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Recurrent neural networks  

 
• Architectures 

– Fully recurrent networks 
– Partially recurrent networks 

 

• Dynamics of recurrent networks 
– Continuous time dynamics 
– Discrete time dynamics 

 

• Applications 
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 Recurrent neural networks  

 
• Architecture 

– Contains feedback connections  
– Depending on the density of feedback connections there are: 

• Fully recurrent networks (Hopfield model) 
• Partially recurrent networks: 

– With contextual units (Elman model, Jordan model) 
– Cellular networks (Chua-Yang model) 

• Applications 
– Associative memories 
– Combinatorial optimization problems  
– Prediction 
– Image processing 
– Dynamical systems and chaotical phenomena modelling 
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Hopfield networks 
Architecture:   
      N fully connected units 
 
Activation function:   
 Signum/Heaviside 
 Logistica/Tanh 
Parameters: 
    weight matrix 

Notations:  xi(t) – potential (state) of the neuron  i at moment  t 
               yi(t)=f(xi(t)) – the output signal generated by unit i at moment t  
               Ii(t) – the input signal 
               wij – weight of connection between j and i 



Metaheuristic Algorithms - Lecture 
13 

4 

Hopfield networks 
Functioning:  -  the output signal is generated by the evolution of a  

  dynamical system 
                      -  Hopfield networks are equivalent to dynamical systems 
 
Network state: 
            -  the vector of neuron’s state X(t)=(x1(t), …, xN(t)) 
or  
            -  output signals vector  Y(t)=(y1(t),…,yN(t)) 
 
Dynamics: 
• Discrete time – recurrence relations (difference equations) 
• Continuous time – differential equations 
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Hopfield networks 
Discrete time functioning:  
     the network state corresponding to moment t+1 depends on the 

network state corresponding to moment t 
 
Network’s state:   Y(t) 
 
Variants: 
• Asynchronous:  only one neuron can change its state at a given time 
• Synchronous:  all neurons can simultaneously change their states  
 
Network’s answer:  the stationary state of the network 
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Hopfield networks 
Asynchronous 

variant:  
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Choice of  i*: 
                           - systematic scan of  {1,2,…,N} 
                           - random (but such that during N steps each neuron     

changes its state just once) 
Network simulation: 
     - choose an initial state (depending on the problem to be solved) 
     - compute the next state until the network reach a stationary state  
       (the distance between two successive states is less than ε)      
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Hopfield networks 
Synchronous variant: 
      

Either continuous or discrete activation functions can be used 
Functioning: 
 
Initial state 
      REPEAT 
           compute the new state starting from the current one 
      UNTIL < the difference between the current state and the previous 

one is small enough > 
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Hopfield networks 
Continuous time functioning: 
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Network simulation: solve (numerically) the system of differential 
equations for  a given initial state xi(0) 

Example: Explicit Euler method 
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Stability properties 
Possible behaviours of a network: 
• X(t)  converged to a stationary state X* (fixed point of the network 

dynamics) 
• X(t) oscillates between two or more states 
• X(t) has a chaotic behavior or  ||X(t)|| becomes too large 

 
Useful behaviors: 
• The network converges to a stationary state  

– Many stationary states: associative memory 
– Unique stationary state: combinatorial optimization problems 

 
• The network has a periodic behavior 

– Modelling of cycles 
 
Obs.  Most useful situation: the network converges to a stable stationary 

state 
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Stability properties 

Illustration:      

Formalization:   
 
 
 
X* is asymptotic stable (wrt the initial conditions) if it is 
                    stable 
                    attractive    
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Stability properties 
 
Stability:   
     X* is stable if for all  ε>0 there exists δ(ε ) > 0   such that:   
                 ||X0-X*||< δ(ε )   implies  ||X(t;X0)-X*||< ε 
 
Attractive: 
    X* is attractive if there exists δ > 0  such that:   
                ||X0-X*||< δ   implies X(t;X0)->X* 
 
In order to study the asymptotic stability one can use the Lyapunov 

method.  
 



