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Evolution Strategies 
• Particularities 

 
• General structure 

 
• Recombination 

 
• Mutation 

 
• Selection 

 
• Adaptive and self-adaptive variants 
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Particularities 
Evolution strategies: evolutionary techniques used in solving 

continuous optimization problems 
 
History: the first strategy has been developed in 1964 by Bienert, 

Rechenberg si Schwefel (students at the Technical University of 
Berlin) in order to design a flexible pipe 

 
Main ideas [Beyer &Schwefel – ES: A Comprehensive Introduction, 

2002]: 
• Use one candidate (containing several variables) which is 

iteratively evolved 
• Change all variables at a time, mostly slightly and at random. 
• If the new set of variables does not diminish the goodness of the 

device, keep it, otherwise return to the old status. 
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Particularities 
 
Data encoding:  real (the individuals are vectors of float values 

belonging to the definition domain of the objective function) 
 
Main operator:  mutation (based on parameterized random 

perturbation) 
 
Secondary operator:  recombination 
 
Particularity: self adaptation of the mutation control parameters 
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General structure 
Structure of the algorithm 
Population initialization 
Population evaluation 
 
REPEAT 
   construct offspring by 

recombination 
   change the offspring by mutation 
   offspring evaluation 
   survivors selection 
UNTIL <stopping condition> 

Problem (minimization): 
 
Find x* in D�Rn such that 
 
f(x*)<f(x) for all x in D 
 
The population consists of 

elements from D (vectors with 
real components) 

 
Rmk.  A configuration is better if 

the value of f is smaller.  Resource related 
criteria 
(e.g.: generations 
number, nfe) 

Criteria related to the 
convergence 
(e.g.: value of f) 



Metaheuristics - Lecture 5 5 

Recombination 
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Aim:  construct an offspring starting from a set of parents 

Intermediate (convex): the offspring 
is a linear (convex) combination 
of the parents 

∑
=

=<<











=

ρ

ρ
ρ

1

2
2

1
1

1  ,10

   ,

y probabilitwith 

y probabilitwith 
y probabilitwith 

i
ii

j

j

j

j

pp

px

px
px

y


Discrete: the offspring consists of 
components randomly taken 
from the parents 
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Recombination 
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Geometrical recombination: 

Heuristic recombination: 
y=xi+u(xi-xk)  with xi an element at least as good as xk 
 

u – random value from (0,1) 

Remark:   introduced by Z. Michalewicz for solving constrained 
optimization problems with constraints involving the product of 
components (e.g. x1x2…xn  > c) 
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Recombination 
Simulated Binary Crossover (SBX) 
• It is a recombination variant which simulates the behavior of one cut 

point crossover used in the case of binary encoding 
• It produces two children c1 and c2 starting from two parents p1 and 

p2 
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Rmk:  β is a random value 

generated according to the 
distribution given by: 
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Rmk:  n can be any natural value; high values 
of n lead to children which are close to the 
parents 
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Mutation 
Basic idea: perturb each element in the population by adding a random 

vector 
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Particularity:  this mutation favors the small changes of the current 
element, unlike the mutation typical to genetic algorithms which 
does not differentiate small perturbations from large perturbations 
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Mutation 
Variants: 
• The components of the random vector are independent random 

variables having the same distribution (E(zizj)=E(zi)E(zj)=0).  
 

     Examples:   
        a)  each component is a random value uniformly distributed in [-s,s] 
        b)  each component has the normal (Gaussian) distribution N(0,s) 
 
     Rmk.   The covariance matrix is a diagonal matrix C=diag(s2,s2,…,s2) 

with s the only control parameter of the mutation 
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Mutation 
Variants: 
• The components of the random vector are independent random 

variables having different distributions (E(zizj)= E(zi)E(zj)= 0) 
     Examples:   
        a)  the component zi of the perturbation vector has the uniform 

distribution  on [-si,si] 
        b)  each component of the perturbation vector has the distribution  
             N(0, si) 
 
     Rmk.   The covariance matrix is a diagonal matrix: 

C=diag(s2
1,s2

2,…,s2
n) and the control parameters of mutation are 

s1,s2,…,sn 
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Mutation 
Variants: 
• The components are dependent random variables 

 
     Example:   
        a)  the vector z has the distribution N(0,C) 
 
