
Metaheuristics - Lecture 9 1 

Scalability of Population-based 
Metaheuristics 

 
Motivation 
 
  Parallelization models  

 
  Distributed models 

 
 Cooperative coevolution 



Metaheuristics - Lecture 9 2 

Motivation 

The evolutionary algorithms need a large amount of resources: 
 
 Memory space (since they usually need large populations) 
 Execution time (since the evolutionary process is usually long) 

 
Costly operations: 
 The evaluation of the population elements 
 The application of operators 

 
Solutions: 
 Improving the convergence rate of the algorithm (by developing 

new operators) 
 Increasing the efficiency of the implemention (parallel/ 

distributed implementation) 



Metaheuristics - Lecture 9 3 

Parallel and distributed models 

The parallelization can be implemented at different levels: 
 
 Algorithm  -> naive parallelization model 

 
 Elements evaluation -> master-slave model 

 
 Population -> island model 

 
 Element -> cellular model 
 
 



Metaheuristics - Lecture 9 4 

Naïve model 
The algorithm is simultaneously executed on several processors which do 

not communicate 

Is useful for statistical analysis or for parameter tuning 

EA (instance 1) EA (instance 2) EA (instance p) 

Process 1 Process 2 Process p 

Results collection and statistical analysis 



Metaheuristics - Lecture 9 5 

Master-slave model 
The master process executes the EA and distributes the evaluation of the 

population elements to the slave processes 

Master process 
(main EA loop + evolutionary operators) 

Slave process 1 
(computation of f) 

Slave process p 
(computation of f) 

Slave process 2 
(computation of f) 

x1 f(x1) x2 f(x2) xp f(xp) 



Metaheuristics - Lecture 9 6 

Master-slave model 
Particularities: 
 
 If the population size is larger than the number of available 

processors then the master process has to distribute the 
elements to processors.  
 

 The evaluation time depends not only on the characteristics of 
the processor but also on the particularities of the element 
which should be evaluated (e.g. in genetic programming) 
 

 In such a case there is necessary to synchronize the 
computations. In order to avoid frequent synchronization steps 
the generational (synchronous) strategy can be replaced with a 
an asynchronous (steady-state) strategy 



Metaheuristics - Lecture 9 7 

Master-slave model 
Sinchronous 
 
Population initialization 
Population evaluation 
REPEAT 
     Parents selection 
     Generate a population of 

offspring 
     Evaluate the offspring 

population 
     Select the survivors 
UNTIL <stopping condition> 
 

Asynchronous 
 
Population initialization 
Population evaluation 
REPEAT 
     Parents selection 
     Generate a new element 
     Evaluate the new element 
     Assimilate the new element in 

the population 
UNTIL <stopping condition> 
 



Metaheuristics - Lecture 9 8 

Master-slave model 
 

 Is easy to implement 
 

 Leads to a more efficient implementation only if the evaluation step is 
significantly more costly than the other operations involved in the EA.  
 

 The behavior of the evolutionary algorithm (with respect to the 
converegence properties) is not changed 
 

 It can be implemented both on systems with shared memory and on 
systems with distributed memory (including computer networks) 



Metaheuristics - Lecture 9 9 

Structuring the population 
 

 The population can be unstructured  (panmictic) or structured 
 

 Structuring the population has an influence on the evolutionary process, 
one of its effects being the stimulation of the population diversity.  
 

 There are different models: 
 Coarse-grain model  (island model) 
 Fine-grain model  (cellular model) 

 

Model panmictic Island model Cellular model 

Alba, Tomassini; Parallelism and EAs, 2002  



Metaheuristics - Lecture 9 10 

Island model 
 Consists of dividing the population in subpopulations (“islands” or 

“demes”) on which there are executed identical or different EAs and which 
communicate between them by a so-called migration process.  

 A processor can deal with one or several subpopulations  
 In each subpopulation the evolutionary operators are applied for a given 

number of iterations then a migration process is initiated.  

