
Metaheuristic Algorithms.  
 
Lab 2:  Combinatorial optimization problems.  

Trajectory based local and global search:    
       Simulated Annealing 
 Tabu Search  
      

______________________________________________________________________________ 
 
1. Combinatorial optimization problems. 

 
The search space of combinatorial optimization problems is usually finite but of large 
size. Thus an exhaustive search space exploration is not inapplicable.  
 
Two well-known combinatorial optimization problems, which have several practical 
applications are:  

 Problema comis-voiajorului (travelling salesman problem) 
 Problema rucsacului (knapsack problem) 
 

1. 1. Problema comis-voiajorului (Travelling Salesman Problem).     
 
TSP is a well known combinatorial optimization problem asking to find the optimal route for a 
salesman who has to visit a set of n towns. It is a constrained optimization problem characterized 
by: 

 Constraint: the salesman visits each town exactly once 
 Objective function: the cost of the tour should be minimized 

 
The classical TSP is equivalent with the problem of finding an optimal Hamiltonian tour in a 
complete graph. TSP can be solved exactly for small values of n but, since the number of possible 
tours is (n-1)!/2, for large values of n there are no efficient exact methods. TSP belongs to the 
class of NP-complete problems. 
 
TSP is important not only from a theoretical point of view but also from a practical point of view 
since there are several real-world problems which can be formulated as a TSP: 

 Vehicle Routing Problem (VRP): find the optimal route for vehicles  
 Control of drilling machines which are used to construct boards for integrated circuits 
 Find shortest routes through selections of airports in the world 
 Reconstruct DNA sequences starting from subsequences  
 

Other applications are listed at [http://www.tsp.gatech.edu/apps/index.html] 
 
TSP has several variants:  

 Asymmetric TSP: the passing from one node to another one depends on the tour 
orientation.  

 Sequential Ordering Problem – SOP:  there are additional constraints specifying that a 
given node should be visited before another one.  

 Capacitated vehicle routing problem – CVRP: find optimal tours for a set of trucks which 
have to transport products from a warehouse to different customers. The trucks have all 
the same capacity. 



 Generalized TSP: the nodes correspond to clusters of locations and there are several arcs 
between nodes. 

 
Besides exact methods there exist a lot of heuristic methods based on incremental improvements 
of the current tour. One of the most used heuristics for TSP is the Lin-Kernighan heuristic which 
is based on replacing some arcs of the current tour with other ones such that the total cost 
becomes smaller. The simplest case is when just two arcs are replaced (2-opt transformation) 
which is equivalent to reversing the order of visiting the nodes belonging to a subtour. 
 
Example:  Let us consiuder 6 nodes: A,B,C,D,E,F . If the current tour is (A,C,B,E,F,D), by 
replacing the arc (A,C) with the arc  (A,F), and the arc  (F,D) with (C,D) and by reversing the 
order of visiting the nodes B and E one obtains the tour (A,F,E,B,C,D). It is easy to see that this 
transformation can be obtained by reversing the subtour (C,B,E,F). 
 
Another perturbation heuristic for TSP is that based on 4 interchanges (double bridge transform) 
which transforms a route [i1..i2][i3..i4][i5..i6][i7..i8] into  [i2..i1][i4..i3][i6..i5][i8..i7]. 
 
 

 
 
 
1.2. Knapsack Problem 
 
The classical variant of the knapsack problem is:  “Let us consider a set of n objects, each one 
being characterized by a given weight and a given value. Select a subset of objects such that the 
total size of the selected objects is smaller than a knapsack capacity and the total value of the 
selected objects is as large as possible.”  
 
The search space is represented by all possible subsets of the set of n objects, thus the serach 
space size is 2n. 
 
Real world problems which can be formulated as the knapsack problem are: 
 

 Financial portfolios construction (the aim being the maximization of the profit such that the 
amount of investment is lower than a given threshold). 

 Resource allocation (the selection of some tasks which can use a given resource such that 
the resource is not overloaded and some gain is maximized). 

 The selection of some products to be placed in a container or warehouse.  
 
