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ABSTRACT

Motivation: In recent years, there have been various efforts to

overcome the limitations of standard clustering approaches for the

analysis of gene expression data by grouping genes and samples

simultaneously. The underlying concept, which is often referred to as

biclustering, allows to identify sets of genes sharing compatible expres-

sion patterns across subsets of samples, and its usefulness has been

demonstrated for different organisms and datasets. Several bicluster-

ingmethodshavebeenproposed in the literature;however, it is not clear

how the different techniques compare with each other with respect to

the biological relevance of the clusters as well as with other character-

istics suchas robustnessandsensitivity to noise.Accordingly, noguide-

lines concerning the choice of the biclustering method are currently

available.

Results: First, this paper provides a methodology for comparing and

validating biclustering methods that includes a simple binary reference

model. Although this model captures the essential features of most

biclustering approaches, it is still simple enough to exactly determine

all optimal groupings; to this end,we propose a fast divide-and-conquer

algorithm (Bimax). Second, we evaluate the performance of five

salient biclustering algorithms together with the reference model and

a hierarchical clustering method on various synthetic and real data-

sets for Saccharomyces cerevisiae and Arabidopsis thaliana. The

comparison reveals that (1) biclustering in general has advantages

over a conventional hierarchical clustering approach, (2) there are

considerable performance differences between the tested methods

and (3) already the simple reference model delivers relevant patterns

within all considered settings.

Availability: The datasets used, the outcomes of the biclustering

algorithms and the Bimax implementation for the reference model

are available at http://www.tik.ee.ethz.ch/sop/bimax

Contact: bleuler@tik.ee.ethz.ch

Supplementary information: Supplementary data are available at

http://www.tik.ee.ethz.ch/sop/bimax

INTRODUCTION

In recent years, several biclustering methods have been suggested

to identify local patterns in gene expression data. In contrast

to classical clustering techniques such as hierarchical clustering

(Sokal and Michener, 1958) and k-means clustering (Hartigan

and Wong, 1979), biclustering does not require genes in the

same cluster to behave similarly over all experimental conditions.

Instead, a bicluster is defined as a subset of genes that exhibit

compatible expression patterns over a subset of conditions. This

modified clustering concept can be useful to uncover processes that

are active only over some but not all samples as has been demon-

strated in several studies (Cheng and Church, 2000; Ihmels et al.,
2002; Ben-Dor et al., 2002; Tanay et al., 2002; Murali and Kasif,

2003), see Madeira and Oliveira (2004) for a survey.

Comparing clustering methods in general is difficult as the

formalization in terms of an optimization problem strongly depends

on the scenario under consideration and accordingly varies for dif-

ferent approaches. In the end, biological merit is the main criterion

for validation, though it can be intricate to quantify this objective. In

the literature, there are several comparative studies on traditional

clustering techniques (Yeung et al., 2001; Azuaje, 2002; Datta and
Datta, 2003); however, for biclustering no such extensive empirical

comparisons exist as pointed out by (Madeira and Oliveira (2004).

Although first steps in this directions have been taken (Tanay et al.,
2002; Yang et al., 2003; Ihmels et al., 2004), the corresponding

studies focus on validating a new algorithm with regard to one or

two existing biclustering methods and usually consider a specific

objective function.

The main goal of this paper is to provide a systematic comparison

and evaluation of prominent biclusteringmethods in the light of gene

classification. In particular, we focus on the following questions:

(1) What comparison/validation methodology is adequate for the

biclustering context, (2) how meaningful are the biclusters selected

by existing methods and (3) how do different methods compare with

eachother, i.e. do some techniques have advantages over others or are

there common properties that all approaches share?

In order to answer these questions, we have selected a number of

salient biclustering methods, implemented them and tested them on

both synthetic and real gene expression datasets. An in silico
scenario has been chosen to (1) investigate the capability of the

algorithms to recover implanted transcription modules (Ihmels

et al., 2002), i.e. sets of co-regulated genes together with their

regulating conditions and (2) study the influence of regulatory

complexity and noise on the performance of the algorithms.

To assess the biological relevance of biclusters on gene expression

data for Saccharomyces cerevisiae and Arabidopsis thaliana,�To whom correspondence should be addressed.
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multiple quantitative measures are introduced that relate the

biclustering outcomes to annotations by Gene Ontology

Consortium (2000) metabolic pathway maps and protein-interaction

data.

Moreover, we propose a simple biclustering model, which retains

common features of most biclustering methods, in combination with

a fast and exact algorithm (Bimax)—in contrast, existing bicluster-

ing algorithms usually do not guarantee to find global optima.

Although restricted from a biological point of view, this model

allows to study the validity of the biclustering idea independent

of the interfering effects because of approximate algorithms. As

such, Bimax has been considered as a reference method in our study.

