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Abstract 

Basic definitions concerning the multi-layer feed-forward neural networks are given. The back-propagation training algo- 
rithm is explained. Partial derivatives of the objective function with respect to the weight and threshold coefficients are de- 
rived. These derivatives are valuable for an adaptation process of the considered neural network. Training and generalisation 
of multi-layer feed-forward neural networks are discussed. Improvements of the standard back-propagation algorithm are re- 
viewed. Example of the use of multi-layer feed-forward neural networks for prediction of carbon-13 NMR chemical shifts of 
alkanes is given. Further applications of neural networks in chemistry are reviewed. Advantages and disadvantages of multi- 
layer feed-forward neural networks are discussed. 0 1997 Elsevier Science B.V. 

Keywords: Neural networks; Back-propagation network 

Contents 

1. Introduction . . . . . . . . . . . . . . , . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

2. Multi-layer feed-forward (MLF) neural networks ............................... 44 

3. Back-propagation training algorithm ...................................... 45 

4. Training and generalisation ........................................... 46 
4.1. Model selection .............................................. 47 
4.2. Weight decay. ............................................... 48 
4.3. Early stopping ............................................... 48 

5. Advantages and disadvantages of MLF neural networks ............................ 49 

* Corresponding author. 

0169-7439/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved. 
PZZ SO169-7439(97)00061-O 



44 D. Svozil et al. / Chemometrics and Intelligent Laboratory Systems 39 (1997) 43-62 

6. Improvements of back-propagation algorithm ................................. 
6.1. Modifications to the objective function and differential scaling ..................... 
6.2. Modifications to the optimisation algorithm. ............................... 

7. Applications of neural networks in chemistry ................................. 
7.1. Theoretical aspects of the use of back-propagation MLF neural ..................... 
7.2. Spectroscopy ................................................ 
7.3. Process control ............................................... 
7.4. Protein folding ............................................... 
7.5. Quantitative structure activity relationship ................................ 
7.6. Analytical chemistry ............................................ 

8. Internet resources ................................................ 

9. Example of the application - neural-network prediction of carbon-13 NMR chemical shifts of alkanes ... 

10. Conclusions ................................................... 

References ...................................................... 

49 
49 
50 

52 
52 
53 
53 
53 
54 
54 

54 

55 

58 

58 

1. Introduction 

Artificial neural networks (ANNs) [l] are net- 
works of simple processing elements (called ‘neu- 
rons’) operating on their local data and communicat- 
ing with other elements. The design of ANNs was 
motivated by the structure of a real brain, but the 
processing elements and the architectures used in 
ANN have gone far from their biological inspiration. 

There exist many types of neural networks, e.g. see 
[2], but the basic principles are very similar. Each 
neuron in the network is able to receive input sig- 
nals, to process them and to send an output signal. 
Each neuron is connected at least with one neuron, 
and each connection is evaluated by a real number, 
called the weight coefficient, that reflects the degree 
of importance of the given connection in the neural 
network. 

In principle, neural network has the power of a 
universal approximator, i.e. it can realise an arbitrary 
mapping of one vector space onto another vector 
space [3]. The main advantage of neural networks is 
the fact, that they are able to use some a priori un- 
known information hidden in data (but they are not 
able to extract it). Process of ‘capturing’ the un- 
known information is called ‘learning of neural net- 
work’ or ‘training of neural network’. In mathemati- 

cal formalism to learn means to adjust the weight co- 
efficients in such a way that some conditions are ful- 
filled. 

There exist two main types of training process: 
supervised and unsupervised training. Supervised 
training (e.g. multi-layer feed-forward (MLF) neural 
network) means, that neural network knows the de- 
sired output and adjusting of weight coefficients is 
done in such way, that the calculated and desired 
outputs are as close as possible. Unsupervised train- 
ing (e.g. Kohonen network [4]) means, that the de- 
sired output is not known, the system is provided with 
a group of facts (patterns) and then left to itself to 
settle down (or not) to a stable state in some number 
of iterations. 

2. Multi-layer feed-forward (MLF) neural net- 
works 

MLF neural networks, trained with a back-propa- 
gation learning algorithm, are the most popular neu- 
ral networks. They are applied to a wide variety of 
chemistry related problems [5]. 

