
Distributed Evolutionary Algorithms Inspired
by Membranes in Solving Continuous

Optimization Problems

Daniela Zaharie1 and Gabriel Ciobanu2

1 Department of Computer Science, West University of Timişoara
Blvd. V. Pârvan no. 4, 300223 Timişoara, Romania

dzaharie@info.uvt.ro
2 Institute of Computer Science, Romanian Academy

Blvd. Carol I no. 8, 700505 Iaşi, Romania
gabriel@iit.tuiasi.ro

Abstract. In this paper we present an analysis of the similarities be-
tween distributed evolutionary algorithms and membrane systems. The
correspondences between evolutionary operators and evolution rules and
between communication topologies and policies in distributed evolution-
ary algorithms and membrane structures and communication rules in
membrane systems are identified. As a result of this analysis we pro-
pose new strategies of applying the operators in evolutionary algorithms
and new variants of distributed evolutionary algorithms. The behavior
of these variants is numerically tested for some continuous optimization
problems.

1 Introduction

Membrane systems and evolutionary algorithms are computation models inspired
by nature, both based on applying some evolution(ary) rules to a (multi) set of
simple or structured objects. Both models have distributed features. Membrane
systems represent a suitable framework for distributed algorithms [2], and evolu-
tionary algorithms allow natural extensions for distributed implementation [13].

A membrane system consists of a hierarchy of membranes that do not inter-
sect, with a distinguishable membrane, called the skin membrane, surrounding
them all. A membrane without any other membranes inside is elementary, while
a non-elementary membrane is a composite membrane. The membranes produce
a demarcation between regions. For each membrane there is a unique associated
region. Because of this one-to-one correspondence we sometimes use membrane
instead of region. The space outside the skin membrane is called the environ-
ment. Regions contain multisets of objects, evolution rules and possibly other
membranes. Only rules in a region delimited by a membrane act on the ob-
jects in that region. The multisets of objects from a region correspond to the
“chemicals swimming in the solution in the cell compartment”, while the rules
correspond to the “chemical reactions possible in the same compartment”. The
rules must contain target indications, specifying the membrane where the new

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 536–553, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Evolutionary Algorithms Inspired by Membranes 537

objects obtained after applying the rule are sent. The new objects either remain
in the same region when they have a here target, or they pass through mem-
branes, in two directions: they can be sent out of the membrane delimiting a
region from outside, or can be sent in one of the membranes delimiting a re-
gion from inside, precisely identified by its label. In a step, the objects can pass
only through one membrane. There exist many variants and classes of membrane
systems; many of them are introduced in [8].

Evolutionary algorithms are reliable methods in solving hard problems in the
field of discrete and continuous optimization. They are approximation algorithms
which achieve a trade-off between solution quality and computational costs. De-
spite the large variety of evolutionary algorithms (genetic algorithms, evolution
strategies, genetic programming, evolutionary programming), all of them are
based on the same idea: evolve a population of candidate solutions by applying
some rules inspired by biological evolution: recombination (crossover), muta-
tion, and selection [3]. An evolutionary algorithm acting on only one population
is similar to a one-membrane system. Distributed evolutionary algorithms, which
evolve separate but communicating (sub)populations, are more like membrane
systems.

It is natural to ask questions as: How similar are membrane computing and
distributed evolutionary computing? Can ideas from membrane computing im-
prove the evolutionary algorithms, or vice-versa?

A first attempt to build a bridge between membrane computing and evolu-
tionary computing is given by T.Y Nishida, in [7], where a membrane algorithm
is developed by using a membrane structure together with ideas from genetic
algorithms (crossover and mutation operators) and from metaheuristics for local
search (tabu search).

In this paper we go further and deeper, and analyze the relationship between
different membranes structures and different communication topologies specific
to distributed evolutionary algorithms. Moreover, we propose new strategies for
applying evolutionary rules and new variants of distributed evolutionary algo-
rithms inspired by membrane systems structure and functioning.

The paper is organized as follows. In Section 2 we analyze the correspon-
dence between evolutionary operators and evolution rules. As a result of this
analysis, we propose a new, more flexible, strategy of applying the evolutionary
operators. Section 3 is devoted to the similarities between membrane structures
and communication topologies on one hand, and between communication rules
in membrane systems and communication policies in distributed evolutionary
algorithms on the other hand. As a result of this analysis is proposed a new vari-
ant of distributed evolutionary algorithms. Section 4 is devoted to a numerical
analysis of the membrane systems inspired variants of evolutionary algorithms.

2 Evolutionary Operators and Evolution Rules

Evolutionary algorithms (EAs) working on only one population (panmictic EAs)
can be interpreted as particular membrane systems having only one membrane.

538 D. Zaharie and G. Ciobanu

Inside this single membrane there is a population of candidate solutions for
the problem to be solved. Usually a population is an m-uple of n-dimensional
vectors: P = x1 . . . xm, xi = (x1

i , . . . , x
n
i) ∈ D, where D is a discrete or a

continuous domain depending on the problem to be solved. The evolutionary
process consists in applying the recombination, mutation and selection operators
to the current population in order to obtain a new population.