As will be shown in the remainder of this paper, even such a simple

approach delivers biologically relevant results and compares well

with more sophisticated biclustering methods.

RELATED WORK

There exist several studies that address the issue of comparing and

validating one-dimensional clustering methods (Kerr and Churchill,

2001; Yeung et al., 2001; Azuaje, 2002; Datta and Datta, 2003;

Gat-Viks et al., 2003; Handl et al., 2005). All of them make use of

different quantitative measures or validity indices, which can be

divided into three categories (Halkidi et al., 2001): internal, external
and relative indices. Internal indices solely rely on the input data as,

e.g. the measures of homogeneity and separation (Gat-Viks et al.,
2003). In contrast, external criteria are based on additional data in

order to validate the obtained results. In the context of gene expres-

sion data, these would correspond to prior biological knowledge of

the systems being studied; alternatively, a validation can be done by

referring to other types of genomic data representing similar aspects

of the regulation mechanisms being investigated. The third category

of relative indices measures the influence of the input parameter

settings on the clustering outcome. As discussed in Handl et al.
(2005), external indices are preferable in order to assess the

performance of an algorithm on a given dataset, while internal

indices can be used to investigate why a particular method does

not perform well.

In the context of biclustering, mainly external validation has been

used. Biological analyses and interpretations by human experts are

most common for the evaluation of a single, newly proposed biclus-

tering algorithm (Cheng and Church, 2000; Getz et al., 2000;

Ben-Dor et al., 2002; Murali and Kasif, 2003; Bergmann et al.,
2003; Getz et al., 2003; Ihmels et al., 2004); they are usually

descriptive and qualitative only, and therefore are not suitable

for comparing multiple methods. In terms of quantitative measures,

many papers rely on known classifications and categorizations

given by tumor types (Tanay et al., 2002; Kluger et al., 2003;
Murali and Kasif, 2003), GO annotations (Tanay et al., 2002,

Tany et al., 2004), metabolic pathways (Ihmels et al., 2002) or

promoter motifs (Ihmels et al., 2004), which are closely related

to the specific datasets under consideration. Some authors also

investigate in silico datasets with implanted biclusters where the

optimal outcome is known beforehand (Ihmels et al., 2002; Ben-Dor
et al., 2002; Bergmann et al., 2003; Yang et al., 2002).
Most biclustering papers are concerned with the introduction and

validation of a new approach, while only a few contain quantitative

comparisons with existing methods. Cheng and Church (2000) and

Kluger et al. (2003), validate the biclustering results in comparison

with hierarchical clustering and singular value decomposition

respectively. Tanay et al. (2002) and Yang et al. (2002, 2003),
provide a comparison with the algorithm by Cheng and Church,

(2000) regarding synthetic data respectively the problem formula-

tion introduced in Cheng and Church (2000). In Ihmels et al. (2004),
two biclustering techniques (Cheng and Church, 2000; Getz et al.,
2000) as well as five classical clustering methods are tested with

respect to the problem formulation used by the iterative signature

algorithm proposed in Ihmels et al. (2002). In most of the studies,

the comparison has been carried out with regard to the gene

dimension.

BICLUSTERING METHODS

Selected algorithms

Five prominent biclustering methods have been chosen for this

comparative study according to three criteria: (1) to what extent

the methods have been used or referenced in the community, (2)

whether their algorithmic strategies are similar and therefore better

comparable and (3) whether an implementation was available or

could be easily reconstructed based on the original publications. The

selected algorithms, which all are based on greedy search strategies,

are Cheng and Church’s algorithm CC (Cheng and Church, 2000);

Samba (Tanay et al., 2002); Order Preserving Submatrix Algorithm,

OPSM (Ben-Dor et al., 2002); Iterative Signature Algorithm, ISA

(Ihmels et al., 2002, 2004); xMotif (Murali and Kasif, 2003). A brief

description of the corresponding approaches can be found in the

Supplementary Material.

Reference method (Bimax)

The above methods use different models which are all too complex

to be solved exactly; most of the corresponding optimization prob-

lems have shown to be NP-hard. Therefore, advantages of one

method over another can be due to a more appropriate optimization

criterion or a better algorithm.

To decouple these two aspects, we propose a reference method,

namely Bimax, that uses a simple data model reflecting the funda-

mental idea of biclustering, while allowing to determine all optimal

biclusters in reasonable time. This method has the benefit of pro-

viding a basis to investigate (1) the usefulness of the biclustering

concept in general, independently of interfering effects caused by

approximate algorithms, and (2) the effectiveness of more complex

scoring schemes and biclustering methods in comparison to a plain

approach. Note that the underlying binary data model, which is

described below, is only used by Bimax and does not represent

the platform on the basis of which the different algorithms are

compared. All methods under consideration are employed using

their specific data models.

