
Metaheuristic algorithms.  
 
Lab 1:  Optimization problems 

Introduction into Scilab 
______________________________________________________________________________ 
 
1. Optimization problems 
 
Optimization problems represent one of the most frequently encountered classes of problems 
arising in applications which require: 

 Planning (scheduling and/or establishing the execution order of some activities, resource 
allocation, timetabling etc) 

 Modelling (constructing a model which fits well some experimental data) 
 Adaptation (changing the behavior of a system by training based on some training data)  

 
All optimization problems are characterized by:  solution search space, optimization criterion 
(objective function)  and constraints.  
 
1.1. Solution search space. There are two main cases:   

 Discrete search space (usually a finite but of large size set).  
 Continuous search space 

 
Depending on the search space there are two main classes of optimization problems: 

 Combinatorial optimization problems 
o Assignment/allocation/selection problems (e.g. knapsack problem, bin packing 

problem) 
o Routing problems (e.g. travelling salesman problem) 

 Continuous optimization problems 
o Parameter estimation (e.g. neural networks training,  searching cluster prototypes 

in data clustering) 
 
1.2. Optimization criterion (objective function).  It represents the value which should be 

optimized (minimized or maximized). Depending on the number of optimization criteria 
there are:  
 Single-objective optimization  
 Multi-objective optimization  
 
Depending on the available information on the objective function, the optimization problems 
can be: 
 White-box: the objective function is explicitly defined (e.g. known analytical expression) 

and its properties can be analyzed and exploited (linear/non-linear, 
continuous/discontinuous, smoothness etc). 

 Black-box: the objective function is not explicitly known – it can be only evaluated (e.g. 
in the case of objective functions which are based on simulations). 
 

1.3 Constraints. The constraints define the space of feasible solutions and can be of several types:  
 Bound constraints:  a<=x<=b 
 Equality constraints: g(x)=0 
 Inequality constraints: h(x)>=0 

 



Depending on their importance, the constraints can be: 
 
 hard: they have to be satisfied 
 soft: it is preferable that they are satisfied but they are not mandatory (in such a case the 

constraints can be transformed in optimization criteria) 
 
2. Steps in solving optimization problems 
 
 
Step 1:  problem analysis and identification of the following elements: 
 

 Structure (encoding) of candidate solutions;  this allows to establish the properties and 
the size of the search space. The problem can be of one of the following classes: 

o Combinatorial optimization 
o Continuous optimization 

            of size 
o small  (less than 10 variabile) 
o medium (between 10 and 100 variables) 
o large (more than 100 de variables) 

           
 Constraints: establish which constraints are hard and which are soft; transform the 

constraints such that they are in a canonical form (e.g. the inequalities are all >= or all 
<=) 

 Objective function and its properties: 
o Linear, quadratic, arbitrary (black box)? 
o continuous/discontinuous,  differentiable/non-differentiable? 
o one objective function/ several objective functions,  unimodal/multimodal? 
o noisy or dynamic? 

 
Step  2:  Method selection: 

 Methods for objective functions/constraints which are linear/ quadratic (e.g. techniques 
from linear or quadratic programming)  

 Derivatives-based local optimization (e.g. variants of the gradient method, variants of the 
Newton method) 

 Derivatives-free local optimization  
 Global optimization  
 Multi-objective optimization  



Optimization in SciLab  
 
 

 
 
SciLab functions for different optimization problems [M. Baudin, V. Couvert, Optimization with 
SciLab, 2011] 
 

 
2.1. Optimization using optim 

 
Types of problems which can be solved:  unconstrained nonlinear optimization problems. 
 
Methods:  quasi-Newton (local methods which require an initial approximation and the gradient) 
 
Calls:   
    [fopt,xopt]=optim(objfct, x0)                                 // x0 = initial approximation       
    [fopt,xopt]=optim(objfct,”b”,liminf,limsup, x0)   // liminf, limsup = bounding vectors    

    
    [fopt,xopt]=optim(objfct,x0, alg)   //alg=algorihtm  
                   //“qn”: quasi-Newton (default) based on BFGS (Broyden-Fletcher-Goldfarb-Shanno)  
                   //“gc”: BFGS with limited memory (for a large number of variables) 
                   //”nd”: for non-differentiable objective functions   

 
Remark:  the SciLab function which implements the objective function should return both the 
objective function and its gradient.  
 
