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Orthogonal Least Squares Learning Algorithm for Radial

Basis Function Networks

S. Chen, C. F. N. Cowan, and P. M. Grant

Abstract—The radial basis function network offers a viable alterna-
tive to the two-layer neural network in many applications of signal pro-
cessing. A common learning algorithm for radial basis function net-
works is based on first choosing randomly some data points as radial
basis function centers and then using singular value d ition to
solve for the weights of the network. Such a procedure has several
drawbacks and, in particular, an arbitrary selection of centers is clearly
unsatisfactory. The paper proposes an alternative learning procedure
based on the orthogonal least squares method. The procedure chooses
radial basis function centers one by one in a rational way until an ad-
equate network has been constructed. The algorithm has the property
that each selected center maximizes the increment to the explained
variance or energy of the desired output and does not suffer numerical
ill-conditioning problems. The orthogonal least squares learning strat-
egy provides a simple and efficient means for fitting radial basis func-
tion networks, and this is illustrated using examples taken from two
different signal processing applications.

I. INTRODUCTION

EEDFORWARD layered neural networks have increas-
ingly been used in many areas of signal processing. Using

a feedforward neural network to process complex signals can
be viewed as performing a curve-fitting operation in a multidi-
mensional space, and this may explain why most of the appli-
cations in this field employ neural networks to realize some
complex nonlinear decision function or to approximate certain
complicated data-generating mechanisms. The theoretical jus-
tification for such applications is that, provided that the network
structure is sufficiently large (that is, a sufficient number of hid-
den neurons), any continuous function can be approximated to
within an arbitrary accuracy by carefully choosing parameters
in the network [1], [2]. This result is valid even for networks
with only one hidden layer. An obvious disadvantage of neural
networks is that they are highly nonlinear in the parameters.
Learning must be based on nonlinear optimization techniques,
and the parameter estimate may become trapped at a local min-
imum of the chosen optimization criterion during the learning
procedure when a gradient descent algorithm is used. Other op-
timization techniques, such as the genetic algorithm [3], learn-
ing automata [4], and simulated annealing (5], although capable
of achieving a global minimum, require extensive computation.
A viable alternative to highly nonlinear-in-the-parameter
neural networks is the radial basis function (RBF) network. The
RBF method has traditionally been used for strict interpolation
in multidimensional space [6]-[8]. The original RBF method
requires that there be as many RBF centers as data points, which
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is rarely practical in signal processing applications, as the num-
ber of data points is usually very large. The approach adopted
by Broomhead and Lowe [9] gives an approximation to the orig-
inal RBF method and provides a more suitable basis for the
application to signal processing. An RBF network can be re-
garded as a special two-layer network which is linear in the
parameters by fixing all RBF centers and nonlinearities in the
hidden layer. Thus the hidden layer performs a fixed nonlinear
transformation with no. adjustable parameters and it maps the
input space onto a new space. The output layer then implements
a linear combiner on this new space and the only adjustable
parameters are the weights of this linear combiner. These pa-
rameters can therefore be determined using the linear least
squares (LS) method, which is an important advantage of this
approach. Because of the strong connection between RBF and
neural networks, it is reasonable to believe that an RBF network
can offer approximation capabilities similar to those of the two-
layer neural network, provided that the hidden layer of the RBF
network is fixed appropriately. This heuristic belief is strongly
supported by the theoretical results on the RBF method as a
multidimensional interpolation technique (e.g. [8]).

The nonlinearity within an RBF network can be chosen from
a few typical nonlinear functions. A general consensus is that
the choice of the nonlinearity is not crucial for performance and
this opinion can also be justified using the results of a theoret-
ical investigation [8]. However the performance of an RBF net-
work critically depends upon the chosen centers. In practice the
centers are often chosen to be a subset of the data. Although
researchers are well aware that the fixed centers should suitably
sample the input domain, most published results simply assume
that the centers are arbitrarily selected from data points. Such
a mechanism is clearly an unsatisfactory method for building
RBF networks. The resulting RBF networks often either per-
form poorly or have a large size. Furthermore numerical ill-
conditioning frequently occurs owing to the near linear depen-
dency caused by, for example, some centers being too close.