Model The model assumes two possible expression levels per

gene: no change and change with respect to a control experiment.1

Accordingly, a set of m microarray experiments for n genes can be

represented by a binary matrix En · m, where a cell eij is 1 whenever
gene i responds in the condition j and otherwise it is 0. A bicluster

(G, C) corresponds to a subset of genes G � {1, . . . , n} that jointly

1To this end, a preprocessing step normalizes log expression values and then

transforms matrix cells into discrete values, e.g. by using a 2-fold change

cutoff.
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respond across a subset of samples C � {1, . . . ,m}. In other words,
the pair (G, C) defines a submatrix of E for which all elements equal

1. Note that, by definition, every cell eij having value 1 represents

a bicluster by itself. However, such a pattern is not interesting per
se; instead, we would like to find all biclusters that are inclusion-

maximal, i.e. that are not entirely contained in any other bicluster.

DEFINITION 1. The pair (G, C) 2 2{1, . . . , n} · 2{1, . . . ,m} is called an
inclusion-maximal bicluster if and only if (1) 8 i 2 G, j 2 C : eij ¼ 1

and (2) @ (G0, C0) 2 2{1, . . . , n} · 2{1, . . . ,m} with (a) 8i0 2 G0‚ j0 2 C0:
ei0j0 ¼ 1 and (b) G � G0 ^ C � C0 ^ (G0, C0) 6¼ (G, C).

This model is similar to the one presented in Tanay et al. (2002)
where a bicluster can also contain 0-cells.

Algorithm Since the size of the search space is exponential in n
and m, an enumerative approach is infeasible in order to determine

the set of inclusion-maximal biclusters. Alexe et al. (2002) proposed
an algorithm in a graph-theoretic framework that can be employed

in this context, if the matrix E is regarded as an adjacency matrix of

a graph. By exploiting the fact that the graph induced by E is

bipartite, their incremental algorithm can be tailored to this applica-

tion which reduces the running-time complexity from Q (n2 m2 b)

to Q (nmb log b), where b is the number of all inclusion-maximal

biclusters in En · m (see Supplementary Material). However, the

memory requirements of this algorithm are of order W (nmb) which
causes practical problems, especially for larger matrices.

In this paper, though, we propose and use a fast divide-

and-conquer approach, the binary inclusion-maximal biclustering

algorithm (Bimax) that requires much less memory resources (O(nm
min {n, m})), while providing a worst-case running-time complex-

ity that for matrices containing disjoint biclusters only is of order

O(nmb) and for arbitrary matrices is of order O(nmb min{n, m}).
The complete algorithm and the proof of the general upper bound

for the running-time complexity are given in the Supplementary

Material. Bimax tries to identify areas of E that contain only 0s and

therefore can be excluded from further inspection. This strategy is

especially beneficial for our purposes as E is, depending on the

cutoff threshold, sparse; in all datasets used in this study, the pro-

portion of 1-cells over 0-cells never exceeded 6% when considering

a 2-fold change cutoff.

More specifically, the idea behind the Bimax algorithm, which is

illustrated in Figure 1, is to partition E into three submatrices, one of

which contains only 0-cells and therefore can be disregarded in the

following. The algorithm is then recursively applied to the remain-

ing two submatrices U and V; the recursion ends if the current

matrix represents a bicluster, i.e. contains only 1s. If U and V do

not share any rows and columns of E, i.e. GW is empty, the two

matrices can be processed independently from each other. However,

if U and V have a set GW of rows in common as shown in Figure 1,

special care is necessary to only generate those biclusters in V that

share at least one common column with CV.

COMPARISON METHODOLOGY

In general, a fair comparison of clustering and biclustering

approaches is inherently a difficult task because every method

uses a different problem formulation and algorithm which may

work well in certain scenarios and fail in others. Here, the main

goal is to define a common setting that reflects the general basis of

the majority of the biclustering studies available and in particular of

those techniques considered in this paper.

First, the comparison focuses on the identification of (locally)

co-expressed genes as in Cheng and Church (2000), Tanay et al.
(2002), Ben-Dor et al. (2002), Ihmels et al. (2002, 2004) and Tanay
et al. (2004). Classification of samples or inference of regulatory

mechanisms may be other tasks for which biclustering can be used;

however, considering mainly the gene dimension has the advantage

of various available annotations—in contrast to the condition

dimension—and of the possibility to compare the results with

classical clustering techniques.