Metaheuristic Algorithms - Lecture 
13 

12 

Stability properties 
Lyapunov 

function: 
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• If one can find a Lyapunov function for a system then its 
stationary solutions are asymptotically stable  

• The Lyapunov function is similar to the energy function in 
physics (the physical systems naturally converges to the lowest 
energy state) 

• The states for which the Lyapunov function is minimum are 
stable states 

• Hopfield networks satisfying some properties have Lyapunov 
functions.  

bounded 
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Stability properties 
Stability result for continuous neural networks 
 
If: 
       - the weight matrix is symmetrical (wij=wji) 
       - the activation function is strictly increasing (f’(u)>0) 
       - the input signal is constant (I(t)=I) 
 
Then all stationary states of the network are asymptotically stable 
 
Associated Lyapunov function: 
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Stability properties 
Stability result for discrete neural networks (asynchronous case) 
If: 
       - the weight matrix is symmetrical (wij=wji) 
       - the activation function is signum or Heaviside 
       - the input signal is constant (I(t)=I) 
Then all stationary states of the network are asymptotically stable 
 
Corresponding Lyapunov function 
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Stability properties 
This result means that: 
 
• All stationary states are stable 

 
• Each stationary state has attached an attraction region (if the 

initial state of the network is in the attraction region of a given 
stationary state then the network will converge to that stationary 
state) 
 

Remarks: 
• This property is useful for associative memories  

 
• For synchronous discrete dynamics this result is no more true, 

but the network converges toward either fixed points or cycles of 
period two 
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Associative memories 
Memory = system to store and recall the information 
 
Address-based memory: 

– Localized storage: all components bytes of a value are stored 
together at a given address 

– The information can be recalled based on the address 
 

Associative memory: 
– The information is distributed and the concept of address 

does not have sense 
– The recall is based on the content (one starts from a clue 

which corresponds to a partial or noisy pattern) 
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Associative memories 
Properties: 
• Robustness 

 
Implementation: 
• Hardware: 

– Electrical circuits 
– Optical systems 

 
• Software:   

– Hopfield networks simulators 
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Associative memories 
Software simulations of associative memories: 
• The information is binary: vectors having elements from  {-1,1} 
• Each component of the pattern vector corresponds to a unit in the 

networks 

Example (a) 
(-1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-

1,1,1,-1,-1, -1,-1,1,1,-1,-1) 
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Associative memories 
 
Associative memories design: 
• Fully connected network with N signum units (N is the patterns 

size) 
 

Patterns storage: 
• Set the weights values (elements of matrix W) such that the 

patterns to be stored become fixed points (stationary states) of 
the network dynamics 

 
Information recall: 
• Initialize the state of the network with a clue (partial or noisy 

pattern) and let the network to evolve toward the corresponding 
stationary state.  
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Associative memories 
Patterns to be stored:  {X1,…,XL}, Xl  in {-1,1}N 

 
Methods: 
• Hebb rule 
• Pseudo-inverse rule  (Diederich – Opper algorithm) 
 
Hebb rule: 
• It is based on the Hebb’s principle: “the synaptic permeability of 

two neurons which are simultaneously activated is increased” 
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Associative memories 

Properties of the Hebb’s rule: 
 
• If the vectors to be stored are orthogonal (statistically uncorrelated) 

then all of them become fixed points of the network dynamics 
 

• Once the vector X is stored the vector –X is also stored 
 

• An improved variant: the pseudo-inverse method 
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Associative memories 
Pseudo-inverse method: 
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• If Q is invertible then all elements of {X1,…,XL}  are fixed points of 
the network dynamics 
 

• In order to avoid the costly operation of inversion  one can use an 
iterative algorithm for weights adjustment 
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Associative memories 
 

Diederich-Opper algorithm : 

Initialize W(0) using the Hebb rule 
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Associative memories 
 

Recall process: 
 
• Initialize the network state 

with a starting clue 
 

• Simulate the network until 
the stationary state is 
reached.  

Stored patterns 

Noisy patterns (starting clues) 
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Associative memories 
 

Storage capacity:  
– The number of patterns which can be stored and recalled 

(exactly or approximately)  
– Exact recall:  capacity=N/(4lnN) 
– Approximate recall (prob(error)=0.005): capacity = 0.15*N 

 
Spurious attractors: 

– These are stationary states of the networks which were not 
explicitly stored but they are the result of the storage 
method.  
 

Avoiding the spurious states 
– Modifying the storage method  
– Introducing random perturbations in the network’s 

dynamics 
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Solving optimization problems 
 

• First approach:  Hopfield & Tank (1985)  
 
– They propose the use of a Hopfield model to solve the 

traveling salesman problem.  
 

– The basic idea is to design a network whose energy 
function is similar to the cost function of the problem (e.g. 
the tour length) and to let the network to naturally evolve 
toward the state of minimal energy; this state would 
represent the problem’s solution.  