The present study adopts a systematic approach to the prob-
lem of center selection. Because a fixed center corresponds to
a given regressor in a linear regression model, the selection of
RBF centers can be regarded as a problem of subset model se-
lection. The orthogonal least squares (OLS) method can be em-
ployed as a forward regression procedure [10] to select a suit-
able set of centers (regressors) from a large set of candidates.
At each step of the regression, the increment to the explained
variance of the desired output is maximized. Furthermore over-
size and ill-conditioning problems occurring frequently in ran-
dom selection of centers can automatically be avoided. This ra-
tional approach provides an efficient learning algorithm for
fitting adequate RBF networks. The modeling of a real-world
time series using an RBF network and the training of an RBF
network as a communications channel equalizer are used as two
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examples to demonstrate the effectiveness of the OLS learning
algorithm.

II. THE RADIAL BASIS FUNCTION NETWORK

A schematic of the RBF network with n inputs and a scalar
output is depicted in Fig. 1. Such a network implements a map-
ping f.: R" = R according to

A1) =% + T No(x - ) 1)

where x € R" is the input vector, ¢ ( * ) is a given function from
R* toR, || - || denotes the Euclidean norm, \;, 0 < i < n,, are
the weights or parameters, ¢; € R", 1 < i < n,, are known as
the RBF centers, and n, is the number of centers. Although the
scalar output case is considered here for notational simplicity,
extension to the multioutput case is straightforward. In fact, a
multioutput RBF network can always be separated into a group
of single-output RBF networks. In the RBF network the func-
tional form ¢ (- ) and the centers c; are assumed to have been
fixed. By providing a set of the input x(¢) and the correspond-
ing desired output d(t) for t = 1 to N, the values of the weights
\; can be determined using the linear LS method. However the
choices of ¢ () and ¢; must be carefully considered in order
for the RBF network to be able to match closely the perfor-
mance of the two-layer neural network.

Theoretical investigation and practical results suggest that the
choice of the nonlinearity ¢ (- ) is not crucial to the perfor-
mance of the RBF network. For example, the thin-plate-spline
function

é(v) = »log (v) (2)
and the Gaussian function
6(v) = exp (—v*/6) (3)

where § is a real constant, are two typical choices [7], [8]. For
the nonlinearity (2) ¢ (v) = o as » = o, and for (3) ¢(v) —
0 as v — oo. Although these two nonlinearities have quite dif-
ferent properties, both the resulting RBF networks have good
approximation capabilities [8). Two other common choices [7],
[8] of ¢ (- ) are the multiquadric function

o(v) = (v’ + F)

and the inverse multiquadric function

d(v) = (> + ) ()

In practice the centers are normally chosen from the data
points {x(¢)},. The key question is therefore how to select
centers appropriately from the data set. A commonly used
method to date is to choose arbitrarily some data points as cen-
ters. Apparently such a method cannot guarantee adequate per-
formance because it may not satisfy the requirement that centers
should suitably sample the input domain. Furthermore, in order
to achieve a given performance, an unnecessarily large RBF
network may be required. This adds computational complexity
and often causes numerical ill-conditioning. Because parameter
estimation is frequently ill-conditioned, singular value decom-
position [11] and other techniques [12] have to be employed.

Alternatively, the OLS algorithm [10] can be used to select
centers so that adequate and parsimonious RBF networks can
be obtained. In order to understand how this works, it is essen-
tial to view the RBF network (1) as a special case of the linear
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Fig. 1. Schematic of radial basis function network.

regression model
M
d(t) = ;I pi(1)6; + (1) (6)

where d(t) is the desired output and is also called the dependent
variable, the 6, are the parameters, and the p;(¢) are known as
the regressors which are some fixed functions of x(¢):

pi(t) = pi(x(1). (7

The error signal e(¢) is assumed to be uncorrelated with the
regressors p;(t). A constant term can be included in (6) by set-
ting the corresponding p;(¢) = 1. It is apparent that a fixed
center ¢; with a given nonlinearity ¢ ( *) corresponds to a re-
gressor p;(¢t) in (6), and the problem of how to select a suitable
set of RBF centers from the data set can be regarded as an ex-
ample of how to select a subset of significant regressors from a
given candidate set. An efficient learning procedure for select-
ing a subset model from (6) can readily be derived based on the
OLS method.