Second, external indices are used to assess the methods under

consideration as in most biclustering papers. The reasons are: (1) it

is not clear how to extend notions such as homogeneity and sep-

aration (Gat-Viks et al., 2003) to the biclustering context (to our best
knowledge, no general internal indices have been suggested so far

for biclustering) and (2) there are some issues with internal mea-

sures, owing which Gat-Viks et al. (2003) and Handl et al. (2005)
recommend external indices for evaluating the performance of

(bi)clustering methods. We consider both synthetic and real datasets

for the performance assessment. Only the latter allow reliable state-

ments about the biological usefulness of a specific approach, and

further biological data, namely GO annotations, as in Tanay et al.
(2002), Tany et al. (2004), metabolic pathways maps, similarly to

Ihmels et al. (2002) and protein–protein interactions, are used here.

In contrast, the former datasets inherently reflect only certain

aspects of biological reality, but they have the advantage that the

optimal solutions are known beforehand and that the complexity can

be controlled and arbitrarily scaled to different levels.

Finally, various biclustering concepts and structures can be

considered when using in silico data; Madeira and Oliveira

(2004) propose several categories on the basis of which they clas-

sify existing biclustering approaches. Here, we investigate two

types of bicluster concepts: biclusters with constant expression

values and biclusters following an additive model where the

expression values are varying over the conditions. The former

type can be used to test methods designed to identify—according

to the terminology in Madeira and Oliveira (2004)—biclusters with

constant and coherent values, while the latter type, where the

V

U

rearrange rows

WG

VG

UG

VCUC

Fig. 1. Illustration of the Bimax algorithm. To divide the input matrix into

two smaller, possibly overlapping submatrices U and V, first the set of

columns is divided into two subsets CU and CV, here by taking the first

row as a template. Afterwards, the rows of E are resorted: first come all

genes that respond only to conditions given by CU, then those genes that

respond to conditions in CU and in CV and finally the genes that respond to

conditions in CV only. The corresponding sets of genes GU, GW and GV then

define in combination with CU and CV the resulting submatrices U and V
which are decomposed recursively.
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expression values show the same trend for all genes included, serves

as a basis to validate algorithms tailored to biclusters with coherent

values and coherent evolutions. Concerning the biclustering struc-

ture, we consider two scenarios: (1) multiple biclusters without any

overlap in any dimension and (2) multiple biclusters with overlap.

Validation using synthetic data

The artificial model used to generate synthetic gene expression data

is similar to an approach proposed by Ihmels et al. (2002). In this

setting, biclusters represent transcription modules; these modules

are defined by (1) a set G of genes regulated by a set of common

transcription factors and (2) a set C of conditions in which these

transcription factors are active. In the first considered scenario, 10

non-overlapping transcription modules, each extending over 10

genes and 5 conditions, emerge. Each gene is regulated by exactly

one transcription factor and in each condition only one transcription

factor is active. The corresponding datasets contain 10 implanted

biclusters and have been used to study the effects of noise on the

performance of the biclustering methods. For the second scenario,

the regulatory complexity has been systematically varied: here, each

gene can be regulated by d transcription factors and in each con-

dition up to d transcription factors can be active. As a consequence,
the original 10 biclusters overlap where d is an indicator for the

overlap degree; overall, 9 different levels have been considered with

d ¼ 0, 1, . . . , 8. Moreover, we have investigated for each scenario

two types of biclusters: (1) constant biclusters and (2) additive

biclusters (see Supplementary Material).

In order to assess the performance of the selected biclustering

approaches, we will use the following gene match score.

DEFINITION 2. Let M1, M2 be two sets of biclusters. The gene

match score of M1 with respect to M2 is given by the function

S�GðM1‚M2Þ ¼
1

jM1 j
X

ðG1‚C1Þ2M1

max
ðG2‚C2Þ2M2

jG1 \ G2 j
jG1 [ G2 j

which reflects the average of the maximum match scores for all
biclusters in M1 with respect to the biclusters in M2.

Now, let Mopt denote the set of implanted biclusters and M the

output of a biclustering method. The average bicluster relevance is

defined as S�GðM‚MoptÞ and reflects to what extent the generated

biclusters represent true biclusters in the gene dimension. In con-

trast, the average module recovery, given by S�GðMopt‚MÞ, quantifies
how well each of the true biclusters is recovered by the biclustering

algorithm under consideration. Both scores take the maximum value

of 1, ifMopt¼M. A detailed description of this score can be found in

the Supplementary Material.

Validation using prior knowledge

Prior biological knowledge in the form of natural language descrip-

tions of functions and processes that genes are related to has become

widely available. One of the largest organized collection of gene

annotations is currently provided by Gene Ontology Consortium

(2000). Similar to the idea pursued in Tanay et al. (2002), we here
investigate whether the groups of genes delivered by the different

algorithms show significant enrichment with respect to a specific

Gene Ontology (GO) annotation. In detail, biclusters are evaluated

by computing the hypergeometric functional enrichment score, cf.