Recombination (crossover): The aim of this operator is to generate new elements
from a set of elements (called parents) selected from the current population. Thus
we have a mapping R : Dr → Dq, where usually q ≤ r. Typical examples of
recombination operators are:

r = q = 2, R((u1, . . . , un), (v1, . . . , vn)) =

((u1, . . . , uk, vk+1, . . . , vn), (v1, . . . , vk, uk+1, . . . , un)) (1)

and

r arbitrary , q = 1, R(xi1 , . . . , xir) =
1
r

r∑

j=1

xij (2)

The first type of recombination corresponds to one point crossover (where
k ∈ {1, . . . , n − 1} is an arbitrary cut point) used in genetic algorithms, while
the second example corresponds to intermediate recombination used in evolution
strategies [3].

Mutation: The aim of this operator is to generate a new element by perturbing
one element from the current population. This can be modelled by a mapping
M : D → D defined by M((u1, . . . , un)) = (v1, . . . , vn). Typical examples are:

vi =
{

1 − ui with probability p
ui with probability 1 − p

and vi = ui + N(0, σi), i = 1, n

(3)
The first example is used in genetic algorithms based on a binary coding (ui ∈
{0, 1}), while the second one is typical for evolution strategies. N(0, σi) denotes a
random variable with normal distribution, of zero mean and standard deviation
σi.

Selection: It is used to construct a set of elements starting from the current
population such that the best elements with respect to the objective function
of the optimization problem to be solved are favored. It does not generate new
configurations, but only sets of existing (not necessarily distinct) configurations.
Thus it maps Dq to Dr and can be used in two main situations: selection of
parents for recombination (in this case q = m, r < m, and the parents selection
is not necessarily based on the quality of elements), and selection of survivors (in
this case q ≥ m, r = m, and the survivors are stochastically or deterministically
selected by taking into account their quality with respect to the optimization
problem). In the following, the mapping corresponding to parents selection is

Distributed Evolutionary Algorithms Inspired by Membranes 539

denoted by Sp and the mapping corresponding to survivors selection is denoted
by Ss.

A particular evolutionary algorithm is obtained by combining these evolution-
ary operators and by applying them iteratively to a population. Typical ways of
combining the evolutionary operators lead to the main evolutionary strategies:
generational, and steady state. In the generational (synchronous) strategy, at
each step a population of new elements is generated by applying recombination
and mutation. The population of the next generation is obtained by applying
selection to the population of new elements or to the joined population of par-
ents and offsprings. The general structure of a generational EA is presented in
Algorithm 1 where X(t) denotes the population corresponding to generation t,
z denotes an offspring and Z denotes the population of offsprings. The sym-
bol ∪+ denotes an extended union, which allows multiple copies of the same
element (as in multisets). The mapping M is the extension of M to Dq, i.e.,
M(xi1 , . . . , xiq) = (M(xi1), . . . , M(xiq)).

Algorithm 1. Generational Evolutionary Algorithm
1: Random initialization of population X(0)
2: t := 0
3: repeat
4: Z := ∅
5: for all i ∈ {1, . . . , m} do
6: Z := Z ∪+ (M ◦ R ◦ Sp)(X(t))
7: end for
8: X(t + 1) := Ss(X(t) ∪+ Z)
9: t := t + 1

10: until a stopping condition is satisfied

In the steady state (asynchronous) strategy, at each step a new element is gen-
erated by recombination and mutation, and assimilated into the population if it
is good enough (e.g., better than one of its parents, or than the worst element
in the population). More details are in Algorithm 2.

The simplest way to interpret a generational or a steady state evolution-
ary algorithm as a membrane system is to consider the entire population as a
structured object in a membrane, and the compound operator applied as one
evolution rule which includes recombination, mutation and selection. Such an
approach represents a rough and coarse handling which does not offer flexibility.
A more flexible approach would be to consider each evolutionary operator as an
evolution rule.

Evolutionary operators are usually applied in an ordered manner (as in Algo-
rithms 1 and 2): first parents selection, then recombination and mutation, and
finally survivors selection. Starting from the way the evolution rules are applied
in a membrane system, we consider that the rules can be independently applied to
the population elements, meaning that no predefined order between the operators
is imposed. At each step any operator can be applied, up to some restrictions

540 D. Zaharie and G. Ciobanu

Algorithm 2. Steady State Evolutionary Algorithm
1: Random initialization of population X(0)
2: t := 0
3: repeat
4: z := (M ◦ R ◦ Sp)(X(t))
5: X(t + 1) := Ss(X(t) ∪+ z)
6: t := t + 1
7: until a stopping condition is satisfied

ensuring the existence of the population. The recombination and mutation op-
erators R and M can be of any type, with possible restrictions imposed by the
coding of population elements. By applying these operators, new elements are
created. These elements are unconditionally added to the population. Therefore
by applying the recombination and mutation operators, the population size is
increased. When the population size reaches an upper limit (e.g., twice the initial
size of the population), then the operators R and M are inhibited.

The role of selection is to modify the distribution of elements in the population
by eliminating or by cloning some elements. Simple selection operators could be
defined by eliminating the worst element of the population, or by cloning the
best element of the population. When selection is applied by cloning, then the
population size is increased and selection is inhibited whenever the size reaches a
given upper bound. On the other hand, when selection is applied by eliminating
the worst element, the population size is reduced, and selection is inhibited
whenever the size reaches a given lower bound (e.g., half of the initial size of the
population).