Example:   Find an optimum of the function, f:RxR->R, in the neighborhood of (-1,1.5).  
 
f(x1,x2)=100*(x2-x12)2   +(1-x1)2 

 



(the function is known as Rosenbrock function  and is considered difficult to be optimized in the 
case of a large number of variables )  
 
Scilab: 
function [f, g, ind]=rosenbrock(x, ind) 
  f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2         // objective function 
  g(1) = - 400*(x(2)-x(1)^2)*x(1) - 2*(1-x(1)) // gradient       
                                               //components 
  g(2) = 200*(x(2)-x(1)^2) 
endfunction 
x0 = [-1.0 1.5];    // initial approximation 
[ fopt , xopt ] = optim ( rosenbrock , x0) 
 
Exercise 1.  
 

a) Estimate the optimum of the Griewank function using various methods  (“qn”, “gc”, 
“nd”) and compare the results 

b) Analyze the case when the derivatives are not computed analytically but numerically: 
g=numderivative(rosebrockF,x) 
In the call of the function  numderivative,  the parameter rosenbrockF denotes a function 
which returns only the value (it does not provide the gradient)  

c) Change the function in order to work for more than two variables.  
 

2.2. Optimization using fminsearch 
 
Types of problems which can be solved: unconstrained nonlinear optimization problems for non-
differentiable objective functions.    
 
Methods:  Nelder-Mead (the search is based on the construction of new solutions using a simplex 
structure and a set of transformations –  see the following figure and Lecture 2) 

 
 
Call:   
    [xopt,fopt]=fminsearch(objfct, x0)      // x0 = initial approximation     
    [xopt,fopt]=fminsearch(objfct, x0, options) 
 
The options are set using optimset:   options= optimset(OptionName,OptionValue) 



Types of options: 
 MaxIter  - maximal number of iterations (default: 200*number of variables) 
 MaxFunEvals – maximal number of objective function evaluations (default: 200*number 

of variables) 
 TolFun – tolerance on the objective function value (implicit: 0.0001) 
 TolX – tolerance on the variables (implicit: 0.0001) 
 PlotFcns – plot of the objective function value vs the number of iterations  (default: 

empty – no visualization) 
   
Example:  Rosenbrock function 
 
SciLab: 
function f=rosenbrockF(x) 
  f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2         // objective function 
   
endfunction 
x0 = [-1.0 1.5];    // initial approximation 
[ fopt , xopt ] = fminsearch ( rosenbrockF , x0) 
 
Exercise 2. Implement and test the following variants: 
 

a) Visualization of the minimization process:   
options = optimset ( "PlotFcns" , optimplotfval ) 
x0=[-1,1.5] 
[ fopt , xopt ] = fminsearch ( rosenbrockF , x0, options) 

b) Output of the transformations applied at each iteration: 
options = optimset ( "Display" , “iter” ) 
x0=[-1,1.5] 
[ fopt , xopt ] = fminsearch ( rosenbrockF , x0, options) 
 

c) Test the case with a larger number of variables 
 
 
3.3 Other functions/packages for optimization in Scilab 
 

a. Linear optimization with constraints.  Scilab contains a function (called karmakar) which 
implements the Karmakar algorithm (belonging to the class of interior point methods) to 
solve linear optimization problmes with equality/non-equality constraints. In the simplest 
case (only equality constraints) the call  [xopt,fopt]=karmakar(A,b,c)  allows to solve the 
problem: 
 
Min cTx 
Ax=b 
x>=0 
 

Remark:  to solve linear problems using the simplex method one can use the package lpsolve 
(http://lpsolve.sourceforge.net/5.1/Scilab.htm) 
 

b. ATOMS 
 
The Scilab packages (similar to Matlab toolboxes) can be loaded by Console -> 
Applications->Module Manager –ATOMS 



 
The optimization section contains: 

 Quadratic programming questions (QuaPro) 
 Direct search methods (Derivative-free) 
 Metaheuristics: CMA-ES (Covariance Matrix Adaptation), PSO (Particle Swarm 

Optimization) 
 
Homework (opțional). 
 

1. Find x=(x1,x2,…,x10) which maximizes F(x1,x2,…,x10)= p1*x1+p2*x2+…+p10*x10  subject 
to the constraints c1*x1+c2*x2+…+c10*x10=C 
 
Test data: p=[92; 57; 49; 68; 60; 43; 67; 84; 87; 72],  
165, C=165   
 
Compare the result with the optimal one (obtained by applying a greedy technique).  
 
Remarks: this is the continuous variant of the knapsack problem; the data set is from  
http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html 

 
 Hint: you can use the function karmakar fromScilab 



 
Appendix 1: Scilab - Open source software for numerical computation   
(http://www.scilab.org/) 
 
Scilab is an interpreted programming language which offers support for computational tasks 
arising in linear algebra, polynomials operations, interpolation and approximation, linear and 
quadratic optimization, differential equations, signal processing, statistics and graphics.  
 
In Scilab the basic object is the matrix, both the vectors and the scalars being particular cases of 
matrices.  
 