III. ORTHOGONAL LEAST SQUARES LEARNING
ALGORITHM

The geometric interpretation of the LS method is best re-
vealed by arranging (6) forr = 1 to N in the following matrix
form:

d=PO +E (8)

where
d=1[d(1) - dN)]" (9)
P={p - pul p=[p) pN)] 1sisM
(10)
0 =1[6, 08" (11)
E=[e(1) - e(N)]. (12)

The regressor vectors p; form a set of basis vectors, and the LS
solution © satisfies the condition that PO be the projection of
d onto the space spanned by these basis vectors. In other words,
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the square of the projection P is part of the desired output
energy that can be counted by the regressors. Because different
regressors are generally correlated, it is not clear how an indi-
vidual regressor contributes to this output energy.

The OLS method involves the transformation of the set of p;
into a set of orthogonal basis vectors, and thus makes it possible
to calculate the individual contribution to the desired output en-
ergy from each basis vector. The regression matrix P can be
decomposed into

P=WA (13)

where A is an M X M triangular matrix with 1’s on the diagonal
and 0’s below the diagonal, that is,

rase— —
1 ap oy - QM
0 1 ap - Cay
0 0 :
A=]| . (14)
1 oy
0 - 0 0 1

and Wis an N X M matrix with orthogonal columns w; such
that

WW=H (15)
where H is diagonal with elements h;:
N
ho=whw, = ;. wi()w;(1), l1=<is<M (16)

The space spanned by the set of orthogonal basis vectors w; is
the same space spanned by the set of p;, and (8) can be rewritten
as

d=Wg +E. (17)
The orthogonal LS solution £ is given by
g=H'W4d (18)
or
gi=wld/(wlw), l1=<isM (19)
The quantities ¢ and 6 satisfy the triangular system
Ab = g. (20)

The classical Gram-Schmidt and modified Gram-Schmidt
methods [13] can be used to derive (20) and thus to solve for
the LS estimate ©. A similar orthogonal decomposition of P
can be obtained using the Householder transformation method
[14]. As an illustration, the well-known classical Gram-Schmidt
method computes one column of A at a time and orthogonalizes
P as follows: at the kth stage make the kth column orthogonal
to each of the k — 1 previously orthogonalized columns and
repeat the operation for k = 2, - -+ ; M. The computational
procedure can be represented as

LT 41

Qe = WiTPk/(W{Wi)o
k=1
Wy = Px — E:I Wi

l=si<k k=

(21)

The OLS method has superior numerical properties compared
with the ordinary LS method. Our interest in the OLS method,
however, is to use it for subset selection. In the case of RBF
networks, the number of data points x(¢) is often very large
and centers are to be chosen as a subset of the data set. In gen-
eral the number of all the candidate regressors, M, can be very
large and an adequate modeling may only require M,( << M)
significant regressors. These significant regressors can be se-
lected using the OLS algorithm operating in a forward regres-
sion manner [10]. Because w; and w; are orthogonal for i # j,
the sum of squares or energy of d(t) is

M
dd = 2 g*wlw, + EE. (22)
i=1
If d is the desired output vector after its mean has been re-
moved, then the variance of d(¢) is given by

M
N-'d™d =N""' 2 giwlw, + N"'E'E. (23)

i=1
It is seen that £ g?w w,/N is the part of the desired output
variance which can be explained by the regressors and E’E/N
is the unexplained variance of d(¢). Thus g7w w;/N is the in-
crement to the explained desired output variance introduced by
w;, and an error reduction ratio due to w; can be defined as

[err], = giwlw;/(d"d), 1=<i=<M. (24)

This ratio offers a simple and effective means of seeking a sub-
set of significant regressors in a forward-regression manner. We
will again use the classical Gram-Schmidt scheme as an ex-
ample. The regressor selection procedure is summarized as fol-
lows:

[0 At the first step, for 1 < i < M, compute
W=,
i inT inT. G
gt = (W) /(W) wi")
lerr])” = (81" (wi") Wi /(a"d)

Find

[err](‘i') = max {[err](li), 1<i=< M}
and select

Wy = W(|“) = Pi-

[0 At the kth step where k = 2, for 1 < i < M, i + i,
©, i # i, compute

(i)

ay’ = w,Tp,/(w,-ij), 1<j<k

k=1
= )
=p; — j;l W,

g = (i) a/((wi)wi")
lerr])” = (gY(w(") Wi /(d"d)

Find

(,
wi)

(k)

[eﬂ']k )

= max {[err]k ,

LsisMi#iy -, i#i}
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and select
k-1

(i)
,-;1 o Wj

= Wi =D

where oy, = a1 =j<k
O The procedure is terminated at the Mth step when
M
1- 2 [em]. <p (25)
j=1 4
where 0 < p < 1 is a chosen tolerance. This gives rise to
a subset model containing M, significant regressors.