Metaheuristic Algorithms - Lecture 
13 

27 

Solving optimization problems 
 

A constrained optimization problem: 
     find (y1,…,yN) satisfying: 
             it minimizes a cost function C:RN->R 
             it satisfies some constraints as Rk (y1,…,yN) =0  with  
                        Rk  nonnegative functions 
 
Main steps: 
• Transform the constrained optimization problem in an 

unconstrained optimization one (penalty method) 
• Rewrite the cost function as a  Lyapunov function 
• Identify the values of the parameteres (W and I) starting from 

the Lyapunov function  
• Simulate the network 
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Solving optimization problems 
 

Step 1: Transform the constrained optimization problem in an 
unconstrained optimization one 
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The values of a and b are chosen such that they reflect the relative 
importance of the cost function and constraints 



Metaheuristic Algorithms - Lecture 
13 

29 

Solving optimization problems 
 

Step 2: Reorganizing the cost function as a Lyapunov function  
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Remark: This approach works only for cost functions and constraints 
which are linear or quadratic 
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Solving optimization problems 
 

Step 3: Identifying the network parameters: 
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Solving optimization problems 
 Designing a neural network for TSP (n towns): 

 
N=n*n neurons 
The state of the neuron (i,j) is interpreted as follows: 

   1    - the town i is visited at time j 
                          0    - otherwise 

A 

C 

D E 

B         1    2     3    4   5 
A      1    0     0    0   0 
B      0    0     0    0   1 
C      0    0     0    1   0 
D      0    0     1    0   0 
E      0    1     0    0   0 

AEDCB 
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Solving optimization problems 
 

 
Constraints: 
  - at a given time only one town is visited 

(each column contains exactly one 
value equal to 1) 

  -  each town is visited only once (each 
row contains exactly one value equal to 
1) 

 
Cost function:   
     the tour length = sum of distances 

between towns visited at consecutive 
time moments 

 

        1    2     3    4   5 
A      1    0     0    0   0 
B      0    0     0    0   1 
C      0    0     0    1   0 
D      0    0     1    0   0 
E      0    1     0    0   0 
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Solving optimization problems 
 

Constraints and cost function: 
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Cost function in the 
unconstrained case: 
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Solving optimization problems 
 

Identified parameters: 
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Prediction in time series  

• Time series = sequence of values measured at successive    
    moments of time 
 

• Examples: 
– Currency exchange rate evolution  
– Stock price evolution 
– Biological signals (EKG) 
 

• Aim of time series analysis: predict the future value(s) in the 
series 
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Time series 
The prediction (forecasting) is based on a model which describes the 

dependency between previous values and the next value in the 
series.  

Order of the model 

Parameters corresponding  
to external factors 
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Time series 
The model associated to a time series can be: 

- Linear 
- Nonlinear  

- Deterministic 
- Stochastic  

Example: autoregressive model (AR(p))  

noise = random variable from 
N(0,1) 
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Time series 
 
Neural networks. Variants: 
 
• The order of the model is known 

– Feedforward neural network with delayed input layer   
    (p input units) 

 
• The order of the model is unknown  

– Network with contextual units (Elman network) 
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Networks with delayed input layer 

Architecture:                            

Functioning:                            
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Networks with delayed input layer 
Training:   
 
• Training set:  {((xl,xl-1,…,xl-p+1),xl+1)}l=1..L 

 

• Training algorithm:  BackPropagation  
 

• Drawback:  needs the knowledge of p 
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Elman network 
Architecture: 
      

Functioning:      

Contextual  
units 

Rmk: the contextual 
units contain 
copies of the 
outputs of the 
hidden layers 
corresponding to 
the previous 
moment    
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Elman network 
Training 
 
Training set :  {(x(1),x(2)),(x(2),x(3)),…(x(t-1),x(t))} 
 
Sets of weights: 
 
- Adaptive:  Wx, Wc si W2 

- Fixed: the weights of the connections between the hidden and the 
contextual layers.  