By denoting with x1 . . . xm (xi ∈ D) the entire population, with xi1 . . . xiq

an arbitrary part of the population, with x∗ the best element and with x− the
worst element, the evolutionary operators can be described more in the spirit of
evolution rules from membrane systems as follows:

Rule 1 (recombination): xi1 . . . xir → xi1 . . . xirx
′
i1

. . . x′
iq

where (xi1 , . . . , xir) =
Sp(x1, . . . , xm) is the set of parents defined by the selection operator Sp, and
(x′

i1
, . . . , x′

iq
) = R(xi1 , . . . , xir) is the offspring set obtained by applying the

recombination operator R to this set of parents;
Rule 2 (mutation): xi → xix

′
i where x′

i = M(xi) is the perturbed element
obtained by applying the mutation operator M to xi;

Rule 3a (selection by deletion): x− → λ, meaning that the worst element (with
respect to the objective function) is eliminated from the population;

Rule 3b (selection by cloning): x∗ → x∗x∗ meaning that the best element (with
respect to the objective function) is duplicated.

Rule 4 (insertion of random elements): x → xξ, where ξ ∈ D is a randomly
generated element and x is an arbitrary element of the population.

The last rule does not correspond to the classical evolutionary operators but
is used in evolutionary algorithms in order to stimulate the population diversity.

Distributed Evolutionary Algorithms Inspired by Membranes 541

By following the spirit of membrane computing, these rules should be applied
in a fully parallel manner. However, in order to avoid going too far from the
classical way of applying the operators in evolutionary algorithms, we consider
a sequential application of rules. Thus we obtain an intermediate strategy: the
evolutionary operators are applied sequentially, but in an arbitrary order. Such a
strategy, based on a probabilistic decision concerning the operator to be applied
at each step, is described in Algorithm 3. The rules involved in the evolutionary
process are: recombination, mutation, selection by deletion, selection by cloning
and random elements insertion. The probabilities corresponding to these rules
are pR, pM , pSd, pSc and pI ∈ [0, 1]. By applying the evolutionary operators
in such a probabilistic way, we obtain a flexible algorithm which works with
variable size populations. In Algorithm 3 the population size corresponding to
iteration t is denoted by m(t). Even if variable, the population size is limited by
a lower bound, m∗, and an upper bound, m∗.

Algorithm 3. Evolutionary algorithm with random selection of operators
1: Random initialization of the population X(0) = x1(0) . . . xm(0)(0)
2: t := 0
3: repeat
4: generate a uniform random value u ∈ (0, 1)
5: if (u < pR) ∧ (m(t) < m∗) then
6: apply Rule 1 (recombination)
7: end if
8: if (u ∈ [pR, pR + pM)) ∧ (m(t) < m∗) then
9: apply Rule 2 (mutation)

10: end if
11: if (u ∈ [pR + pM , pR + pM + pSd)) ∧ (m(t) > m∗) then
12: apply Rule 3a (selection by deletion)
13: end if
14: if (u ∈ [pR + pM + pSd, pR + pM + pSd + pSc)) ∧ (m(t) < m∗) then
15: apply Rule 3b (selection by cloning)
16: end if
17: if (u ∈ [pR + pM + pSd + pSc, 1]) ∧ (m(t) < m∗) then
18: apply Rule 4 (insertion of a random element)
19: end if
20: t := t + 1
21: until a stopping condition is satisfied

An important feature of Algorithm 3 is given by the fact that only one operator
is applied at each step, and thus it can be considered as an operator oriented
approach. This means that first an operator is probabilistically selected and only
afterwards are selected the elements on which it is applied.

Another approach would be that oriented toward elements, meaning that at
each step all elements can be involved in a transformation and for each one
is selected (also probabilistically) the rule to be applied. After such a parallel
step, a mechanism of regulating the population size can be triggered. If the
population became too small, then selection by cloning can be applied or some

542 D. Zaharie and G. Ciobanu

random elements could be inserted. If the population became too large, then
selection by deletion could be applied. This strategy is characterized through a
parallel application of rules, thus it is more in the spirit of membrane computing.
However, this strategy did not provide better results than Algorithm 3 when it
was tested for continuous optimization problems.

We can expect that the behavior of such algorithms be different from the
behavior of more classical generational and steady state algorithms. However,
from a theoretical viewpoint, such an algorithm can be still modeled by a Markov
chain and the convergence results still hold [11]. This means that if we use a
mutation operator based on a stochastic perturbation described by a distribution
having a support which covers the domain D (e.g., normal distribution) and an
elitist selection (the best element found during the search is not eliminated from
the population), then the best element of the population converges in probability
to the optimum.

The difference appears with respect to the finite time behavior of the algo-
rithm, namely the ability to approximate (within a certain desired precision)
the optimum in a finite number of steps. Preliminary tests suggest that for some
optimization problems, the strategy with random selection of operators works
better than the generational and steady state strategies; numerical results are
presented in Section 4. This means that using ideas from the application of evo-
lution rules in membrane systems, we can obtain new evolutionary strategies
with different dynamics.

3 Communication Topologies and Policies

As it has been stated in the previous section, a one-population evolutionary al-
gorithm can be mapped into a one-membrane system with rules associated to
the evolutionary operators. Closer to membrane computing are the distributed
evolutionary algorithms which work with multiple (sub)populations. In each sub-
population the same or different evolutionary operators can be applied leading
to homogeneous or heterogeneous distributed EAs, respectively. Introducing a
structure over the population has different motivations [13]: (i) it achieves a
good balance between exploration and exploitation in the evolutionary process
in order to prevent premature convergence (convergence to local optima) in the
case of global optimization problems; (ii) it stimulates the population diversity
in order to deal with multimodal optimization problems or with dynamic opti-
mization problems; (iii) it is more suitable to parallel implementation.

