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Abstract

Seven different Radial Basis Functions have been applied in a Feed-
forward Neural Network and tested on five different real or simulated
multivariate modelling problems.
A short theory of Radial Basis Functions is presented as well as

the particular implementation of the Radial Basis Function Network
(RBFN).
The real world data modelling problems are; identifying the dy-

namic actuator characteristics of a hydraulic industrial robot, mod-
elling carbon consumption in a metallurgic industrial process and es-
timation of the water content in fish food products based on NIR-
spectroscopy. In addition the RBFNs have been applied for modelling
data generated from a simulated chemical reactor and to identify a
10-dimensional test function.
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1 A short theory of Radial Basis Functions.

Radial Basis Functions (RBFs) (or Potential Functions) are known from
approximation theory as they are applied to the multivariate interpolation
problem [Aizerman et.al. 64]. An RBF is generally described as

Φ(r) = Φ(‖x− µ‖);x ∈ ℜn; r ≥ 0; (1)

where Φ(r) is a continuous function on (0,∞) and its k’th derivatives are
completely monotonic on (0,∞) for some k. ‖·‖ denotes a metric (usually the
Euclidian norm or the Mahalanobis distance) and µ is the center (or mean)
of the radial basis. Linear combinations of RBFs constitute the interpolation
function :

yi =
∑

j

wijΦ(‖x− µj‖) (2)

Radial Basis Functions can generally be divided into RBFs with local or
global properties depending on the limiting value

lim
r→∞
Φ(r) (3)

The limiting value is zero for local RBFs and nonzero for global RBFs.
Local RBFs interpolate only in a region of the input domain around its center,
whereas global RBFs extrapolate globally. Early tests suggested that global
RBFs actually are the best ones for interpolation problems in two dimensions
[Franke 82].
This section will present some of the more common RBFs and their char-

acteristics.

1.1 Gaussian Radial Basis Functions.

Most of the current research on Artificial Neural Networks with Radial Basis
Functions are concentrating on using Gaussian RBF [Renals & Rohwer 89,
Moody & Darken 89, Platt 91]. The general form is (fig.2) :

Φ(r) = e−r
2

(4)

described in [Powell 87, Broomhead & Lowe 88].
The Gaussian RBF has well-known mathematical features, it is highly

nonlinear and provides good locality as a local RBF, which means that very
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efficient adaptive grid techniques can be used when implementing them on se-
rial hardware [Moody & Darken 88, Moody & Darken 89]. Only small frac-
tions of a large network responds to a particular input pattern. However this
feature is not that important when realizing the neural network in parallel
hardware.
Lee and Kil‘s Gaussian Potential Functions (GPF) are very similar to

Radial Basis Functions in several manners, although they use a more complex
distance metric including non-diagonal covariance elements [Lee & Kil 91].
Poggio and Girosi also states the fact that the Gaussian RBF is the only

Radial Basis Function which is factorizable [Poggio & Girosi 89].

1.2 Pseudo-polynomial RBFs.

In the middle seventies Jean Duchon, proposed multi- conic and pseudo-cubic
RBFs for the multivariate interpolation problem [Duchon 76].
The multi-conic (or linear) spline is described as :

Φ(r) = r (5)

whereas the pseudo-cubic spline (fig.3) is :

Φ(r) = r3 (6)

These two RBFs are members of a larger family of RBFs [Duchon 76,
Powell 87] given by :

Φ(r) = r2i+1, i ∈ No (7)

Together with “Thin Plate Splines” (TPS - section 1.4), these have an
elegant mathematical theory in a Hilbert Space setting, minimizing a certain
family of semi-norms in a Sobolev Space (which is a subspace of the Hilbert
Space) [Duchon 76, Meinguet 79].
The pseudo-polynomial RBFs are all global RBFs.