 

Variants of the problem: 
 Multi-criterial case:  the aim is not only to maximize a value but optimize several 

criteria  
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 Multi-dimensional case:  the “size”/”weight” of an object is not specified by a single 
value but by multiple values  

 Multiple knapsacks:  several knapsacks are used (this is related to the bin packing 
problem)   

 
2. Simulated Annealing (SA) 

 
2.1 Method description 
 
Simulated Annealing is a metaheuristic characterized by the fact that lower quality configurations 
may be accepted. The decision on the acceptance of such configurations is taken probabilistically, 
and the acceptance probability depends on a parameter called “temperature” (by analogy with the 
temperature of physical systems which are involved in a thermal process, e.g. annealing of 
alloys).  The probability of accepting a lower quality configuration is higher if the temperature is 
higher. 
 
 
General structure of Simulated Annealing: 
 
S=initial configuration 
T=initial value of the temperature 
Repeat 
    S’=perturb(S) 
    If accept(S,S’,T) then S=S’ 
    T=perturb(T) 
Until <stopping condition> 
 
The perturbation depends on the problem to be solved and the probability to accept the transition 
form a configuration S to a configuration S’ depends on the loss of quality (if the loss is small the 
acceptance probability is higher).  An example of the implementation of an acceptance rule is (in 
the case of a minimization problem):  
 
Accept(S,S’,T) 

If rand(0,1)<exp((f(s)‐f(s’))/T) then  
   Return True 
Else  
   Return False 
 

2.2. Solving TSP using Simulated Annealing 
 
In order to solve a problem by using Simulated Annealing there are several elements to be 
chosen:  
 

 Solution encoding.  The natural encoding variant for TSP is the permutation: a tour 
through n nodes can be described as a permutation of order n. This encoding ensures the 
satisfaction of the constraint of visiting only once each node.  
 
Example: If the towns are numbered as follows: 1-A, 2-B, 3-C, 4-D, 5-E, 6-F then the 
route (A,C,B,E,F,D) corresponds to the permutation (1,3,2,5,6,4) 

 



 Local search mechanism (construction of a new configuration starting from the existing 
one by perturbation) The simplest mechanism is based on a  2-opt transformation: 

o Choose two random indices i and j such that 1<=i<j<=n 
o Reverse the order of elements in the permutation having indices between i and j.  

 
Example:  If the current tour is described by the permutation (1,3,2,5,6,4) and i=2, j=5 
then the new permutation will be: (1,6,5,2,3,4) 
 

 Acceptance probability. The probability to accept a configuration S’ obtained from the 
configuration S can be computed by using the Boltzmann distribution: 
 
P(S’|S)=min{1,exp(-(cost(S’)-cost(S))/T(k)} 
 
where cost(S) is the cost of configuration S and T(k) is a control parameter (temperature).  

 
 
 Cooling schedule.  If T(k) denotes the temperature corresponding to the iteration k then 

the value corresponding to the next iteration can be computed as follows: 
 

o T(k+1)=T(0)/log(k+c), c being a constant 
o T(k+1)=T(0)/k 
o T(k+1)=a T(k),  with a denoting a value smaller but close to 1 (e.g. a=0.99) 

 
Remark.  The initial value of the temperature (T(0)) should be large enough to allow the  
transition between any two configurations.  

 
 Stopping condition. The stopping criterion can be related to the value of the temperature 

(stop when the temperature is low enough), to the number of iterations (stop after a given 
number of iterations) or to the value of the objective function (cost of the tour).  

 
Application 2. Implement the Simulated Annealing for TSP. Use test instances from 
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ 
 
Hint. A variant is implemented in  SA_TSP.m.   
 
Call: SA_TSP(10000,0.001) 
 
 
Exercises: 
 

1. Write a Scilab function to read data from *.tsp files (downloaded from TSPLib) and 
analyze the behavior of the algorithm for the problems: eil51.tsp, eil76.tsp, eil101.tsp 

2. Test the algorithm for each of the cooling schedules mentioned above.  
3. Modify the function which compute the cost of a tour such that the distance between two 

nodes is computed only once (hint: store the distances in a matrix) 
 

 
 
 
 



2.3 Solving the knapsack problem using Simulated Annealing 
 

a) Solution encoding:  binary vector 
 si=1 if object  i is selected 
 si=1 if object  i is not selected 

b) Local perturbation:  change the value of a randomly selected component: si= si -1 
c) Evaluation of a configuration:   a common variant is to include in the objection function 

the degree of constraints satisfaction (penalty function technique) – the value of a 
configuration which do not satisfy the constraint is penalized by a term which is 
proportional with the amount by which the constraint is violated (e.g. the weight which 
overpasses the knapsack capacity). 
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 The parameter λ belongs to (0,1) and allows the control of the relative importance of the 
constraints with respect to the optimization criterion.  
 