In practice the mean of d() does not need to be removed be-
cause adding a constant to the denominator of the error reduc-
tion ratio (24) will not affect the result of maximization in the
selection procedure. In any case if d(z) contains a statistically
significant mean, a constant term will be selected to model it.

Similar selection procedures can be derived using the modi-
fied Gram-Schmidt method and Householder transformation
method, and they are given in [10] and [15]. The geometrical
interpretation of this OLS procedure is obvious. At the kth step,
the dimension of the space spanned by the selected regressors
is increased from k — 1 to k by introducing one more basis
vector. The newly added regressor maximizes the increment to
the explained variance of the dependent variable. The orthog-
onal property makes the whole selection procedure simple and
efficient. Given a required level of unexplained variance, it is
apparent that this OLS learning procedure will generally pro-
duce an RBF network smaller than a randomly selected RBF
network. This parsimonious property is a significant advantage
of the learning algorithm.

The tolerance p is an important instrument in balancing the
accuracy and the complexity of the final network. In many sig-
nal processing applications the desired value for p can actually
be learned during the selection procedure. Consider, for ex-
ample, modeling noisy observations from complex systems. It
is apparent from (23) that p should 1deally be larger than but
very close to the ratio ¢2/03, where o2 is the variance of the
residuals and o2 is lhe variance of the mcasured or desired out-
puts. The quantity o2 is known from the measured data, and
during the selection procedure, an estimate of o2 can be com-
puted. After a few trials, an appropriate estimate for 02 /0% can
usually be found. A more detailed discussion and some simu-
lation examples are given in [15]. The criterion (25) emphasizes
only the performance of the network (variance of residuals).
Because a more accurate performance is often achieved at the
expense of using a more complex network, a trade-off between
the performance and complexity of the network is often desired.
Akaike-type criteria which compromise between the perfor-
mance and the number of parameters can be written as

AIC(x) = Nlog (0?) + M,x (26)

where x is the critical value of the chi-squared distribution with
one degee of freedom and for a given level of significance. The
value x = 4 corresponds to the significance level of 0.0456 and
is often a suitable choice [16]. This kind of statistical test can
be combined with the error reduction ratio in such a way that
regressors are selected based on (24) as described previously
and the selection procedure is automatically terminated when
AIC(x) reaches its minimum. Other statistical criteria [17] can
also be employed to terminate the selection.

A mechanism to avoid numerical ill-conditioning can be built
into the OLS learning procedure. The relation ww, = 0 simply

implies that p, is a linear combination of p, to p,_,. Therefore
if wlw, is less than a small preset threshold, the regressor p;
will not be selected. This has an important implication for fit-
ting RBF networks. When the centers are arbitrarily chosen, it
is frequently found that the LS problem is ill-conditioned, and
more robust techniques such as singular value decomposition
[11] must be used. Such a numerical problem is easily over-
come in the OLS selection algorithm.

IV. APPLICATION EXAMPLES

The application of the OLS learning algorithm to RBF net-
works is illustrated using examples taking from two different
areas of signal processing.

A. Modeling Time Series Data

Most real-world processes are nonlinear to some extent, and
in many practical applications nonlinear models may be re-
quired in order to achieve an acceptable predictive accuracy.
Nonlinear system identification using RBF networks has been
investigated by Chen er al. [18], [19]. In the current study, a
RBF network is employed to model the time series of monthly
unemployment figures in West Germany from January 1948 to
December 1980. These 396 observations of the series can be
found in [20, appendix D], and they are plotted in Fig. 2. Let
y(1) be the current time series value. The idea is to use the RBF
network

$(1) = f,(x(1) (27)
as the one-step-ahead predictor for y (), where the inputs to the
RBF network

x()=[y(t - 1)

are past observations of the series.