(Berriz et al., 2003), based on Molecular Function and Biological

Process annotations; the resulting scores are adjusted for multiple

testing by using the Westfall and Young procedure (Westfall and

Young, 1993; Berriz et al., 2003). This analysis is performed for the

model organism S.cerevisiae, since the yeast GO annotations are

more extensive compared to other organisms. The gene expression

dataset used is the one provided by Gasch et al., 2000, which
contains a collection of 173 different stress conditions and a

selection of 2993 genes.

In addition to GO annotations, we consider specific biological

networks, namely metabolic and protein–protein interaction net-

works, that have been derived from other types of data than gene

expression data. Although each type of data reveals other aspects of

the underlying biological system, one can expect to a certain degree

that genes that participate in the same pathway respectively form

a protein complex also show similar expression patterns as dis-

cussed in Zien et al. (2000), Ideker et al. (2002), Ihmels et al.
(2002). The question here is whether the computed biclusters reflect

this correspondence.

To this end, we model both pathway information as well as

protein interactions in terms of an undirected graph where

a node stands for a protein and an edge represents a common reac-

tion in that the two connected proteins participate respectively

a measured interaction between the two connected proteins. In

order to verify whether a given bicluster (G, C) is plausible with

respect to the metabolic respectively protein interaction graph, we

consider two scores: (1) the proportion of pairs of genes in G for

which there exists no connecting path in the graph and (2) the

average path length of pairs of genes in G for which such a path

exists. One may expect that both the number of disconnected gene

pairs and the average distance between two connected genes is

significantly smaller for genes in G than for randomly chosen

genes. For both scores, a resampling method is applied where

1000 random gene groups of the same size as G are considered;

a Z-test is used to check whether the scores for the bicluster (G, C)
are significantly smaller or larger than the average score for the

random gene groups.

As to the metabolic level, we use a pathway map that describes

the main bio-synthetic pathways at the level of enzymatic reactions

for the model organism A.thaliana (Wille et al., 2004). As this map

has been manually assembled at the Institute for Plant Science at

ETH Zurich by an extensive literature search, the resulting graph

represents a high level of confidence. The gene expression dataset

used in this context are publicly available at http://nasc.nott.ac.uk/

and comprise 69 experimental conditions and a selection of

734 genes.

To investigate the correspondence of biclusters and protein–

protein interaction networks, again S.cerevisiae is considered

because the amount of interaction data available is substantially

larger than for A.thaliana. Here, we combine the aforementioned

dataset for yeast (Gasch et al., 2000) with protein interactions stored
in the DIP database (Salwinski et al., 2004), resulting in 11 498

interactions for 3665 genes overall.

Implementation issues

All of the selected methods have been re-implemented according to

the specifications in the corresponding papers, except of Samba for

which a publicly available software tool, Expander (Sharan et al.,
2003), has been used. The OPSM algorithm has been slightly
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extended to return not only a single bicluster but also the q largest

biclusters among those that achieve the optimal score; q has been set
to 100. Furthermore, the standard hierarchical clustering method

(HCL) in MATLAB has been included in the comparison, which

uses single linkage in combination with Euclidean distance. The

parameter settings for the various algorithms correspond to the

values that the authors have recommended in their publications

(Supplementary Material). For the reference method, Bimax, the

discretization threshold has been set to e
�
+ ð�ee � e

�
Þ=2 where e

�
and

�ee represent the minimum respectively maximum expression values

in the data matrix.

As the number of generated biclusters varies strongly among the

considered methods, a filtering procedure, similar to Tanay et al.
(2002) and Ihmels et al. (2002), has been applied to the output of the
algorithms to provide a common basis for the comparison. The

filtering procedure adopted here follows a greedy approach: in each

step, the largest of the remaining biclusters is chosen that has less

than o percent of its cells in common with any previously selected

bicluster; the algorithm stops if either q biclusters have been

selected or none of the remaining ones fulfills the selection criterion.

For the synthetic datasets, q equals the number of optimal biclusters,

which is known beforehand, and for the real datasets, q is set to 100;
in both cases, a maximum overlap of o ¼ 0.25 is considered.

RESULTS

Synthetic data

The data derived from the aforementioned artificial model enable us

to investigate the capability of the methods to recover known group-

ings, while at the same time further aspects like noise and regulatory

complexity can be systematically studied. The datasets used in this

context are kept small, i.e. n ¼ 100, m ¼ 50 for scenario 1 and n ¼
100, m ¼ 100, . . . , 108 for scenario 2, in order to allow a large

number of numerical experiments to be performed—for a 100 ·
100-matrix, the running-times of the selected algorithms varied

between 1 and 120 s. The size of the considered datasets, though,

does not restrict the generality of the results presented in the

following, since the inherent structure of the data matrix, i.e. the

overlap degree, is the main focus of our study.