Therefore, besides the possibility of improving the efficiency by parallel imple-
mentation, structuring the population in communicating subpopulations allows
developing new search mechanisms which behave differently than their serial
counterparts [13]. The multi-population model of the evolutionary algorithms,
also called island-model, is based on the idea of dividing the population in some
communicating subpopulations. In each subpopulation is applied an evolutionary
algorithm for a given number of generations, then a migration process is started.
During the migration process some elements can change their subpopulations,

Distributed Evolutionary Algorithms Inspired by Membranes 543

or clones of some elements can replace elements belonging to other subpopu-
lations. The main elements which influence the behavior of a multi-population
evolutionary algorithm are the communication topology and the communication
policy. The communication topology specifies which subpopulations are allowed
to communicate while the communication policy describes how is ensured the
communication. The communication topology in a distributed evolutionary al-
gorithm plays a similar role as the membranes structure plays in a membrane
system. On the other hand, the communication policy in distributed evolutionary
algorithms is related to the communication rules in membrane systems.

3.1 Communication Topologies and Membrane Structures

The communication topology describes the connections between subpopulations.
It can be modeled by a graph having nodes corresponding to subpopulations, and
edges linking subpopulations which communicate in a direct manner. According
to [1], typical examples of communication topologies are: fully connected topol-
ogy (each subpopulation can communicate with any other subpopulation), linear
or ring topology (only neighbor subpopulations can communicate), star topol-
ogy (all subpopulations communicate through a kernel subpopulation). More
specialized communication topologies are hierarchical topologies [5], and hyper-
cube topologies [4]. The fully connected, star, and linear topology can be easily
described by using hierarchical membrane structures which allows transferring
elements either in a inner or in the outer membrane (see Figure 1).

Fully connected topology. Let us consider a number of s fully connected subpopu-
lations. The fully connected topology can be modeled by using s+1 membranes,
namely s elementary membranes and one skin membrane containing them (see
Figure 1(a)). The elementary membranes correspond to the given s subpopula-
tions, and they contain both evolution rules and communication rules. The skin
membrane plays only the role of communication environment, thus it contains
only communication rules and the objects which have been transferred from the
inner membranes. The transfer of an element between two inner membranes is
based on two steps: the transfer of the element from the source membrane to
the skin membrane and the transfer of the element from the skin membrane to
the target membrane. Another structure which corresponds to a fully connected
topology is that associated to tissue P systems.

Star topology. The membrane structure corresponding to a star topology with
s subpopulations is given by one skin membrane corresponding to the kernel
subpopulation, and s − 1 elementary membranes corresponding to the other
subpopulations (see Figure 1(b)). The main difference from the previous struc-
ture associated to a fully connected topology is that the skin membrane has
not only the role of an environment for communication, but it can contain also
evolution rules.

Linear topology. In this case a subpopulation p can communicate only with its
neighbor subpopulations p + 1 and p − 1. The corresponding structure is given

544 D. Zaharie and G. Ciobanu

1

3

2

4

1

3 4

1 2 3 4

0

1 2

43 1

2 3

4

2

1
2

34

(a) (b) (c)

Fig. 1. Communication topologies in distributed evolutionary algorithms and their
corresponding membranes structures. (a) Fully connected topology; (b) Star topology;
(c) Linear topology.

by nested membranes, each membrane corresponding to a subpopulation (see
Figure 1(c)).

Different situations appear in the case of ring and other topologies [4] which
are associated with cyclic graph structures. In these situations the corresponding
membrane structure is given by a net of membranes, or tissue P systems.

3.2 Communication Policies and Communication Rules

A communication policy refers to the way the communication is initiated, the
way the migrants are selected, and the way the immigrants are incorporated
into the target subpopulation. The communication can be initiated in a syn-
chronous way after a given number of generations, or in an asynchronous way
when a given event occurs. The classical variants of migrants selection are ran-
dom selection and selection based on the fitness value (best elements migrate
and the immigrants replace the worst elements of the target subpopulation).
The communication policies are similar to communication rules in membrane
computing, meaning that all communication steps can be described by some
typical communication rules in membrane systems.

There are two main variants for transferring elements between subpopula-
tions: (i) by sending a clone of an element from the source subpopulation to the
target subpopulation (pollination); (ii) by moving an element from the source
subpopulation to the target one (plain migration). An element is selected with
a given probability, pm, usually called migration probability. If the subpopula-
tions size should be kept constant, then in the pollination case for each new
incorporated element, another element (e.g., a random one, or the worst one)

Distributed Evolutionary Algorithms Inspired by Membranes 545

is deleted. In the case of plain migration a replacing element (usually randomly
selected) is sent from the target subpopulation to the source one.