1.3 MultiQuadric Equations (MQE).

Another method from the seventies, the MultiQuadric Equations (MQE), was
proposed by Rolland Hardy and originally used for topographical mappings
and surfaces [Hardy 71, Hardy 82].
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The general form (fig.4) is :

Φ(r) =
√
r2 + k2 (8)

which can be seen as taking the upper sheet of a circular hyperboloid
of revolution. The parameter k must be specified by the user, but the
method is quite stable with respect to this parameter and yields good re-
sults [Franke 82]. The MQE is a global RBF and the parameter k can be
viewed as the smoothing factor of a multi-conic RBF as :

lim
k→0
Φ(r) = r, r ≥ 0 (9)

Hardy also proposed a reciprocal (or inverse) MQE (fig.5) :

Φ(r) =
1√
r2 + k2

(10)

which is a local RBF and yields nearly as good results as the MQE itself
[Franke 82], although it is more sensitive to the parameter k.
Micchelli has shown that the MQE is a special case of a larger family of

RBFs [Michelli 86, Powell 87] :

Φ(r) = (r2 + k2)β , 0 < β < 1 (11)

where the MQE has β = 1

2
.

The Inverse MQE (IMQE) is a special case of another large family of
RBFs [Michelli 86, Powell 87] :

Φ(r) =
1

(r2 + k2)α
, α > 0 (12)

where the IMQE has α = 1

2
.

1.4 Thin Plate Splines (TPS).

As already mentioned, Duchon also proposed “Thin Plate Splines” (TPS) for
the multivariate interpolation problem. Several other researchers had used
them earlier, but Duchon and Meinguet developed the theory of the TPS
[Duchon 76, Meinguet 79].
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The general form of the TPS (fig.6) is :

Φ(r) = r2 log r (13)

which can be seen as minimizing the bending energy of a “Thin Plate” of
infinite extent (thereby the name).
The TPS is a global RBF and performs well on the interpolation problem

according to [Franke 82]. Duchon points out that the TPS is a member of
the larger family of RBFs [Duchon 76, Michelli 86], given by :

Φ(r) = r2i log r, i ∈ No (14)

1.5 The Logarithmic RBF.

Micchelli mentions another RBF used for the interpolation problem (fig.7)
[Michelli 86] :

Φ(r) = log(r2 + k2) (15)

which apparently has not been given any name. It will be referred to as the
Logarithmic RBF (LRBF) throughout this paper. The LRBF is an interest-
ing alternative to the other RBFs, as it has both local and global properties.
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2 The Radial Basis Function Network

(RBFN).

The RBFN is a Multilayer Feedforward Network with one hidden layer of
Radial Basis Function Units (see figure 1).

Hidden layer

Output layer

Input layer

1 layer of weights

 

with internal parameters

Figure 1: Multilayer Feedforward Network with Radial Basis Function.

The output layer performs a simple summation of the output from each
hidden node :

yj =
∑

i

wjiΦi (16)

where yj is the j’th output node, wji is the weight from the i’th node of the
hidden layer to the j’th node of the output layer and Φi is the output of the
i’th hidden node. Φi describes the Radial Basis Function.
The following Radial Basis Functions have been implemented and tested:

• Gaussian Radial Basis Function (GRBF)

• Inverse MultiQuadric Equation 1 (IMQE), α = 1

2
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• Inverse MultiQuadric Equation 2 (ICUB), α = 1

• Thin Plate Spline (TPS)

• Pseudo-Cubic Spline (PCUB)

• MultiQuadric Equation (MQE)

• Logarithmic Radial Basis Function (LRBF)

The RBFN is implemented as described in [Carlin 91] using the Maha-
lanobis distance, which is defined as

r =

√

√

√

√

∑

l

(xl − µil)2
σi
2

l

(17)

A modified version of the Hierarchical Self-Organized Learning (HSOL)
[Lee & Kil 89] is used, with the following changes :

• Gaussian RBF : New nodes’ weights are set to : wjI = tj − yj.

• IMQE α = 1

2
: New nodes’ weights are set to : wjI = (tj − yj)k.

• IMQE α = 1 : New nodes’ weights are set to : wjI = (tj − yj)k2.

where tj is the target and yj the actual output of the network. All these
changes provide better initial estimates. The HSOL algorithm automatically
recruits the minimum necessary number of hidden nodes during learning for
the given problem and initial parameters.

