
Metaheuristic algorithms 
 
Lab 5: Multiobjective optimization.  
            Classification problems and classifiers. Weka – data mining platform 
______________________________________________________________________________ 
 

 
1. Multiobjective optimization 

 
Multiobjective optimization means to simultaneously optimize several objective functions 
(criteria). The function to be optimized is vectorial F:Rn->Rr, and its components can be denoted 
as follows F=(f1,f2,…,fr). 
The optimization criteria are usually conflicting, therefore the problem does not have a unique 
solution. In such a case we are looking for some compromise solutions (called Pareto optimal) 
characterized by the fact that they cannot be improved with respect to all their components (any 
improvement with respect to one criterion leads to a decrease of quality with respect to other 
criteria).  
There are different approaches of this problem. The main approaches are: 

• Aggregation methods: the multiobjective problem is transformed in a one-objective 
optimization problem by combining all optimization criteria in a single one. Thus the new 
objective function becomes: f(x)=w1f1(x)+w2f2(x)+…+wrfr(x) where w1,w2, …,wr are 
weights associated to objective functions. For each set of weights one can obtain a 
different solution. 

• Direct approximation of the Pareto optimal set: it uses a population of elements which 
will approximate the Pareto optimal set. The approximation process can be a evolutionary 
one. The main difference between multiobjective EAs and single objective EAs is related 
with the selection process. In the MOEAs the selection process is based on the 
dominance relationship between the elements (see Lecture 10). 

  
 
Examples of test functions used to evaluate the performance of multiobjective algorithms are 
available at: http://en.wikipedia.org/wiki/Test_functions_for_optimization  
 
Application 1.  Let us consider the function F:[0,4]->RxR, F(x)=((x-1)2,(x-2)2). Estimate the 
optimal Pareto set and the corresponding Pareto front. 
 
Variant 1. By using the aggregation technique 
 

a) Construct the aggregated objective function: 
function y=fw(x) 
    w=0.1; 
    y1=(x-1)*(x-1); 
    y2=(x-2)*(x-2); 
    y=w*y1+(1-w)*y2; 
endfunction 

 
b) Apply an evolution strategy (for instance, that described in SE.sci) to optimize the 

aggregated objective for the following values of w:  (0.1,0.2,0.3,…,0.9).  The 
corresponding results are collected in a list. 

http://en.wikipedia.org/wiki/Test_functions_for_optimization


c) Plot the points having as coordinates  the values of the objective functions computed at 
the previous step  (the plotted set of points will be illustrate an approximation of the 
Pareto front): 

function pareto(x) 
    f1=(x-1).^2; 
    f2=(x-2).^2; 
    plot(f1,f2,'*'); 
endfunction     

 
 
Variant 2. Use the algorithm NSGA-II and MOGA algorithms implemented in SciLab (functions 
optim_nsga2 and optim_moga). 
 
Hint:   exNSGA.sci 
 
2. Classification problems 
 
The main aim of a classification task is to decide to which class a given object belongs. The 
classification task can be solved by using a classifier which is usually designed starting from 
some examples of labelled data.  
 
2.1 Examples of classification tasks:  

• Medical diagnosis:  
o the input data are symptoms, results of investigations, characteristics of the 

patient etc 
o the classes are related with the illness (a frequent case is when there are two 

classes: healthy and ill) 
• Fault diagnosis: 

o the input data are characteristics of a given system  
o the classes corresponds to the system status (functional or with flaws) 

• Character recognition: 
o the input data are vectors containing features of the characters 
o the classes corresponds to the characters (letter, digits, other symbols) to be 

recognized. 
• Face recognition: 

o The input data are features extracted from digital images 
o The classes corresponds to the presence or absence of human faces in the image 

 
2.2. Design of classifiers. Categories of data used when designing a classifier: 
 

• Training data:  data for which the corresponding class is known and are used to design 
the classifier through a learning process 

• Validation data: data used to evaluate the behavior of the classifier during the learning 
process; the classification performance on the validation data is used to decide if the 
learning process should be stopped or not;  early stopping of learning could be useful in 
order to avoid overtraining and enhance the generalization ability of the classifier 

• Testing data:  data used to evaluate the performance of a trained classifier 
 
The classifiers can be of different types: 

• Decision trees 
• Decision (classification) rules 



• Probabilistic approaches (Bayesian networks) 
• Instance based classifiers (e.g. based on the nearest distance to some instances from the 

training set) 
• Neural networks, Support Vector Machines 

 
Main steps in designing a classifier: 

• Preprocess the available data (e.g. select/ extract the relevant data features) 
• Choose the classifier type (e.g. decision trees, classification rules, distance based, 

network-based etc.) 
• Train the classifier, i.e. adapt the structure and/or estimate the adaptive parameters, such 

that it correctly classifies the data in the training set. 
• Validate the classifier, i.e.  evaluate the behavior of the classifier for data not included in 

the training set. 
 