In order to describe a random pollination process between s subpopulations
by using communication rules specific to a membrane system, we consider the
membrane structure described in Figure 1(a). Each elementary membrane corre-
sponds to a subpopulation, and besides the objects corresponding to the elements
in the subpopulation, it also contain some objects which are used for communica-
tion. These objects, denoted by rid, are identifiers of the regions with which the
subpopulation corresponding to the current region can communicate (in a fully
connected topology of s subpopulations the identifiers belong to {1, . . . , s}). On
the other hand, when the migration step is initiated, a given number of copies of
a migration symbol η are created into each elementary membrane. The multiplic-
ity of η is related with the migration probability pm (e.g., it is �mpm�, where m
is the size of subpopulation in the current region). Possible communication rules,
for each type of membrane, describing the pollination process are presented in
the following:

Elementary membranes. Let us consider the membrane corresponding to a sub-
population Si (i 	= 0). There are two types of rules: an exporting rule ensuring
the transfer of an element to the skin membrane which plays the role of an com-
munication environment, and an assimilation rule ensuring, if it is necessary,
that the subpopulation size is kept constant.
The export rule can be described as:

RSi

export : ηxSirSi

id → (xSi , here)(xSirSi

id d, out) (4)

The assimilation rule can be described as:

RSiass : dxSi → λ (5)

xSi denotes in both rules an arbitrary element from the subpopulation Si, and
rSi

id identifies the region where clones of the elements from the subpopulation Si

can be sent. At each application of RSi

export a copy of the symbol η is consumed,
and a copy of a deletion symbol d is created in the skin membrane.

Skin membrane. The communication rule corresponding to the skin membrane
is:

R0 : dxSirSi

id → (dxSi , inid) (6)
In the case of plain random migration, any element xSi from a source subpop-
ulation Si can be exchanged with an element xSj from a target subpopulation
Sj . Such a communication process is similar with that in tissue P systems [8]
described as (i, xSi/xSj , j). Other communication policies (e.g., those based on
elitist selection or replacement) can be similarly described.

3.3 Distributed Evolutionary Algorithms Inspired by Membrane
Systems

A first communication strategy inspired by membrane systems is that used in the
membrane algorithm proposed in [7] and also in [6]. The membrane algorithm

546 D. Zaharie and G. Ciobanu

proposed in [7] can be interpreted as a hybrid distributed evolutionary algorithm
based on a linear topology (Figure 1c) and a tabu search heuristic. The basic idea
of communication between membranes is that of moving the best element in the
inner membrane and the worst one in the outer membrane. The skin membrane
receives random elements from the environment. The general structure of such
an algorithm in presented in Algorithm 4.

Algorithm 4. Distributed evolutionary algorithm based on a linear topology
1: for all i ∈ {1, . . . , s} do
2: Random initialization of the subpopulation Si

3: end for
4: repeat
5: for all i ∈ {1, . . . , s} do
6: Apply an EA to Si for τ steps
7: end for
8: Apply local search to the best element in S1

9: for all i ∈ {1, . . . , s − 1} do
10: send a clone of the best element from Si to Si+1

11: end for
12: for all i ∈ {2, . . . , s} do
13: send a clone of the worst element from Si to Si−1

14: end for
15: Add a random element to S1

16: for all i ∈ {1, . . . , s} do
17: Delete the two worst elements of Si

18: end for
19: until a stopping condition is satisfied

Another communication topology, corresponding to a simple membrane struc-
ture but not very common in distributed evolutionary computing, is that of star
type (Figure 1b). In the following we propose a hybrid distributed evolutionary
algorithm based on this topology. Let us consider a membrane structure consist-
ing of a skin membrane containing s−1 elementary membranes. Each elementary
membrane i contains a subpopulation Si on which an evolutionary algorithm is
applied. This evolutionary algorithm can be based on a random application of
rules. The skin membrane contains also a subpopulation of elements, but dif-
ferent transformation rules are applied here (e.g., local search rules instead of
evolutionary operators). The communication is only between S1 (corresponding
to skin membrane) and the other subpopulations. The algorithm consists of two
stages: an evolutionary one and a communication one which are repeatedly ap-
plied until a stopping condition is satisfied. The general structure is described
in Algorithm 5.

The evolutionary stage consists in applying an evolutionary algorithm on each
of the subpopulations in inner membranes for τ iterations. The evolutionary
stage is applied in parallel to all subpopulations. The subpopulations in inner
membranes are initialized only at the beginning, thus the next evolutionary

Distributed Evolutionary Algorithms Inspired by Membranes 547

stage starts from the current state of the population. In this stage the only
transformation of the population in the skin membrane consists in applying a
local search procedure to the best element of the population.

The communication stage consists in sending clones of the best element from
the inner membranes to the skin membrane by applying the rule x∗ → (x∗, here)
(x∗, out) in each elementary membrane. Moreover, the worst elements from the
inner membranes are replaced with randomly selected elements from the skin
membrane. If the subpopulation S1 should have more than s elements, then at
each communication stage some randomly generated elements are added. The
effect of such a communication strategy is that the worst elements in inner
membranes are replaced with the best elements from other membranes or with
randomly generated elements. In order to ensure the elitist character of the
algorithm, the best element from the skin membrane is conserved at each step.
It represents the approximation of the optimum we are looking for.