Rmk.   There are  n(n+1)/2 control parameters of the mutation: 
         s1,s2,…,sn   - mutation steps 
         a1,a2,…,ak   - rotation angles (k=n(n-1)/2)   

       cij = ½  • ( si
2  -  sj

2 ) • tan(2 aij)  
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Mutation 

Variants involving various numbers of parameters 

        [Hansen, PPSN 2006] 
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Mutation 
Problem:  choice of the control 

parameters 
 
Example: perturbation of type N(0,s) 

– s large -> large perturbation 
– s small -> small perturbation  

 
Solutions: 

– Adaptive heuristic methods 
(example: rule 1/5) 

– Self-adaptation (change of 
parameters by recombination and 
mutation)                 

s=0.5 

s=1 
s=2 
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Mutation 
1/5 rule. 
This is an heuristic rules developed for ES having independent 

perturbations characterized by a single parameter, s.  
 
Idea: s is adjusted by using the success ratio of the mutation 
 
The success ratio:  
     ps= number of mutations leading to better configurations /  
           total number of mutations 
 
Rmk. 1. The success ratio is estimated by using the results of at least 

n mutations (n is the problem size)  
          2. This rule has been initially proposed for populations 

containing just one element 
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Mutation 
 1/5 Rule. 
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Some theoretical studies conducted for some particular objective 
functions (e.g. sphere function) led to the remark that c should 
satisfy  0.8 <= c<1 (e.g.: c=0.817) 

Remarks: 
• This rule was proposed for ESs involving just one candidate; it 

cannot be directly extended in the case of populations of 
candidates  
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Mutation 
Self-adaptation 
Idea:   
• Extend the elements of the population with components 

corresponding to the control parameters 
• Apply specific recombination and mutation operators also to control 

parameters 
• Thus the values of control parameters leading to competitive 

individuals will have higher chance to survive 
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Mutation 
Steps:  
• Change the components corresponding to the control parameters 
• Change the variables corresponding to the decision variables 
Example:  the case of independent perturbations 
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= Variables with lognormal distribution 
      - ensure that  si>0 
      - it is symmetric around 1 

Remark:  
• The recommended recombination for the control parameters is the 

intermediate recombination  
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Mutation 
Variant proposed by Michalewicz (1996): 
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• ai  and bi are the bounds of the interval corresponding to 
component xi 

• u is a random value in (0,1) 
• t is the iteration counter 
• T is the maximal number of iterations 
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Mutation 
CMA – ES (Covariance Matrix Adaptation –ES)  [Hansen, 1996] 
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Survivors selection 
Variants:     

),( λµ

)( λµ +

From the set of μ parents construct λ> μ  offspring and 
starting from these select the best μ survivors (the 
number of offspring should be larger than the 
number of parents) 

 
From the set of  μ parents construct λ offspring and from 

the joined population of parents and offspring select 
the best  μ survivors (truncation selection). This is an 
elitist selection (it preserves the best element in the 
population) 

Remark:  if the number of parents is  rho the usual notations are:     

)/( λρµ + ),/( λρµ
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Survivors selection 

Particular cases:  
 (1+1) – from one parent generate one offspring and chose the 

best one    
 (1,/+λ) – from one parent generate several offspring and choose 

the best element 
(μ+1) – from a set of μ construct an offspring and insert it into 

population if it is better than the worst element in the 
population 
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Survivors selection 
The variant (μ+1) corresponds to the so called steady state 

(asynchronous) strategy 

Generational strategy: 
- At each generation is 

constructed a new 
population of offspring 

- The selection is applied to 
the offspring or to the 
joined population 

- This is a  synchronous 
process 

Steady state strategy: 
- At each iteration only one 

offspring is generated; it is 
assimilated into population if 
it is good enough  

- This is an asynchronous 
process 
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ES variants 
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Each element has a limited life time (k generations) 
The recombination is based on  � parents 
 

Fast evolution strategies:   
The perturbation is based on the Cauchy distribution 

      normal 

Cauchy 
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Analysis of the behavior of ES 

Evaluation criteria: 
 
Effectiveness: 
- Value of the objective function 

after a given number of 
evaluations (nfe)  

 
Success ratio: 
- The number of runs in which 

the algorithm reaches the goal 
divided by the total number of 
runs.  

Efficiency: 
- The number of evaluation 

functions necessary such that 
the objective function reaches 
a given value (a desired 
accuracy) 
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Summary 

Encoding Real vectors 

Recombination Discrete or intermediate 

Mutation Random additive perturbation 
(uniform, Gaussian, Cauchy) 

Parents selection Uniformly random 

Survivors selection (µ,λ) or (µ+λ) 

Particularity Self-adaptive mutation 
parameters 
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