Note that the input matrices have not been discretized beforehand,

e.g. converted into binary matrices as required by the reference method

Bimax. Instead, for each algorithm the corresponding preprocessing

procedures have been employed as described in the relevant papers.

Effects of noise The first artificial scenario, where all biclusters

are non-overlapping, serves as a basis to assess the sensitivity of the

methods to noise in the data. It is to be expected that hierarchical

clustering works well in such a scenario as the implanted gene

groups are clearly separated in the condition dimension.

Noise is imitated by adding random values drawn from a normal

distribution to each cell of the original gene expression matrix. The

noise level, i.e. the standard deviation s
�
, is systematically

increased, and for each noise value, 10 different data matrices

have been generated from the original gene expression matrix E.
The performance of each algorithm is averaged over these 10 input

matrices. Figure 2a summarizes the performances of the considered

methods with respect to constant biclusters, while Figure 2b depicts

the results for the matrices where the implanted biclusters represent

trends over the conditions.

In the absence of noise, ISA, Samba and Bimax are able to

identify a high percentage (>90%) of implanted transcription mod-

ules; as expected, the same holds for the hierarchical clustering

approach, if the number k of clusters to be generated corresponds

to the actual number of implanted modules. In contrast, the scores

obtained by CC and xMotif are substantially lower. In the case of

constant biclusters, this phenomenon can be explained by the fact

that the largest biclusters found by these two methods mainly con-

tain 0-cells, i.e. the algorithms do not focus on changes in gene

expression, but consider the similarity of the selected cells as the

only clustering criterion. This problem has been discussed in detail

in Cheng and Church (2000). For the specific scenario with the

particular type of additive biclusters considered here, CC tends
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Fig. 2. Results for the artificial scenarios: non-overlappingmoduleswith increasing noise levels for (a) constant and (b) additive biclusters, overlappingmodules

with increasing overlap degree and no noise for (c) constant and (d) additive biclusters. Note that OPSM is excluded in (c), cf. results section.
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to find large groups of genes extending over a few columns only,

which owes to the used greedy heuristic; theoretically, the

implanted biclusters achieve the optimal mean residue score.

Since xMotif is mainly designed to find biclusters with coherent

row values, the underlying bicluster problem formulation is not well

suited for the second bicluster type. A similar argument applies to

OPSM which seeks clear trends of up- or down-regulation and

cannot be expected to perform well in the scenarios with constant

biclusters. The high average bicluster relevance in Figure 2a is

rather an artifact of the implementation used in this paper which

keeps the order of the columns when identical expression values are

present; however, as soon as noise is added, this artificial order is

destroyed, which in turn leads to considerably lower gene match

scores. In contrast, biclusters following an additive model with

respect to the condition dimension represent optimal order-

preserving submatrices. In this setting, the correspondence between

the implanted biclusters and those found by OPSM is �50%, cf.

Figure 2b. A potential reason for the unexpectedly low scores is the

way the heuristic algorithm works: per number of columns, only

a single bicluster is considered—however, the implanted biclusters

all extend over the same number of columns.

Concerning the influence of noise, ISA is only marginally affec-

ted by either type of noise and still recovers >90% of all implanted

modules even for high noise levels. The same holds for Bimax in the

constant bicluster case, but for the other bicluster type a substantial

decrease in the relevance score can be observed in Figure 2b. This

reveals a potential problem with discretization approaches: as noise

blurs the differences between background and biclusters, many

small submatrices emerge that not necessarily are meaningful.

With HCL, noise has no observable effects in the constant bicluster

scenarios, while for the second bicluster type increasing noise leads

to a decrease in performance. The latter observation attributable to

the fact that background and biclusters are not that clearly separated

in the datasets with biclusters exhibiting trends. Samba seems to be

sensitive to noise in the constant bicluster case as the average gene

match scores decrease by 40–50% for a medium noise level; still,

the scores are significantly larger than for CC and xMotif. In the

case of additive biclusters, noise has only little effect on the per-

formance of Samba. Concerning OPSM, noise affects the outcome;

the scores slightly decrease. Remarkably, the performance of CC on

the constant bicluster matrices appears to improve with increasing

noise. This phenomenon, though, is again a result of the adopted

algorithmic strategy, cf. Cheng and Church (2000): the largest

biclusters may mainly cover the background, i.e. 0-cells. With

noise, the biclusters found in the matrix background tend to be

smaller, and this results in an improved gene match score; further

evidence is provided in the supplementary material.

Regulatory complexity The focus of the second artificial scenario

is to study the behavior of the chosen algorithms with respect to

increased regulatory complexity. Here, a single gene may be acti-

vated by a set of transcription factors, and accordingly the implanted

transcription modules may overlap. This setting is expected to

reveal the advantages of the biclustering approach over traditional

clustering methods such as hierarchical clustering.