Algorithm 5. Distributed evolutionary algorithm based on a star topology
1: for all i ∈ {1, . . . , s} do
2: Random initialization of the subpopulation Si

3: end for
4: repeat
5: for all i ∈ {2, . . . , s} do
6: Apply an EA to Si for τ steps
7: end for
8: Apply local search to the best element in S1

9: Reset subpopulation S1 (all elements in S1 excepting for the best one are deleted)

10: for all i ∈ {2, . . . , s} do
11: send a clone of the best element from Si to S1

12: end for
13: add random elements to S1 (if its size should be larger than s)
14: for all i ∈ {2, . . . , s} do
15: Replace the worst element of Si with a copy of a randomly selected element

from S1

16: end for
17: until a stopping condition is satisfied

4 Numerical Results

The aim of the experimental analysis was twofold: (i) to compare the behavior
of the evolutionary algorithms with random application of operators (Algorithm
3) and of those based on generational and steady-state strategies (Algorithms
1 and 2); (ii) to compare the behavior of distributed evolutionary algorithms
based on linear and star topologies (Algorithm 4 and Algorithm 5) with that of
an algorithm based on a fully connected topology and random migration [15].

The particularities of the evolutionary algorithm applied in each subpopula-
tion and the values of the control parameters used in the numerical experiments
are presented in the following.

548 D. Zaharie and G. Ciobanu

Evolutionary operators. The generation of offsprings is based on only one varia-
tion operator inspired from differential evolution algorithms [12]. It combines the
recombination and mutation operators, so an offspring zi =R(xi, x∗, xr1 , xr2 , xr3)
is obtained by

zj
i =

{
γxj

∗ + (1 − γ)(xj
r1

− xj
∗) + F · (xj

r2
− xj

r3
)N(0, 1), with probability p

(1 − γ)xj
i + γU(aj, bj), with probability1 − p,

(7)

where r1, r2 and r3 are random values from {1, . . . , m}, x∗ is the best element of
the population, F ∈ (0, 2], p ∈ (0, 1], γ ∈ [0, 1] and U(aj , bj) is a random value,
uniformly generated in domain of values for component j.

In the generational strategy an entire population of offsprings z1 . . . zm is
constructed by applying the above rule. The survivors are selected by comparing
the parent xi with its offspring zi and by choosing the best one. In the sequential
strategy, at each step is generated one offspring which replaces, if it is better,
the worst element of the population.

In the variant based on Algorithm 3 the following rules are probabilistically
applied: the recombination operator given by Equation (7) is applied with prob-
ability pR, the selection by deletion is applied with probability pSd and the
insertion of random elements is applied with probability pI . Since there are two
variants of the recombination operator (for γ = 0 and for γ = 1) each one
can be applied with a given probability: p0

R and p1
R. These probabilities satisfy

p0
R + p1

R = pR.

Test functions. The algorithms have been applied to some classical test functions
(see Table 1) used in empirical analysis of evolutionary algorithms. All these
problems are of minimization type, the optimal solution being x∗ ∈ D and
the optimal value being f∗ ∈ [−1, 1]. x∗ and f∗ have been randomly chosen
for each test problem. In all these tests the problem size was n = 30. The
domains values of decision variables are D = [−100, 100]n for sphere function,
D = [−32, 32]n for Ackley’s function, D = [−600, 600]n for Griewank’s function
and D = [−5.12, 5.12]n for Rastrigin’s function.

Parameters of the algorithms. The parameters controlling the evolutionary algo-
rithm are chosen as follows: m = 50 (population size), p = F = 0.5 (the control
parameters involved in the recombination rule given in Equation (7)), ε = 10−5

(accuracy of the optimum approximation).
We consider that the search process is successful whenever it finds a configura-

tion, x∗, for which the objective function has a value which satisfies |f∗−f(x∗)| <
ε by using less than 500000 objective functions evaluations. The ratio of success-
ful runs from a set of independent runs (in our tests the number of independent
runs of the same algorithm for different randomly initialized populations was 30)
is a measure of the effectiveness of the algorithm. As a measure of efficiency we
use the number nfe of objective function evaluations, both average value and
standard deviation.

Distributed Evolutionary Algorithms Inspired by Membranes 549

Table 1. Test functions

Name Expression

Sphere f1(x) = f∗ +
n∑

i=1

(xi − x∗
i)

2

Ackley f2(x) = f∗ − 20 exp

(
−0.2

√ ∑n
i=1(xi − x∗

i)2

n

)

− exp

(
1
n

n∑

i=1

cos(2π(xi − x∗
i))

)
+ 20 + e

Griewank f3(x) = f∗ +
1

4000

n∑

i=1

(xi − x∗
i)

2 −
n∏

i=1

cos((xi − x∗
i)/

√
i) + 1

Rastrigin f4(x) = f∗ +
n∑

i=1

((xi − x∗
i)

2 − 10 cos(2π(xi − x∗
i))) + 10

Table 2. Comparison of evolutionary rules applying strategies in a panmictic EA

Test Generational Steady state Algorithm 3
fct Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
f1 30/30 27308±396 30/30 25223±469 30/30 24758± 1328
f2 30/30 37803±574 30/30 35223±611 29/30 27461± 2241
f3 30/30 29198±1588 30/30 27010±1016 28/30 20017 ± 1640
f4 19/30 335518±55107 18/30 296111±49316 29/30 193741± 113126

Results. Table 2 presents comparative results for generational, steady state and
the strategy based on random selection of operators (Algorithm 3). For the
first two strategies the evolutionary operator described by Equation (7) was
applied for γ = 0. For γ = 1 the success ratio of generational and sequential
variants is much smaller, therefore these results are not presented. The proba-
bilities for applying the evolutionary operators in Algorithm 3 were pR = 0.5
(p0

R = 0.35,p1
R = 0.15), pSd = 0.5, pI = 0. The initial population size was

m(0) = 50 and the lower and upper bounds were m∗ = m(0)/2 and m∗ = 2m(0)
respectively.