The nonlinearity ¢ ( - ) within the RBF network was chosen
to be the thin-plate-spline function (2). Because it is known that
there was a seasonality (twelve-month period) and a linear trend
in the series, the lag n, was set to 13. The RBF centers were to
be chosen from the data points {x(#)}, and this gave rise to a
total of about 400 candidates. The OLS learning procedure de-
scribed in Section I1I was used to identify a RBF network model.
During the selection it was found that an appropriate tolerance
was p = 0.003. A constant term and 55 centers were chosen,
and the final RBF network model can be written as

y(t = n)]" (28)

5(1) = %o + Z Ko(|lx() - e)

with
3
1<i=<S5S

Ity — el = 2 (30— 0) - )

where ¢ ( - ) is defined in (2) and c; are chosen centers. The one-
step-ahead prediction $(7) looks essentially the same as y(¢)
shown in Fig. 2, and the prediction error or residual

(1) = y(1) - 9(1) (29)

is depicted in Fig. 3.

The autocorrelations of { ¢ () } are plotted in Fig. 4. It is well
known that the autocorrelation test alone is not sufficient to val-
idate a nonlinear time series model. Additional model validity
tests were used based on the chi-squared statistical test [16],
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Fig. 2. Time series of monthly unemployment figures in West Germany.
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Fig. 3. Residual sequence.

[21]. Define Q(¢) as an p-dimensional vector-valued function

2() = [0 w(t—1) - wlt—n+1)]  (30)

where w(t) is some chosen function of the past observations
and prediction errors, and let

N
IT=N"" 2 Q@) Q'(r). (31)
t=1
The chi-squared statistic is calculated according to
£=N(TT) n (32)
where
N
w=N" 500 e)/o (33)

and ¢? is the variance of the residual € (¢). Several chi-squared
tests for the selected RBF network were calculated and they
were all within a 95% confidence band. Fig. 5 shows two typ-
ical chi-squared tests. The model validity tests confirm that this
RBF network is an adequate model for the time series.
Whenever there are sufficient data points, the data should be
divided into a fitting set and a testing set. The former is used in
the selection procedure and the latter is used to validate the se-

-1
0 10 20
Fig. 4. Autocorrelations of residuals. —+— 95% confidence band.
33
L
0
0 20
n
(a)
33

0 M 20
(b

Fig. 5. Chi-squared tests: (a) w(f) = €(r — 1) (b) w(f) =
e2(t — 1)y*t — 1). —#—95% confidence band.

lected network. This provides an interpretation for the two fun-
damental concepts in neural networks, namely learning and
generalization. Learning can be viewed as producing a surface
in multidimensional space that fits the set of data in some best
sense, and generalization is then equivalent to interpolating the
test data set on this fitting surface. This approach was not ap-
plied to the above example because the data set was not suffi-
ciently large and the data were highly nonstationary. However
some application examples and further discussion on this issue
can be found in [9], [18], and [19].
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B. Communications Channel Equalization

The digital communications system considered is illustrated
in Fig. 6, where a binary sequence s(¢) is transmitted through
a dispersive channel and then corrupted by additive noise. The
transmitted symbol s(¢) is assumed to be an independent se-
quence taking values of either 1 or —1 with an equal probabil-
ity. The channel is commonly modeled as a finite impulse re-
sponse filter whose transfer function is defined by

C.(z) = ‘Zo cz (34)
fpu

The additive noise e(¢) is assumed to be a white Gaussian se-

quence. The task of the equalizer is to reconstruct input signals

using the information contained in the channel observations

y&) = [y(6) - ye—m+ 1)) (35)

where the integer m is known as the order of the equalizer. Often
a delay 7 is introduced to the equalizer so that at the sample
instant 7 the equalizer estimates the input symbol s(z — 7). Tra-
ditionally the equalization problem defined in Fig. 6 is viewed
as an inverse filtering [22] in which the equalizer forms an ap-
proximation to the inverse of the distorting channel (34). Thus
the classical equalizer is constructed as a linear finite filter fol-
lowed by a decision slicer. The equalization problem is, how-
ever, an inherently nonlinear one and nonlinear filters are re-
quired in order to achieve fully or nearly optimal performance
[23].

It can be shown that the minimum bit-error-rate equalizer is
defined as follows [23].