Some general aspects: 

 Scilab is case-sensitive 
 Being an interpreter, the variables do not have to be declared but they should have a 

value assigned;  the assignment operator is = 
 The predefined constants have names with the prefix % (e.g. %pi, %i, %e, %t (true), %f 

(false)) 
 The relational operators are: ==  (equal), ~=  or  <> (unequal), <=, >= 
 The logical operators are: ~ (not), & (and),  | (or)  
 The result of an evaluation which is not explicitly assigned to a variable is implicitly 

assigned to the object ans which can be used in the following command 
 The commands specified on the same line should be separated by ; (this separator has 

also the effect of inhibiting the visualization of the last evaluation result).  
 The strings are specified using doubl quotes (”) and their concatenation can be realized 

using + 
 The line comments can be specified by  //   

 
Specifying matrices: 

 Explicitly,  by specifying all elements (the elements on the same row should be separated 
by , or space and the rows should be separated by ; or  enter): 
A=[a11,a12,…a1n; a21,a22,…,a2n; …;am1, am2,…,amn] 

 
 Implicitly, by using functions which generate matrices:   

o zeros(m,n) :  matrix with m rows and n columns and elements equal to 0 
o ones(m,n):  matrix with m rows and n columns and elements equal to 1 
o rand(m,n):  matrix with m rows and n columns and elements randomly generated 

in (0,1) 
 

Operations with matrices. 
 Finding the size:  size(mat) returns [nr rows, nr columns] 
 Reorganizing a matrix: matrix(mat, nr rows, nr columns) returns a matrix with the 

specified size and elements taken row by row from the object specified as the first 
parameter   

 Accessing the elements:   mat(row index,column index).   
Obs: the indices can be individual values or ranges specified as inf:sup.  The last index of 
a row or column can be specified by $. For instance mat($,$-1) specifies the element on 
the last row and the column before the last one.   
Obs: the indices start with 1 

 Changing a matrix: 
o Change an element:  mat(i,j)=val 



o Add a row: mat=[mat;  el1, el2,…,eln] 
o Add a column: mat=[mat’;  el1, el2,…,elm]’   (the operator ‘ denotes the 

transpose) 
o Remove a row: mat(i,:)=[] 
o Remove a column: mat(:,j)=[] 

 Arithmetical operations:  all arithmetical operations are vectorized; in order to specify 
operations at the level of elements the operators should be prefixed by . (dot).  For 
instance,  A*B returns the algebraic product of matrices A and B ans A.*B returns the 
matrix which is obtained by multiplying the corresponding elements from the matrices.   
 

Other types of objects in Scilav: 
 Structures:    

o struct(fieldname1,value1, fieldname2,value2,…., fieldnamen,valuen) 
o Example: date=struct(‘day’,3,’month’,’october’,’year’,2014) 
o Element specification: StructureName.Fieldname(e.g.: date.day is 3) 

 
 Heterogeneous lists: 

o Simple list:  list(Element1,Element2,…,Elementn) 
Remark: the elements are  specified using indices  

o Typed list:    tlist(Names,Element1,Element2,…,Elementn) ;  
Example:  d=tlist([‘date’,’day’,’month’,’year’],3,’october’,2014) 
Remark: the elements can be specified both by indexing abd by qualification: 
d(2) is identical to d.day 
 

 
Instructions 

 If statement: 
 
if (condition) then 
 <statements 1> 
else 
 < statements 2> 
end 
 
Variant: 
 
if (condition1) then 
 < statements 1> 
elseif (condition 2) 
 < statements 2> 
else  
 < statements 3> 
end 
 

 Select statement: 
 
select < selector> 
case < val 1> 
 < statements 1> 
case <val 2> 



 < statements 2> 
… 
case <val n> 
 < statements n> 
else 
 <other statements > 
end 
 
 

 for statement 
 
for contor=inf:step:sup 
 < statements > 
end 
 
Remark:  If step is 1 the it can be ommitted.  The value of the step can be less than 0. The 
iteration can be done over the elements of a vector (one row matrix):   
 
for contor=vector 

< statements > 
end 
 

 while statement 
 
while(conditie) 

< statements > 
end 
  

Functions 
 
Scilab functions can be used to compute several results (specified by output variables in the 
function header): 
 
function [output1, …,outputm]=functionName(input1,…,inputn) 

<function body> 
endfunction 
 
Graphics 
 
Several graphics functions: 

 plot  -  one-dimensional functions 
 fplot3d  and contour  - surfaces 
 paramfplot2d – curves given by parametric equations 
 polarplot – polar coordinates representation 
Example: 
// one-dimensional function to be plotted 
function y=f(x) 
    y=x*x/10+sin(x) 
endfunction 
 



x=-2*%pi:0.1:2*%pi 
clf 
plot(x,f) 
 
// surface 
function y=f2arg(x1, x2) // function with 2 arguments 
    y = x1 **2 + x2 **2; 
endfunction 
x1data = linspace ( -1 , 1 , 100 ); // this is equivalent with x1data = -1:0.1:1; 
x2data = linspace ( -1 , 1 , 100 ); 
contour ( x1data , x2data , f2arg , 10)  // contour plot 
pause 
clf                                     // clean the screen 
fplot3d( x1data , x2data , f2arg)       // surface plot 

 