• For all global RBFs the initial weights are set to : wjI = 0, since a
non-zero initial weight would change the global network mapping.

Platt has proposed an almost similar algorithm called Resource-
Allocating Network (RAN) [Platt 91].
All parameters (µil, σ

i
l , wij) of the RBFN are updated by gradient descent.

All parameter update rules can be found in [Carlin 91].
The only papers in my literature survey that presents results us-

ing Artificial Neural Networks with other RBFs than the Gaussian is
[Broomhead & Lowe 88] using the MultiQuadric Equation and [Lowe 89] us-
ing the Thin Plate Spline.
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3 Experimental results using the RBFN.

The Radial Basis Function Network has been applied to five different mod-
elling tasks.
The Normalized Root Mean Square Error (NRMS) is used as a perfor-

mance measure for the different models :

ENRMS =

√

√

√

√

∑

(t− y)2
∑

(t− t)2 =
√

√

√

√

var(e)

var(t)
(18)

which is the square root of the variance of the error over the variance of the
target pattern.
All training sets and test sets are totally disjunct for all problems.
The RBFN has been tested on data taken from :

• A simulated catalytic chemical reactor.

• A 10-dimensional test function [Friedman 88].

• A metallurgic industrial process.

• A robot actuator.

• Water content in fish food products from NIR spectroscopy.

The simulated chemical reactor models a catalytic chemical process where
unbranched hydrocarbons (nC5) are transformed to branched hydrocarbons
(iC5) with a higher octane number. Hydrogen (H2) is acting as a catalyst
for the reactions. Crucial parameters are the temperature (T), the velocity
of the process material through the catalytic tank (V) and the pressure (P).
The different RBFNs have been used to predict iC5 as

iC5 = f(nC5init, iC5init, H2init, T, V ) (19)

where the data is generated by simulations of the catalytic process by simu-
lations, based upon an analytical model in the form of differential equations.
700 randomly generated vectors are used as learning set, while 300 randomly
generated vectors are used as test set.
The 10-dimensional test function is defined as

f(x) = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + 0x6 + · · ·+ 0x10 (20)
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where the last five variables are totally uncorrelated with the output
[Friedman 88]. White noise ( 20% ) was added to the training data, but
not on the test data. A set of 100 training points and 1000 test points were
randomly taken from a uniform distribution over the 10 dimensional unit
hypercube.
Elkem Sauda, a subsidary of Elkem a/s in Norway, produces FeMn alloy.

At Sauda, the value of 75 process variables, averaged over 24-hour periods,
were logged over a one year period. Our task was to model carbon consump-
tion as a function of the 74 remaining variables. The number of variables
were reduced using Partial Least Squares Regression. Three of the original
variables were found to have a strong correlation with the carbon consump-
tion and these three variables were used during modelling. Outlayers and
incomplete data sets were removed and 13 different and totally disjunct test
and training sets were used during 13 cross validation tests.
The RBFNs have been applied to identifying the characteristics of the

servo valve/actuator system of the hydraulic TR4000 robot, from ABB
Trallfa Robotics A/S. The goal was to find a general nonlinear function,
u(q, q̇, q̈), describing the required servo valve control signal, u, for a desired
joint acceleration, q̈, and with given joint position, q, and velocity, q̇. A more
complete description of this experiment, using a B-spline modelling technique
called ASMOD can be found in [Kavli 92].
Quantitative chemical analysis with NIR-spectrometry is one of the ma-

jor application areas for Partial Least Squares Regression. Light absorbance
or reflectance for a given light path through different samples of the ana-
lyte are measured at a number of frequencies. Since the different chemical
components of the analyte have their characteristic absorption spectra it is
possible to estimate the concentration of each component from the measured
total absorbance spectrum. The problem in this experiment is to estimate
water contents in fish food products, based on absorbance spectra measured
at 19 frequencies in the NIR range. A set of 519 spectral measurements of
test samples with known water contents was available, and 13 different sets
of corresponding training and test sets were generated by randomly picking
50 of the measurements for each of the test sets.
All the test data are described in further detail in [Carlin et.al. 92] and

compared with several other soft modelling schemes.
The result of applying the RBFNs these problems are shown in table 1.