Proc 1/ 
Subpop 1 

Proc 2/ 
Subpop 2 Proc 3/ 

Subpop 3 

Proc p/ 
Subpop p 



Metaheuristics - Lecture 9 11 

Island model 
The communication process between subpopulations is characterized by: 
 
 Communication topology 
 Communication strategy 
 Parameters controlling the communication  

 
These elements have an important influence on the behaviour of the 

algorithm and on its efficiency.  



Metaheuristics - Lecture 9 12 

Island model 
 Communication topology 

 Random 
 

 Ring 
 

 Linear 
 

 Star 
 
 

 



Metaheuristics - Lecture 9 13 

Island model 
 Communication strategy 

 Migration:  an element form the source subpopulation is 
exchanged with an element from the destination subpopulation 

 Pollination: a copy of an element from the source 
subpopulation is transferred in the target subpopulation 
 

 Selection of the element in the source subpopulation 
 Random 
 Elitist (one of the best elements) 

 
 Selection of the element in the destination subpopulation 

 Random 
 Elitist (one of the best elements in the case of migration; one of the 

worst elements in the case of pollynation) 



Metaheuristics - Lecture 9 14 

Island model 
 Example: 

 Elements exchange 
 The global distribution of the elements remains unchanged; 

only the distribution of elements in the subpopulations is 
changed 
 



Metaheuristics - Lecture 9 15 

Island model 
 Specific parameters: 

 
 Migration frequency: 

 Based on  the number of generation 
 Based  on the subpopulations properties 

 
 Migration probability: 

 A high value means a lot of communication between 
subpopulations 



Metaheuristics - Lecture 9 16 

Cellular model 
 The elements are placed in the nodes of a grid (characterized by a 

given topology) 
 Only the neighbours are involved in the selection and crossover 

process  
 In  a parallel implementation each element is assigned to a 

processor (appropriate for implementations on supercomputers) 

http://neo.lcc.uma.es/cEA-web/index.htm 

x1 x2 

xi 

xm 



Metaheuristics - Lecture 9 17 

Cellular model 
 Can be used also in the case of sequential implementations since 

it induces a different dynamics.  
 

 Somehow similar to cellular automata 
 

 There are two variants: 
 
 Synchronous: all offspring are computed in parallel and the 

replacement is done simultaneously 
 

 Asynchronous: the new elements replace their parents as soon as 
they are generated (asynchronously)  



Metaheuristics - Lecture 9 18 

Cellular model 
 Asynchronous variants: 

 
 Random selection of elements involved in the reproduction process 

 
 The cells in the grid are scanned systematically (e.g. row by row) 

 
 The elements are processed in the order given by a random 

permutation 
 

 The asynchronous variant is usually quicker than the synchronous 
one 

 



Metaheuristics - Lecture 9 19 

Hybrid variants 
 The master/slave, island and cellular models cand be combined in 

one of the following variants: 
 Island+cellular 
 Island+MasterSlave 
 Island+island 



Metaheuristics - Lecture 9 20 

Implementation 
 The appropriate computing environment depends on the model 

granularity and on the communication 
 

 Master-slave model: appropriate for cluster architectures 
 

 Island model: both for cluster and distributed architectures 
 

 Cellular model: multi-processors  
 

 Software: tools  PVM, MPI, OpenMP etc.  

 



Metaheuristics - Lecture 9 21 

Implementation 
 Example (for an island model implemented in a cluster 

environment) 
 

Cluster 
Processor 1 Processor p 

Process 1 

Process t 

Process 1 

Process t 

Subpop s 

Subpop 1 

Subpop 2 
MPI  Subpop 1 

Subpop 1 Subpop 1 

Subpop 2 

Subpop 2 Subpop 2 

Subpop s 

Subpop s Subpop s 



Metaheuristics - Lecture 9 22 

Implementation 
 Current trend:  implementation on GPUs and hybrid CPU+GPU 
 There are reported results corresponding to all models: 

 Master-slave (e.g. the EA is executed on CPU while elements 
evaluation is executed on GPU) 

 Fine-grained (cellular) – the whole EA is executed on GPU 
(rmk: there are also implementations which use CPU for 
generating random values);  there are reported results of 
Cellular EAs using up to 10000 elements in the population 

 Coarse-grained (island model) – the population initialization 
and distribution in subpopulations is done on CPU, while the 
EA on each subpopulation is executed on GPU (the migration 
is realized by shuflling the subpopulations on GPU VRAM) 

 Hierarchical models  
 [Biblio:  Arenas et al; GPU Parallel Computation in Bioinspired 

 Algorithms. A review.] 