The results of Table 2 suggest that for the functions f1, f2, f3 the Algorithm 3
does not prove to be superior to generational and steady state strategies. How-
ever a significant improvement can be observed for function f4 which is a difficult
problem for EA based on recombination as in Equation (7). However, by chang-
ing the probability p involved in the recombination operator (e.g., p = 0.2 instead
of p = 0.5) a good behavior can be obtained also by generational and steady
state strategies. On the other hand, by dynamically adjusting the probabilities
of applying the evolutionary operators the behavior of Algorithm 3 can be im-
proved. For instance, if one choose pR = 0, pSd = 0.1 and pI = 0.9 whenever
the average variance of the population is lower than 10−8, then in the case of
Ackley function the success ratio is 30/30 and 〈nfe〉 is 19312 with a standard
deviation of 13862.

550 D. Zaharie and G. Ciobanu

The second set of experiments aimed to compare the communication strategies
inspired by membranes (Algorithm 4 and Algorithm 5) with a communication
strategy characterized by a fully connected topology and a random migration of
elements [15]. In all experiments the number of subpopulations was s = 5, the
initial size of each subpopulation was m(0) = 10 and the number of evolutionary
steps between two communication stages was τ = 100. In the case of random
migration the probability of selecting an element for migration was pm = 0.1.

Table 3. Behavior of distributed EAs based on a generational EA

Test Fully connected topology Linear topology Star topology
fct. and random migration (Algorithm 4) (Algorithm 5)

Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
f1 30/30 30500±1290 30/30 30678±897 30/30 34943± 4578
f2 30/30 41000±2362 30/30 41349±1864 30/30 51230± 8485
f3 20/30 32500±2449 30/30 33013±3355 26/30 41628 ± 8353
f4 7/30 158357±66647 4/30 95538±10610 24/30 225280 ± 132636

The results in Table 3 show that the communication strategy based on the
linear topology (Algorithm 4) behaves almost similarly to the strategy based
on fully connected topology and random migration. On the other hand, the
communication strategy based on the star topology (Algorithm 5) has a different
behavior, characterized by a slower convergence. This behavior can be explained
by the higher degree of randomness induced by inserting random elements in the
skin membrane. However this behavior can be beneficial in the case of difficult
problems (e.g., Rastrigin) by avoiding premature convergence situations. In the
case of Rastrigin’s function the success ratio of Algorithm 5 is significantly higher
than in the case of the other two variants.

Table 4. Behavior of distributed EAs based on the random application of evolutionary
operators

Test Fully connected topology Linear topology Star topology
fct and random migration (Algorithm 4) (Algorithm 5)

Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
f1 30/30 42033±4101 30/30 59840±11089 30/30 98280± 20564
f2 30/30 117033±80778 30/30 156363±103488 29/30 266783± 96539
f3 15/30 51065±14151 17/30 72901±38654 21/30 111227 ± 58491
f4 30/30 94822±22487 30/30 107412±25363 30/30 111752 ± 19783

The results in Table 4 show that by using the Algorithm 3 in each subpopu-
lation the convergence is significantly slower for Ackley and Griewank functions
while it is significantly improved in the case of Rastrigin function, both with
respect to other distributed variants and with the panmictic algorithms used in
the experimental analysis.

Distributed Evolutionary Algorithms Inspired by Membranes 551

These results suggest that structuring the population as in membrane sys-
tems, and applying the evolutionary operators in an unordered manner, we ob-
tain evolutionary algorithms with a new dynamics. This new dynamics leads to
significantly better results for certain evolutionary operators and test functions
(see results in Table 4 for Rastrigin’s function). However the hybrid approach is
not superior to the classical generational variant combined with a random migra-
tion for the other test functions. Such a situation is not unusual in evolutionary
computing, being accepted that no evolutionary algorithm is superior to all the
others with respect to all problems [14].

Algorithm 5 is somewhat similar to the membrane algorithm proposed by
Nishida in [7]. Both are hybrid approaches which combine evolutionary search
with local search, and are based on a communication structure inspired by mem-
brane systems. However there are some significant differences between these two
approaches:

(i) they use different communication topologies: linear topology in the mem-
brane algorithm of [7] vs. star topology in Algorithm 5; therefore they use
different membrane structures (see Figure 2);

(ii) they address different classes of optimization problems: combinatorial op-
timization vs. continuous optimization;

(iii) they are based on different evolutionary rules (genetic crossover and muta-
tion in [7] vs. differential evolution recombination here), and different local
search procedures (tabu search in [7] vs. Nelder-Mead local search [10] in
the current approach);

(iv) they are characterized by different granularity: micro-populations (e.g., two
elements) but a medium number of membranes (e.g., 50) in [7] vs. medium
sized subpopulations (e.g., 10) but a small number of membranes (e.g., 5);

(v) they are characterized by different communication frequencies: transfer of
elements between membranes at each step in the membrane algorithm vs.
transfer of elements only after τ evolutionary steps have been executed
(e.g., τ = 100).

Local Search (Nelder Mead)
+Random immigrants

EA EA

EA

Random immigrants

mGA
mGA

Tabu
Search

(a) (b)

Fig. 2. (a) Membrane structure of Algorithm 5.(b) Membrane structure of Nishida’s
approach.