Figure 2c (constant biclusters) as well as Figure 2d (additive

biclusters) depict the results for different overlap degrees in the

absence of noise, cf. the description of the datasets in Section

‘‘Validation using synthetic data’’ on page 1125. The only method

that fully recovers all hidden modules in the data matrix is—by

design—the reference method, Bimax. Among the remaining meth-

ods, Samba provides the best performance: most of the biclusters

found (>90%) represent hidden modules2; however, not all

implanted modules are recovered. While OPSM is not significantly

affected by the overlap degree (only the non-constant bicluster

datasets have been considered as OPSM cannot handle identical

expression values), ISA appears to be more sensitive to increased

regulatory complexity, especially with the second bicluster type. An

explanation for this is the normalization step in the first preprocess-

ing step of the algorithm. With increasing overlap, the expression

value range after normalization becomes narrower. As a result, the

differences between unchanged and up- or down-regulated expres-

sion values blur and are more difficult to separate based on the gene

and chip threshold parameters tg, tc. These parameters have a strong

impact on the performance as shown in the Supplementary Material.

As to CC, the performance increases with larger overlaps degrees,

but the gene match scores are still lower than the ones by Bimax,

Samba and ISA; again, this owes to the fact that the number of

background cells diminishes with larger overlaps. xMotif shows the

same behavior on the data matrices with constant biclusters. Com-

paring the biclustering methods with HCL, one can observe that

already a minimal overlap causes a large decrease in the perfor-

mance of HCL—even if the optimal number of clusters is used. The

reason is that clusters obtained by HCL form a partition of genes, i.e.

are non-overlapping, and this implies that not every planted tran-

scription module can be possibly recovered.

Real data

Any artificial scenario inevitably is biased regarding the underlying

model and only reflects certain aspects of biological reality.

2As to the outlier in Figure 2d at overlap degree 7, repeated applications of

Samba on the same matrix yielded similar scores.
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Fig. 3. Proportion of biclusters significantly enriched by any GO Biological

Process category (S. cerevisiae) for the six selected biclustering methods as

well as for hierarchical clusteringwith k2 {15, 30, 50, 100}. The columns are

grouped method-wise, and different bars within a group represent the results

obtained for five different significance levels a.
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Therefore, the algorithms are tested in the following on real data-

sets, normalized using mean centering, and the biological relevance

of the obtained biclusters is evaluated with respect to GO annota-

tions, metabolic pathway maps and protein–protein interaction data.

Functional enrichment The histogram in Figure 3 reflects for each

method the proportion of biclusters for which one or several GO

categories are overrepresented—at different levels of significance.

Best results are obtained by OPSM. Given that this approach only

returns a small number of biclusters, here 12 in comparison to 100

with the other methods, it delivers gene groups that are highly

enriched with the GO Biological Process category. This result is

insofar interesting as the effect of the noise observed in the artificial

setting does not seem to be a problem with the considered real

dataset. Bimax, ISA and Samba also provide a high portion of

functionally enriched biclusters, with a slight advantage of

Bimax and ISA (>90% at a significance level of 5%) over

Samba (>80% at a significance level of 5%). In contrast, the scores

for CC are considerably lower (�30%) due to the same problem as

discussed in the previous section. Cheng and Church (2000) men-

tion that the first few biclusters should probably be discarded, but

the practical issue remains that it is not clear which biclusters are

meaningful and should be considered for further analysis.

Except for xMotif, though, all biclustering methods achieve

higher scores than HCL with different values for k, the number

of clusters to be sought. This can be explained in terms of the

dataset used: Since it refers to different types of stresses, it is likely

that local, stress-dependent expression patterns emerge that are hard

to find by traditional clustering techniques. This hypothesis is also

supported by the fact that most functionally enriched biclusters only

contain one or two overrepresented GO categories and that there is

no clear tendency towards any of the categories.

Comparison to metabolic and protein networks Under the

assumption that the structure of a metabolic pathway map, respec-

tively, a protein–protein interaction network is somehow reflected

in the gene expression data, the degree of connectedness of the

genes associated with a bicluster can be used to assess its biological

relevance. In particular, one may expect that both the number of

disconnected gene pairs and the average shortest distance between

connected gene pairs tend to be smaller for the biclusters found than

for random gene groups.

Table 1 shows that this holds for the dataset and the metabolic

pathway map used for A.thaliana. If there exists a path between

two genes of a bicluster in the metabolic graph, then with high

probability the distance between these genes is significantly smaller

than the average shortest distance between randomly chosen gene

pairs. Although for most methods, the biclusters are better connected

than random gene groups, the differences to the random case are

not as striking as for the average gene pair distance. This indicates

that combining gene expression data with pathway maps within

a biclustering framework can be useful to focus on specific gene

groups. Note that also hierarchical clustering with k 2 {15, 30, 50,

100} has been applied to these expression data; however, a single

cluster usually contains almost all the genes of the dataset, while the

remaining clusters comprise only few genes. Accordingly, no

significant differences to random clusters can be observed.