Application 2.  Implement a Simulated Annealing algorithm for a knapsack problem. Test dat 
can be found at http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html 
 
 
Hint. An implementation variant is described in SA_knapsack.   
 
 
3.  Tabu Search 
 
3.1. Method description 
 
Tabu Search is a metaheuristics which uses an iterated local search which relies on the usage of a 
list of already visited configurations which become “forbidden” (tabu) at least for a given number 
of iterations. 
 
General structure of  Tabu Search: 
 
S=initial configuration 
TabuList=[]    // the tabu list is initially empty 
Iter=1 
Repeat 
    S’=perturb(S,TabuList) 
    If better(S’,S) then S=S’ endif 
        Iter=iter+1 
Until iter<=iterMax 
 
The perturbation of the current configuration is based on the identification (in its neighborhood) 
of a better configuration which is not in the tabu list. Once a configuration is chosen it is inserted 



in the tabu list. The tabu list is implemented as a circular queue (when the maximal size of the list 
is reached the first element in the list is removed).  
  
 
Perturb(S,TabuList) 
Sbest=S 
For <for each element  S’ from the neighborhood N(S)> 
   If  better(S’,Sbest) and <S’ is not in TabuList> then 
       Sbest=S 
   Endif 
Endfor 
S=Sbest 
<update the tabu list by adding S> 
 
The function better(S’,S)  checks if configuration S’ is better than configuration S. Unlike 
Simulated Annealing which uses directly the value of the objective function to compute the 
acceptance probability, in Tabu Search it is enough to decide which of the configurations is 
better. This means that the constraints can be analyzed directly, without using the penalty method. 
 
 
3.2.  Solving the knapsack problem using Tabu Search 
 

a) Solution encoding:  binary vector 
b) Local perturbation:  change the value (0->1,1->0) of a randomly selected component 
c) Tabu list structure: it contains candidat solutions (binary vectors) 
d) Comparison between two candidate solutions:  

 If both S and S’ are feasible then the configuration having a higher value is better.  
 If only one of the solutions is feasible then it is better than the other one (a feasible 

solution is always better than an unfeasible one).  
 If none of the solutions is feasible then that which violates less the constraint is 

better  
 
Application 3.  Implement a Tabu Search algorithm to solve the knapsack problem. 
 
Hint:  an implementation variant is in  TS_Knapsack.sci 
 
Exercise: Analyze the influence of the maximal size of the tabu list on the algorithm behavior.  
 
 
Homework.   

a) Adapt the implementation of the Tabu Search algorithm to solve the travelling salesman 
problem  

b) (optional) Modify the implementation such that the tabu list contains features of 
candidate solutions or applied transformations instead of full candidate solutions (see 
Feature-Based TS, [S. Luke, Essential of Metaheuristics, pg 27] 



Appendix:   
 

1. Random values in  SciLab 
 
Values corresponding to random variables with various distributions can be generated using the 
grand function 
 
This function returns a mxn matrix of random values.  The typical call is: 
 

grand(m,n,”<distribution type>”, <distribution parameters>) 
 
Examples: 
 

1. Uniformly distributed integer random values belonging to {inf,inf+1,inf+2,…,sup} 
 
grand(m, n, "uin", inf, sup) 
 

2. Uniformly distributed real values belonging to [inf,sup) 
 

grand(m, n, "unf", inf, sup) 
 

3. Random values corresponding to a normal distribution with mean m and standard 
deviation s 
 
grand(m, n, "nor", m, s) 
 

Another useful function is that which generates n random permutations of a vector (vect): 
 

grand(n, "prm", vect) 
 

2. Reading text files   
 
The text files containing comma separated  values (csv type)  can be read using    
csvRead.  The simplest calling variant is csvRead(‘file name’) . When a different 
separator (not comma) is used the one can specify csvRead(‘file name’,’separator’). 
 
Other functions for file reading:  read,  fscanfMat 

 


