
Hint:  The fitness value is constructed using the penalty technique: 
 
Fitness(x1, x2…, xn)=(1-alpha)*( v1*x1+v2*x2+…+ vn*xn) 
                                  +alpha*H(C - w1*x1+w2*x2+…+ wn*xn) 
 
where H(u)=0 if u>=0 and H(u)=u if u<0;  alpha is a value from (0,1) and is used to control the 
relative importance of the constraint satisfaction with respect to the maximization of the objective 
function  
 
An example is implemented in  knapsack.sci 
 
Exercise:    

1. Analyze the influence of the parameter alpha on the quality of the solution. 
2. Replace the proportional selection with a tournament selection and use the following 

criterion to decide that a candidate solution x is  better than a candidate solution x’: 
a. Both x and x’ satisfy the constraint but the value of x is higher than the value of 

x’ 
b. x satisfies the constraint and x’ does not satisfy the constraint 
c. Neither x nor x’ satisfy the constraint but the weight corresponding to x is 

smaller than the weight corresponding to x’ 
 
 
 
 
 
 



Application 3.  Traveling Salesman Problem (TSP) 
 
The particularities of a GA designed to solve TSP are: 
 

 Solution encoding.  The natural encoding variant for TSP is the permutation (any tour 
over n nodes is a permutation of order n specifying the order in which the nodes should 
be visited). 

 Parent selection. Any selection mechanism can be used. For instance:  
o Proportional selection 
o Tournament selection 
 

 Crossover operator.  A simple crossover variant for permutation-like configurations is 
obtained by extending the one-cut point crossover: for two parents two offsprings are 
constructed, as follows:  

o Choose a random cut point (k) 
o Transfer the first k components from the first parent to the first offspring; the 

other components of the first parent are transferred to the first offspring in the 
order given by the second parent.  

o The second offspring is constructed starting from the second parent in a similar 
way 

           Example: Let P1=(E,A,C,D,B,F),  P2=(D,C,F,A,E,B) and k=3. The children will be 
C1=(E,A,C,D,F,B) and C2=(D,C,F,E,A,B). 

      
 Mutation operator (constructing a new configuration starting from the current one). 

Several mutations can be used for a permutation-like encoding: 
o 2-opt (the variant used in the Simulated Annealing variant): 

 (E,A,C,D,B,F) → (E,D,C,A,B,F) 
o Exchange of two randomly selected elements: 

 (E,A,C,D,B,F) → (E,A,F,D,B,C) 
o Transfer of a randomly selected element on a randomly selected position: 

 (E,A,C,D,B,F) → (E,C,D,B,A,F) 
 

      Remark: For TSP, the mutation operator is considered to be more effective than the 
crossover.  

 
 Survivors selection.  From the joined population of parents and offspring the elements 

which survive for the next generation can be selected by: 
o  tournament:  randomly select two elements from the joined population and select 

the best one  
o from the set of 2 parents and 2 offspring choose the best 2 elements  
o choose the best m elements (m is the population size) from the joined population  

 
 Control parameters.  The main control parameters are: 

 
o Population size 
o Mutation probability 

 
 Stopping condition. It could be related to the number of generations, to the value of the 

best element in the population or to other characteristics of the population (e.g. diversity) 
 



 
Hint.  A variant based on the classical operators (2-opt mutation) is described in GA_TSP.sci  
 
Exercise:  Implement the other two types of mutation. 
 
2. Implementation of Ess 

 
In the case of evolution strategies, the elements of the population are real vectors and the main 
components are:  
 

 Selection:   it is used only to select the survivors (all elements can be parents) and it is 
usually a deterministic selection based on taking the best M offsprings from the set of L 
offsprings (in the case of (M,L) strategies) or the best M elements from the joined 
population of parents and offsprings (in the case of (M+L) variants). M denotes the 
number of elements in the current population and L denotes the number of elements 
generated using recombination and mutation. 

 Recombination:  from R parents is constructed one offspring by linear (convex) 
combination.  

 Mutation:  it is applied to all elements in the population and consists of adding a random 
value (generated according to a given distribution). 

 
Application 4. Function minimization. Test functions: sphere and Griewank.   
See for instance:   
http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm 
 
Hint:  an example is implemented in  SE.sci 
 
Exercises: 
 

1. Test SE.sci for Ackley, Rastrigin and Rosenbrock functions described in the web page 
http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm 
 

Homework.   
 

1. Modify the onemaxGA.sci function by: 
 

a) implementing the uniform crossover 
b) implementing the “pool genes”-based mutation 
c) introduces selection of survivors (instead of accepting all offsprings select survivors from 

the joined population containing both the parents and the offsprings);  ensure the elitism 
(by preserving the best element in the population) 
 

2. Extend SE.sci by introducing self-adaptation of the parameter s (standard deviation of the 
normal distribution used in the mutation step – see Lecture 5).  

 