The results for the corresponding comparison for the protein–

protein interaction, though, are ambiguous, cf. Table 1. As to the

degree of disconnectedness, there is no clear tendency in the data

which can be attributed to the fact that not all possible protein pairs

have been tested for interaction. Focusing on connected gene pairs

only, ISA and Bimax seem to mostly generate gene groups that have

a low average distance within the protein network in comparison to

random gene sets; for xMotif, the numbers suggest the opposite.

Overall, the differences between the biclustering methods demon-

strate that special care is necessary when integrating gene expres-

sion and protein interaction data: not only the incompleteness of

the data needs to be taken into consideration, but also the confidence

in the measurements has to be accounted for, see, e.g. Gilchrist

et al. (2004).

CONCLUSIONS

The present study compares five prominent biclusterings methods

with respect to their capability of identifying groups of (locally)

co-expressed genes; hierarchical clustering and a baseline biclus-

tering algorithm, Bimax, proposed in this paper serve as a reference.

To this end, different synthetic gene expression data sets corre-

sponding to different notions of biclusters as well as real transcrip-

tion profiling data are considered. The key results are as follows:

� In general, the biclustering concept allows to identify groups of

genes that cannot be found by a classical clustering approach that

always operates on all experimental conditions.On the one hand,

this is supported by the observation that with increased

regulatory complexity the ability of hierarchical clustering to

recover the implanted transcription modules in an artificial

Table 1. Biological relevance of biclusters with respect to a metabolic pathway map (MPM) for A. thaliana and a protein–protein interaction network (PPI)

for S. cerevisiae

Method Proportion of disconnected gene pairs Average shortest distance in the graph

Smaller Greater Smaller Greater

MPM PPI MPM PPI MPM PPI MPM PPI

Bimax 58.9 14.0 19.5 64.0 85.3 58.0 3.4 16.0

CC 70.0 52.0 15.0 26.0 70.0 42.0 15.0 34.0

OPSM 42.8 18.8 28.6 50.0 92.9 56.3 0.0 43.8

Samba 41.6 0.0 37.5 100.0 75.6 25.6 13.1 46.2

xMotif 49.0 2.0 17.0 92.0 84.0 4.0 3.0 72.0

ISA 25.0 58.0 25.0 22.0 50.0 70.0 25.0 22.0

For each bicluster, a Z-test is carried out to check whether its score is significantly smaller or greater than the expected value for random gene groups; the table gives for each method

the proportion of biclusters with statistically significant scores (significance level a ¼ 10�3). The results for HCL are omitted as all scores equal 0%.
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scenario decreases substantially. On the other hand, on real data

thegroupsoutputtedbyhierarchical clustering for different simi-

larity measures and parameters do not exhibit any significant

enrichment according toGOannotations andmetabolic pathway

information. In contrast, most biclustering methods under con-

sideration are capable of dealing with overlapping transcription

modules and generate functionally enriched clusters.

� There are significant performance differences among the five

biclustering methods. On the real datasets, ISA, Samba and

OPSM provide similarly good results: a large portion of the

resulting biclusters is functionally enriched and indicates a

strong correspondence with known pathways. In the context

of the synthetic scenarios, Samba is slightly more robust regard-

ing increased regulatory complexity, but also more sensitive

regarding noise than ISA. While Samba and ISA can be used

to find multiple biclusters with both constant and coherently

increasing values, OPSM is mainly tailored to identify a single

bicluster of the latter type. Proposed extensions of the OPSM

approach such as Liu andWang (2003)may resolve these issues.

The remaining two algorithms, CC and xMotif, both tend to

generate large biclusters that often represent gene groups with

unchanged expression levels and therefore not necessarily con-

tain interesting patterns in terms of, e.g. co-regulation. Accord-

ingly, the scores for CC and xMotif are significantly lower than

that for the other biclustering methods under consideration.

� The Bimax baseline algorithm presented in this paper achieves

similar scores as the best performing biclustering techniques in

this study. Thismay be explained by the rather global evaluation

approach pursued here, and a more specific analysis may lead to

different results. Nevertheless, the reference method can be use-

ful as a preprocessing step by which potentially relevant biclus-

ters may be identified; later, the chosen biclusters can be used,

e.g. as an input formore accurate biclusteringmethods inorder to

speedup theprocessing timeand to increase thebicluster quality.

An advantage of Bimax is that it is capable of generating all

optimal biclusters, given the underlying binary data model.
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