552 D. Zaharie and G. Ciobanu

5 Conclusions

As it has been recently stated in [9], the membrane community is looking for
a relationship, a link between membrane systems and distributed evolutionary
algorithms. We claim that the main similarity is at a conceptual level, and each
important concept in distributed evolutionary computing has a correspondent
in membrane computing. This correspondence is summarized in the following
table:

Membrane system Distributed Evolutionary Algorithm
Membrane(region) Population
Objects Individuals
Evolution rules Evolutionary operators
Membrane structure Communication topology
Communication rules Communication policy

Besides these conceptual similarities, there are some important differences:

(i) membrane systems have an exact notion of computation, while evolutionary
computation is an approximate one;

(ii) membrane computing is based on symbolic representations, while evolution-
ary computing is mainly used together with numerical representations.

Despite these differences, ideas from membrane computing are useful in develop-
ing new distributed meta-heuristics. A first attempt was given by the membrane
algorithm proposed in [7]. However this first approach did not emphasized at all
the important similarities between membrane computing and distributed evolu-
tionary computing. This aspect motivates us to start a depth analysis of these
similarities, having the aim of describing the evolutionary algorithms by using
the formalism of membrane computing. As a result of this analysis, we present
in this paper a non-standard strategy of applying the evolutionary operators.
This strategy, characterized by an arbitrary application of evolutionary opera-
tors, proved to be behave differently than the classical generational and steady
state strategies when applied for some continuous optimization problems. On
the other hand, based on the relationship between membrane structures and
communication topologies, we introduce a new hybrid distributed evolutionary
algorithm effective in solving some continuous optimization problems. The al-
gorithms 3 and 5 proposed and analyzed in this paper are good and reliable
in approximating solutions of optimization problems. This fact proves that by
using ideas from membrane computing, new distributed metaheuristic methods
can be developed.

Besides this way of combining membrane and evolutionary computing there
are at least two other research directions which deserve further investigation:

(i) the use evolutionary algorithms to evolve membrane structures;
(ii) the use of membrane systems formalism in order to understand the behavior

of distributed evolutionary algorithms.

Distributed Evolutionary Algorithms Inspired by Membranes 553

References

1. E. Alba, M. Tomassini. Parallelism and Evolutionary Algorithms, IEEE Transac-
tions on Evolutionary Computation, 6(5), pp. -443-462, 2002.

2. G. Ciobanu. Distributed Algorithms over Communicating Membrane Systems,
BioSystems 70(2), pp. 123–133, 2003.

3. A.E. Eiben, J.E. Smith. Introduction to Evolutionary Computing, Springer, 2002.
4. F. Herrera, M. Lozano. Gradual Distributed Real-Coded Genetic Algorithms, IEEE

Transactions on Evolutionary Computation, 41, pp. 43–63, 2002.
5. J.J. Hu, E. D. Goodman. The Hierarchical Fair Competition (HFC) Model for

Parallel Evolutionary Algorithms, Proceedings of Congress of Evolutionary Com-
putation, IEEE Computer Society Press, pp. 49–54, 2002.

6. A. Leporati, D. Pagani. A Membrane Algorithm for the Min Storage Problem
in H.J. Hoogeboom, Gh. Păun, G. Rozenberg (eds.), Pre-Proceedings of the 7th
Workshop on Membrane Computing, 17-21 July 2006, Leiden, pp. 397–416, 2006.

7. T.Y. Nishida. An Application of P Systems: A New Algorithm for NP-complete
Optimization Problems, in N. Callaos, et al. (eds.), Proceedings of the 8th World
Multi-Conference on Systems, Cybernetics and Informatics, V, pp. 109–112, 2004.

8. Gh. Păun. Membrane Computing. An Introduction, Springer, 2002.
9. Gh. Păun. Further Twenty-Six Open Problems in Membrane Computing,

Third Brainstorming Meeting on Membrane Computing (online document,
http://psystems.disco.unimib.it), 2005.

10. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes in
C, Cambridge University Press, 2002.

11. G. Rudolph. Convergence of Evolutionary Algorithms in General Search Spaces, in
Proc. of the third Congress on Evolutionary Computation, IEEE Computer Society
Press, pp. 50–54, 1996.

12. R. Storn, K. Price. Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Technical Report TR-95-012, ICSI,
1995.

13. M. Tomassini. Parallel and Distributed Evolutionary Algorithms: A Review, in K.
Miettinen, M. Mäkelä, P. Neittaanmki and J. Periaux (eds.): Evolutionary Algo-
rithms in Engineering and Computer Science, J. Wiley and Sons, pp. 113–133,
1999.

14. D.H. Wolpert, W.G. Macready. No Free Lunch Theorems for Optimization, IEEE
Transactions on Evolutionary Computing, 1, pp. 67–82, 1997.

15. D. Zaharie, D. Petcu. Parallel Implementation of Multi-population Differential
Evolution, in D. Grigoras, A. Nicolau (eds.), Concurrent Information Processing
and Computing, IOS Press, pp. 223–232, 2005.

	Introduction
	Evolutionary Operators and Evolution Rules
	Communication Topologies and Policies
	Communication Topologies and Membrane Structures
	Communication Policies and Communication Rules
	Distributed Evolutionary Algorithms Inspired by Membrane Systems

	Numerical Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

