
Metaheuristic algorithms.  
 
Lab 4:  Genetic programming.   
 Bio-inspired metaheuristics: ant colony optimization (ACO),  particle swarm 
optimization (PSO) 
 
______________________________________________________________________________ 
 

1. Genetic programming. 
 

The aim of genetic programming is to design in an evolutionary manner computational structures 
(arithmetical/logical expressions, classification/decision rules or even programs).  In traditional 
Genetic Programming applications (as symbolic regression) the elements of the population are 
hierarchical structures (e.g. syntactic trees). The genetic operators are adjusted to work with 
such structures. One of the main difficulties in GP is to avoid the proliferation of large structures 
(the so called bloat problem). A possible solution to this problem is to limit the depth of the trees 
generated during the evolutionary process. 
 
The most popular application of GP is symbolic regression aiming to evolve an expression which 
fits well to some data (unlike the numerical regression which aims to estimate the coefficients of 
a given model, symbolic regression estimates the model itself).  
 

 
Application 1.  Use the “rgp” R package to find an expression which fits a dataset. 
 
Main steps: 

• Launch R 
• Load package “rgp”:  Packages ->Load package …  or library(“rgp”)  (if the package is 

not installed then it should be installed by  Packages-> Install package(s)…  
• Define the set of nonterminals (operators and functions) using functionSet.  Example: 

setNonterminals <- functionSet("+", "*", "-","/") 
• Define the set of variables using inputVariableSet. Example: setVariables <- 

inputVariableSet("x")  
• Define the set of constants using constantFactorySet. Example:  setConstants <- 

constantFactorySet(function() rnorm(1))  (random values generated using the standard 
normal distribution) 

• Define the test data: values which will be used to evaluate the approximation accuracy. 
Example: dateX <- seq(from = -pi, to = pi, by = 0.1) 

• Define the fitness function:  mean square error (measure of the difference between the 
values of the test function and the values corresponding to the evolved expressions). 
Example:  fitness <- function(f) rmse(f(dateX), sin(dateX))    (if the reference function is 
sinus) 

• Call the function corresponding to the evolutionary process (geneticProgramming). 
Example: 
 geneticProgramming(functionSet = setNonterminals,  
                                     inputVariables = setVariables, 
                                    constantSet = setConstants,  
                                    fitnessFunction = fitness, 
                                    stopCondition = makeStepsStopCondition(10000)) 

 



Particularities of the genetic programming implemented in “rgp”: 
• The population elements are R expressions (implemented as tree-like structures) 
• The population initialization is based on several construction strategies:  

o  “grow” (each branch in the tree will be extended until it reaches the maximal 
length or until a random event occurs)  

o „full” (all branches in the tree have the maximal length)  
o Combined variant (some elements are generated using the  “grow” strategy, 

others are constructed using the  „full” strategy) 
• The package implements the traditional crossover and mutation strategies adapted for 

trees (see slides of lecture 9) 
• There are implemented various selection variants using one or several criteria (as in 

multiobjective optimization). In the multicriterial variant the aim is to optimize the 
quality of the result, the simplicity of the elements and the population diversity.  
 

Exercise 1:  Follow the above steps and test the influence of nonterminals on the quality of the 
results (by changing the elements of the nonterminals set).  Hint: see for instance  gp1.r  

 
 
2. Ant Colony Optimization (ACO) 

 
ACO is a metaheuristic inspired by the behavior of the ant colonies. It is especially used in 
solving combinatorial optimization problems (e.g. routing, scheduling, assignment)  It uses a 
population of artificial ants (agents) which is changed during an iterative process. At each 
iteration each ant constructs, component by component, a potential solution. The values for the 
solution components are chosen randomly based on a probability distribution. The probability 
distribution is computed by using both local information (what the ant can collect from its 
neighbourhood) and global information (obtained by using the indirect communication process 
between ants based on pheromone trails). 
 
Solving TSP using ACO.  The input data consists of the graph describing the direct connections 
between towns and their costs.  A population of ants is initially placed on random nodes (or all of 
them in the first node). At each iteration, each ant visits n distinct nodes, constructing a tour. The 
ants have a local memory where the list of visited nodes is stored in order to avoid visiting twice 
the same node. The transition of an ant k from the node i to the node j at step t is based on the 
following probability: 
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The factors appearing in the computation of the probability are:  

• τij  models the pheromone concentration released by the ants on edge (i,j); the pheromone 
concentration is randomly initialized with small positive values. Each ant which visits an 
edge (i,j) can release some pheromone on it contributing to the update of the pheromone 
concentration: 
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              ρ is a constant less than 1 which controls the evaporation process, Qij(k) is 0 if   (i,j) does 



             not belong to the tour constructed by ant  k.   Cost(Tk)  denotes the cost of the tour  
             constructed by the ant k. 

• ηij models the local information concerning the quality of the edge; the simplest variant is 
when it is 1/cost(i,j).  

• α and β are parameters which control the relative importance of those two types of 
information: the global information provided by the pheromone concentration and the 
local one provided by the cost of the edge.  

• N(k) denotes the neighborhood of node i and contains the nodes which can be reached 
from node i and have not been visited yet. 

 
Application 2. Implement an ACO algorithm for TSP.  
Hint. See function ACO_TSP.sci 
 
Exercise 2.  Change the previous implementation such that when the pheromone matrix elements 
are updated, the tours visited by all ants are taken into account. 
Hint.  The updating terms are cumulated after each tour construction. 
  
 

3. Particle Swarm Optimization (PSO) 
 
PSO is a metaheuristic used for continuous function optimization inspired by the behavior of bird 
swarms. It uses a population of m “particles”, each particle i being characterized by its position  
(xi) and its velocity (vi). Moreover, each particle memorizes the best position it visited up to the 
current moment (xbesti). There is also another variable which contains the best position found up 
to the current iteration by the entire swarm (xbest).  The evolutionary process consists in the 
change, at each generation t, of the position of all particles in the population according to the 
following rules:  
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where:   

• gamma is a constriction factor (a typical value for gamma is 0.7) 
• r1 and r2 are two constant values (e.g. r1=r2=2.05) 

 
Besides this variant, where xbest is the global best element from the swarm, there is also another 
variant where for each particle i, xbest(i) is selected as the best element from the neighborhood of 
the particle i.  The neighborhood of a particle can be defined by various topologies, one of the 
most used is the ring topology (in this case the neighborhood of size K of particle i is represented 
by the particles having the indices {i-K,i-K+1,...,i-1,i,i+1,...,i+K-1,i+K}).   
 
Application 3. Implement a PSO algorithm (using the above eqs.) and test its behavior for a 
unimodal function (e.g. sphere) and for a multimodal function (e.g. Griewank).  
 
Hint. See function PSO.m 
 
Exercise 3.  Change PSO.m such that it implements the “local best” variant using a ring topology 
to define the neighbourhood. 
 