The results of using a linear model found by Partial Least Squares Regression
are included for comparison.
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Method Chemical 10-d FeMn Robot NIR-spectra
reactor function process dynamics

GRBF 8.6% 32.8% 55.4(4.2)% 20% 21.6%
IMQE 7.9% 35.4% 55.0(5.3)% 19% 21.9%
ICUB 9.1% 37.6% 54.6(5.1)% 20% 23.2%
TPS 9.0% - 56.1(7.7)% 33% 24.8%
PCUB 11% - - 76% 33.1%
MQE 6.5% 33.8% 53.6(6.7)% 31% 25.5%
LRBF 6.3% 27.9% 54.0(6.0)% 25% 22.8%
Linear 28% - 58.4(6.6)% 64% 28.8%

Table 1: Comparison of all Radial Basis Functions and a linear model based
on Partial Least Squares Regression shown for all data sets. The missing
performance measures are due to lack of convergence during the tests.

The Radial Basis Function Networks were run on a SUN SPARC station
with software developed at the Center for Industrial Research in Oslo. Typi-
cal learning times were in the range of ten minutes to a few hours, depending
on the problem and the degree of refinement of the model defined by the
number of hidden nodes.
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4 Results and discussion.

The experiences gained using the different Radial Basis Functions can be
summarized in the following :

• The RBFNs perform significantly better than the linear model for all
test data with the exception of the 10-dimensional function, where
the results should be compared with Friedman’s MARS [Friedman 88],
which gives a result of 19.5 % NRMS. The 10-dimensional test function
is an example of a high dimensional problem with sparsely distributed
data and relatively much noise on the training set. The Radial Basis
Functions Network does not perform good under such conditions.

• The Logarithmic Radial Basis Function (LRBF) performs best on the
two simulated examples and quite good on all the other examples.

• The Gaussian Radial Basis Function (GRBF) performs well on all ex-
amples. Both Inverse MultiQuadric Equations (IMQE and ICUB) are
similar in form as the GRBF and show similar results.

• The MultiQuadric Equation (MQE) has variable performance on dif-
ferent test sets.

• The Thin Plate Spline is not very good at any of the problems, but its
representation is more compact as it uses fewer hidden nodes.

• The Psedo-Cubic Spline performs poorly on all problems. There were
difficulties of establishing convergence for the gradient search using this
Radial Basis Function.
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5 Summary.

Seven different Radial Basis Functions have been applied in a Multilayer
Feedforward Network.
A short theory on Radial Basis Functions have been presented, as well as

the specific implementation, called the Radial Basis Function Networks.
The Radial Basis Function Networks have been applied to five different

nonlinear data modelling problems. The results indicate that the Logarithmic
RBF have special properties which should be utilized in further work, while
in general several of the Radial Basis Functions tested perform with near
equal results.

Recommended reading.

It is hard to find good review articles on Radial Basis Functions, but the
articles of [Powell 87, Poggio & Girosi 89] give thorough reviews. Appli-
cations of Multilayer Feedforward Networks using RBFs are described in
[Broomhead & Lowe 88, Moody & Darken 89, Lee & Kil 91, Platt 91]. Only
a few papers mention Radial Basis Functions applied to empirical modelling.
Some important results are given in [Röscheisen et.al 91] on a very similar
problem, predicting the rolling force of a rolling mill. Another approach
worth mentioning is the Normalized Radial Basis Functions proposed by
[Moody & Darken 88] and pursued by [Jones et.al. 90] and several other re-
searchers.
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Figure 2: Gaussian Basis Function.
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Figure 3: Pseudo-Cubic Basis Function.
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Figure 4: MultiQuadric Equations.
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Figure 5: Inverse MultiQuadric Equations.
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Figure 6: Thin Plate Spline.
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Figure 7: Logarithmic Basis Functions.
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