 
Training algorithm: BackPropagation 
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Cellular networks 
Architecture:  
• All units have a double role: input and 

output units 
 

• The units are placed in the nodes of a 
two dimensional grid  
 

• Each unit is connected only with units 
from its neighborhood (the 
neighborhoods are defined as in the 
case of Kohonen’s networks) 
 

• Each unit is identified through its 
position p=(i,j)  in the grid 

virtual cells  
(used to define  
the context for  
border cells) 
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Cellular networks 
Activation function: ramp  

-2 -1 1 2

-1

-0.5

0.5

1

Notations: 
Xp(t) – state of unit p at time t 
Yp(t) - output signal 
Up(t) – control signal 
Ip(t) – input from the environment 
apq – weight of connection between unit q and unit p 
bpq -  influence of control signal Uq on unit p 
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Cellular networks 
Functioning: 

Remarks: 
• The grid has a boundary of fictitious units (which usually 

generate signals equal to 0) 
• Particular case:  the weights of the connections between 

neighboring units do not depend on the positions of units  
Example: if p=(i,j), q=(i-1,j), p’=(i’,j’), q’=(i’-1,j’) then  

 
apq= ap’q’=a-1,0 

Signal generated by 
other units 

Control 
signal 

Input signal 
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Cellular networks 
These networks are called cloning template cellular networks 
Example: 
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Cellular networks 
Illustration of the cloning template elements 
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Cellular networks 
Software simulation = equivalent to numerical solving of a differential 

system (initial value problem) 
 
Explicit Euler method 

Applications: 
• Gray level image processing 
• Each pixel corresponds to a unit of the network 
• The gray level is encoded by using real values from  [-1,1] 
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Cellular networks 
Image processing: 
 
• Depending on the choice of templates, of control signal (u), initial 

condition (x(0)), boundary conditions (z) different image 
processing tasks can be solved: 
 

 
– Edge detection in binary images 

 
– Gap filling in binary images 

 
– Noise elimination in binary images 
 
– Identification of horizontal/vertical line segments 
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Cellular networks 
Example 1:  edge detection 
z=-1,  U=input image, h=0.1 
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http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/CNNsim_adv.html 
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Cellular networks 
Example 2:  gap filling 
z=-1,   
U=input image,  
h=0.1 
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Cellular networks 
Example 3: noise removing 
z=-1,  U=input image, h=0.1 
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Cellular networks 
Example 4: horizontal line detection 
z=-1,  U=input image, h=0.1 
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Other related models 
Reservoir computing (www.reservoir-computing.org) 
 
Particularities:  
• These models use a set of hidden units (called reservoir) which are 

arbitrarly connected (their connection weights are randomly set; each of 
these units realize a nonlinear transformation of the signals received 
from the input units.  
 

• The output values are obtained by a linear combination of the signals 
produced by the input units and by the reservoir units.  
 

• Only the weights of connections toward the output units are trained  
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Other related models 
Reservoir computing (www.reservoir-computing.org) 
 
Variants:  
 
• Temporal Recurrent Neural Network (Dominey 1995) 
• Liquid State Machines (Natschläger, Maass and Markram 2002) 
• Echo State Networks (Jaeger 2001) 
• Decorrelation-Backpropagation Learning (Steil 2004) 
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Other related models 
Echo State Networks: 
U(t) = input vector 
X(t) = reservoir state vector 
Z(t)=[U(t);X(t)]  = concatenated input and state 

vectors 
Y(t) = output vector 
 
X(t)=(1-a)X(t-1)+a tanh(Win U(t)+W X(t-1)) 
Y(t)=Wout Z(t) 
 
Win ,W – random matrices (W is scaled such 

that the spectral radius has a predefined 
value);  

Wout  - set by training 

M. Lukosevicius – Practical Guide to  
Applying Echo State Networks 
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Other related models 
Applications of reservoir computing: 
 
- Speech recognition 
- Handwritten text recognition 
- Robot control 
- Financial data prediction 
- Real time prediction of epilepsy seizures 
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Other related models 
Deep learning (http://deeplearning.net/) 
Particularities:  
• Deep architecture = many layers (aim: hierarchical extraction of data features);  

 
• Unsupervised training based on Restricted Boltzmann Machines) followed by a 

fine tuning of weights using a supervised training (e.g. Backpropagation) 
 

Remarks:  
• Boltzmann Machines = recurrent neural networks with binary stochastic units 
• Restricted BM = recurrent neural networks with bidirectional connections only 

between the units belonging to different subsets of units (e.g. subsets:  visible 
units, hidden units) 

• There are feed-forward deep neural networks (e.g: Convolutional Neural 
Networks) 
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Other related models 
Deep learning (http://deeplearning.net/) 
 
 
Applications: 
- Image classification, objects detection (e.g. Face recognition – Deep Face) 
- Speech recognition (Google Brain, Siri) 
- Semantic indexing (ex: word2vec) and automated translation 
- Dream simulation (http://npcontemplation.blogspot.ca/2012/02/machine-that-

can-dream.html) 
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