§(r = 1) = sgn (£(¥(1)) (36)
where
1, y=z0
sgn(y)—I_l’ <0 (37)

represents a slicer. f,( - ), known as the optimal decision func-
tion, is specified by the channel transfer function C, (z) and the
channel noise distribution together with the equalizer order m
and delay 7. The set of points y that satisfy

fH(y)=0 (38)

is often referred to as the optimal decision boundary, which
partitions the m-dimensional space into two sets Y; and Y_,.
The decision rule

y(t)er,

1,
s“—”={—h )y,

results in the minimum error probability. f,( - ) is generally not
known a priori and is certainly nonlinear. A RBF network can
be trained to realize or to approximate this optimal solution.
During the training the error signal is defined as

€() = s(t = 1) = £(»(). (40)

In a previous investigation [23] it was found that the RBF cen-
ters critically influence the performance of the RBF equalizer.
RBF equalizers constructed by arbitrarily choosing some data
points as centers are often inadequate. The OLS learning strat-
egy offers an ideal solution to the construction of RBF equal-
izers and a computer simulation study was carried out to dem-
onstrate this. The nonlinearity ¢ ( - ) for the RBF network was

(39)

e(r)

¥ ()

s(1)

channel

y(1)

equalizer

lf(t —-1)

Fig. 6. Schematic of data transmission system.
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Fig. 7. Decision regions formed by RBF equalizer (12 centers selected by
OLS algorithm).

chosen as the Gaussian function (3), where the constant 3 was
chosen to be 1.
In the first example, the channel transfer function was given
by
C(z) =05 + 1.0z7!

and the additive white Gaussian noise had variance 0.2. The
equalizer had a structure of m = 2 and 7 = 1. A training se-
quence of 400 data points was generated and an RBF network
of 12 centers was selected using the OLS learning procedure.
Fig. 7 illustrates how this RBF equalizer partitions the input
space where the shaded region represents f,(y(¢)) = 0. The
four squares ((J) and four crosses (X) in Fig. 7 represent all
the possible channel output points in the noise-free case. RBF
equalizers obtained using an arbitrary selection of centers can
only achieve a similar accuracy by significantly increasing the
number of centers. Fig. 8 shows the decision regions of a typ-
ical RBF equalizer with 50 randomly selected centers.

The second example compares the bit error rates achieved by
the optimal and RBF equalizers for a variety of signal to noise
ratios. The channel transfer function was

Cy(z) = 0.3482 + 0.8704z™" + 0.3482772.
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randomly).

The equalizer order was m = 4 and delay 7 = 1. For each
signal-to-noise ratio tested, 600 points of training data were
generated and an RBF network of 70 centers was selected using
the OLS leamning procedure. The performance of this RBF
equalizer is depicted in Fig. 9, where the test sequence for com-
puting each error probability with a given signal-to-noise ratio
had more than half a million data points. It is seen that the bit-
error-rate curve of this equalizer closely matches to the optimal
one. For comparison, the performance of a typical RBF equal-
izer with 70 centers selected randomly from the training data
set is also shown in Fig. 9. It is seen that the OLS learning
procedure indeed offers much better performance over a random
selection of centers.

The OLS learning algorithm is essentially a block-data al-
gorithm. In many adaptive applications it is desired to update
filter parameters as each sample signal is collected. In such a
situation it is convenient first to select an RBF network using
the OLS learning algorithm based on a block of training data
and then continuously to adapt the weights of the linear com-
biner within the selected RBF network using, for example, the
least mean squares algorithm. This allows an RBF network to
operate in a time-varying environment.

V. CONCLUSIONS

The crucial question of how to select radial basis function
centers from the data points has been investigated and a learning
strategy based on the orthogonal least squares algorithm has
been developed for the construction of radial basis function net-
works. Operating in a forward regression procedure, the or-
thogonal least squares algorithm provides a systematic ap-
proach to the selection of RBF centers, one which is far superior
to a random selection of centers. It has been shown that this
learning strategy offers a powerful procedure for fitting ade-
quate and parsimonious radial basis function networks in prac-
tical signal processing.

Some researchers have also recognized the inadequacy of
randomly selecting radial basis function centers. Moody and
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Fig. 9. Performance comparison: —»— optimal equalizer; —=— RBF
equalizer with 70 centers selected by OLS algorithm; —#— RBF equalizer
with 70 centers selected randomly.

Darken [24] proposed a novel approach which requires two pre-
sentations of the training data. In the first pass of the training
data a clustering technique was employed to choose the centers,
and the connection weights were then computed as usual based
on the least squares criterion in the second pass. The orthogonal
least squares learning algorithm requires only one pass of the
training data and the selection of centers is directly linked to
the reduction of error signals. Further work will be carried out
to compare the performance of these two learning algorithms.
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