Metaheuristics - Lecture 9 23 

Cooperative Coevolution 
 Appropriate in the case of high-dimensional problems 

 
 Main idea:  split the problem into smaller sub-problems 

 
 A potential solution consists of several components 
 Evolve independently the population corresponding to each 

component (coevolution) 
 Each component is evaluated in the context of other components 



Metaheuristics - Lecture 9 24 

Cooperative Coevolution 
Implementation issues: 

 
 Choosing the components 

 How many components? 
 How to assign a variable to a component? 

 
 Coevolution of components 

 How to construct the evaluation context for each component 
 How long should be the evolution of a component in the same 

context 



Metaheuristics - Lecture 9 25 

Cooperative Coevolution 
Simplest case: 
 
• Assign each variable to one component = a problem of size n is 

decomposed in n  1-dimensional problems 
 

• This approach is appropriate in the case of separable problems 
(for instance if f(x1,x2,...,xn)=f1(x1)+f2(x2)+...+fn(xn))  

 
but it does not work well in the case of nonseparable functions (for     
instance f(x1,x2)=100(x1-x2)^2+(1-x1)^2) – in such a case the context 
used to evaluate a variable is important which means that the 
interacting variables should be evolved together  
      



Metaheuristics - Lecture 9 26 

Cooperative Coevolution 
Ideal case: 
 
• Each component contains highly interacting variables while 

variables assigned to different components are only loosely 
coupled 

 
Compromise variant: 
• Assign variables to components in a random manner (at each 

iteration) 
• It  works when the interactions are limited to pairs of elements 
      



Metaheuristics - Lecture 9 27 

Cooperative Coevolution 
Differential grouping: 
 
• Estimate for each variable the degree of interaction with other 

variables 
• Two variables i and j are considered interacting if for an arbitrary 

vector x and and two perturbations d1 and d2: 
f(...,xi+di,...,xj+dj,...)-f(...,xi+di,...,xj,...) !=  
f(...,xi,...,xj+dj,...)-f(...,xi,...,xj,...)  
 
• The variables are grouped based on this interaction information 
 
[Omidvar et al., Cooperative Coevolution with Differential Grouping for Large Scale Optimization, 
2013] 

 



Metaheuristics - Lecture 9 28 

Cooperative Coevolution 
Choosing the evaluation context: 
 
• To evaluate a component ck one have to construct a virtual full 

solution, (c1,...,ck,....,cK) by defining an evaluation context 
consisting of collaborators ci provided by the subpopulation 
corresponding to each other component 

• A collaborator can be: 
• Best element in the corresponding subpopulation 
• The corresponding component  from the best element over the entire 

population 
• The corresponding component of a random element of the population 

 



Metaheuristics - Lecture 9 29 

Cooperative Coevolution 
Implementation variants: 
 
 



Metaheuristics - Lecture 9 30 

Cooperative Coevolution 
Impact on the number of function evaluations needed to attain a given 
accuracy: 
 
 

Plot of: 
nfe(n)/nfe(100) 
versus n (the 
problem size) 
 
Algorithm: 
Differential Evolution 
(lecture 8) 
 
 


	Scalability of Population-based Metaheuristics
	Motivation
	Parallel and distributed models
	Naïve model
	Master-slave model
	Master-slave model
	Master-slave model
	Master-slave model
	Structuring the population
	Island model
	Island model
	Island model
	Island model
	Island model
	Island model
	Cellular model
	Cellular model
	Cellular model
	Hybrid variants
	Implementation
	Implementation
	Implementation
	Cooperative Coevolution
	Cooperative Coevolution
	Cooperative Coevolution
	Cooperative Coevolution
	Cooperative Coevolution
	Cooperative Coevolution
	Cooperative Coevolution
	Cooperative Coevolution