Measures of classifiers quality.  The simplest quality measure is the classification accuracy:  the 
ratio between the number of correctly classified instances and the total number of instances. 
 
In the case to binary classification (there are two classes:  a class of positive cases and a class of 
negative cases) the classifier performance can be illustrated using the so-called confusion matrix. 
The confusion matrix contains information about the percent of data which were correctly/ 
incorrectly  classified. Let us consider the case when the first class corresponds to a positive 
diagnostic (e.g. malignant) and the second class corresponds to a negative diagnostic (e.g. 
benign). The confusion matrix contains the percent or absolute frequence of: 
 

• True positive cases (TP):  positive cases which were correctly classified in the first class 
• True negative cases (TN):  negative cases which were correctly classified in the second 

class 
• False positive cases (FP): negative cases which were incorectly classified in the first 

class 
• False negative cases (FN): positive cases which were incorrectly classified in the second 

class 
 
Based on these values several other quality criteria can be computed:   
 
sensitivity=TP / (TP + FN)  (rmk: also called recall)                       specificity=TN/(TN+FP) 
 
precision=TP/(TP+FP)                                         F=2*precision*recall/(precision+recall) 
 
Another possibility to illustrate the performance of a binary classifier depending on a 
discrimination threshold is  the ROC (Receiver Operating Characteristic) curve which consists of 
points having the coordinates (1-specificity, sensitivity) and corresponding to different 
discrimination thresholds (in the case of binary classification the decision that an input belongs to 
a given class is usually taken based on a value in [0,1] and a threshold: if the value is larger than 
the threshold then the input belongs to the class otherwise it does not belong). 
 
 



 
2.3. Neural Networks for classification problems 
 
The most common neural network architecture used in solving classification problems is the 
feedforward one characterized by: 

• An input layer having as many units as attributes are in data 
• One or several hidden layers (as the number of hidden units is larger, the model extracted 

by the neural network is more complex – but this is not necessarily beneficial for the 
problem to be solved as it can lead to model overfitting) 

• An output layer having as many units as classes  
 
The output signal corresponding to an input vector (that containing the features of the object to be 
classified) specifies the class to which belongs the object.  There are at least two ways of 
interpreting the outputs of a neural network used for classification:  

• In the most common case, the class is specified by the index of the aoutput unit producing 
the largest value  

• In the case when the output values belong to (0,1) and their sum equals 1 then they can be 
interpreted as probabilities (the value corresponding to unit i corresponds to the 
probability that the input vector belongs to class i). 

 
If the values produced by the output neurons are in (0,1),  the correct answers (to be used in the 
learning process) are vectors containing one value equal to 1 on the position corresponding to the 
right class and equal to 0 on all the other positions. 
 
The learning process is controlled by a cross-validation technique which consists in dividing the 
initial set of data into three slices: 

• Training data:  the data used in the training algorithm to compute the adjustments for 
connections weights  

• Validation data: when the classification error on these data starts to increase, the training 
process is stopped (these data are not used to compute the weight adjustments but only to 
decide if  the network has generalization ability) 

• Test data: these data are not used in the training process but only to evaluate the quality 
of the classifier  

 
 
 
 



2.4. Weka data mining platform  (http://www.cs.waikato.ac.nz/ml/weka/ ) 
 

• Weka is a collection of machine learning algorithms (including several types of neural 
networks: multilayer perceptron, radial basis functions networks) designed to solve 
various data mining tasks: data visualization, attribute selection, classification, clustering, 
association rules extraction. 

 
• It is open source and the methods can be used from the Explorer GUI or directly from a 

Java code. It allows to compare different methods (Experimenter GUI) or to define 
workflows of data mining tasks (Knowledge Flow GUI). 

 
 
Exercise 1.   Open the file breast_cancer_nominal.csv  in Weka and compare the accuracy of the 
following classifiers: 

• Classification rules: Rules-> OneR, Rules-> ConjunctiveRules, Rules->NNge 
• Decision trees: Trees->J48, Trees->RandomForest 
• Nearest Neighbor: Lazy->IBk 
• Bayesian Networks: bayes->NaiveBayes 
• Neural Networks: functions->MultilayerPerceptron, functions->RBFnetwork,  
• Support Vector Machines:  functions->SMO 

 
 
Hint: All classifiers are in the Classify panel of the Weka Explorer.  For neural networks 
classifiers in order to see a graphical representation of the network architecture set GUI option in 
the panel opened when click on the classifier bar.  
 
2.5. Machine Learning Repository   (http://archive.ics.uci.edu/ml/ ) 
 
This archive contains a lot of data from various domains (life sciences, physical sciences, 
computer science and engineering) which can be used to train, validate and test classifiers and 
other machine learning techniques. 
 
Exercise 2.   Visit the repository, download one of the dataset for classification (at your choice) 
and use it to test classifiers from Weka (see Ex. 1) 
 

 
 

http://www.cs.waikato.ac.nz/ml/weka/
http://archive.ics.uci.edu/ml/