A MLF neural network consists of neurons, that 
are ordered into layers (Fig. 1). The first layer is 
called the input layer, the last layer is called the out- 
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output layer 

hidden layer 

. . . . . . input layer 

Fig. 1. Typical feed-forward neural network composed of three 
layers. 

put layer, and the layers between are hidden layers. 
For the formal description of the neurons we can use 
the so-called mapping function r, that assigns for 
each neuron i a subset T(i) c V which consists of 
all ancestors of the given neuron. A subset T’(i) c 
V than consists of all predecessors of the given neu- 
ron i. Each neuron in a particular layer is connected 
with all neurons in the next layer. The connection be- 
tween the ith and jth neuron is characterised by the 
weight coefficient wij and the ith neuron by the 
threshold coefficient rYi (Fig. 2). The weight coeffi- 
cient reflects the degree of importance of the given 
connection in the neural network. The output value 
(activity) of the ith neuron xi is determined by Eqs. 
(1) and (2)). It holds that: 

xi =f( Si) 

a$i = IYj + C wijxj 

where ti is the potential of the ith neuron and func- 
tion f( ti) is the so-called transfer function (the sum- 

xj Xi 
Oij 

where A is the rate of learning (A > 0). The key 
problem is calculation of the derivatives dE/&oij a 
aE/Mi. Calculation goes through next steps: 

First step 

uj ui where g, = xk - Zk for k E output layer, g, = 0 for 
Fig. 2. Connection between two neurons i and j. k $Z output layer 

mation in Eq. (2) is carried out over all neurons j 
transferring the signal to the ith neuron). The thresh- 
old coefficient can be understood as a weight coeffi- 
cient of the connection with formally added neuron j, 
where xj = 1 (so-called bias). 

For the transfer function it holds that 

f(5)= l 
1 +exp(-5) (3) 

The supervised adaptation process varies the 
threshold coefficients fii and weight coefficients wij 
to minimise the sum of the squared differences be- 
tween the computed and required output values. This 
is accomplished by minimisation of the objective 
function E: 

E= ~+(x,-2,)’ 
0 

(4) 

where X, and f, are vectors composed of the com- 
puted and required activities of the output neurons 
and summation runs over all output neurons o. 

3. Back-propagation training algorithm 

In back-propagation algorithm the steepest-de- 
scent minimisation method is used. For adjustment of 
the weight and threshold coefficients it holds that: 

(5) 
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Second step 

aE aE axi aE af( Si) -=_- 
aoij axi awij = G awij 

aE af( ti;.) ati 
=- ~- 

axi agi aoij 

= g.f( ti> 

a@,, ~-71 wijxj + 8i) 
I awij 

= g.f’( 5i)xj 

I 

aE aE axi 
_-- 

q- = g.f’( ti> ‘l axi aqj I 
(8) 

From Eqs. (7) and (8) results the following impor- 
tant relationship 

aE aE 
p=z’Xj awij (9) 

Third step 
For the next computations is enough to calculate 

only aE/ai$. 
i E output layer 

dE 
- =gi axi ( 10) 

i E hidden layer 

because 

(see Eq. (8)) 
Based on the above given approach the deriva- 

tives of the objective function for the output layer and 
then for the hidden layers can be recurrently calcu- 
lated. This algorithm is called the back-propagation, 

because the output error propagates from the output 
layer through the hidden layers to the input layer. 

4. Training and generalisation 

The MLF neural network operates in two modes: 
training and prediction mode. For the training of the 
MLF neural network and for the prediction using the 
MLF neural network we need two data sets, the 
training set and the set that we want to predict (test 
set). 

The training mode begins with arbitrary values of 
the weights - they might be random numbers - and 
proceeds iteratively. Each iteration of the complete 
training set is called an epoch. In each epoch the net- 
work adjusts the weights in the direction that reduces 
the error (see back-propagation algorithm). As the it- 
erative process of incremental adjustment continues, 
the weights gradually converge to the locally optimal 
set of values. Many epochs are usually required be- 
fore training is completed. 

For a given training set, back-propagation leam- 
ing may proceed in one of two basic ways: pattern 
mode and batch mode. In the pattern mode of back- 
propagation learning, weight updating is performed 
after the presentation of each training pattern. In the 
batch mode of back-propagation learning, weight up- 
dating is performed after the presentation of all the 
training examples (i.e. after the whole epoch). From 
an ‘on-line’ point of view, the pattern mode is pre- 
ferred over the batch mode, because it requires less 
local storage for each synaptic connection. More- 
over, given that the patterns are presented to the net- 
work in a random manner, the use of pattem-by-pat- 
tern updating of weights makes the search in weight 
space stochastic, which makes it less likely for the 
back-propagation algorithm to be trapped in a local 
minimum. On the other hand, the use of batch mode 
of training provides a more accurate estimate of the 
gradient vector. Pattern mode is necessary to use for 
example in on-line process control, because there are 
not all of training patterns available in the given time. 
In the final analysis the relative effectiveness of the 
two training modes depends on the solved problem 
[f&71. 

In prediction mode, information flows forward 
through the network, from inputs to outputs. The net- 
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Input 

Fig. 3. Principle of generalisation and overfitting. (a) Properly fit- 
ted data (good generalisation). (b) Overfitted data (poor generali- 
sation). 

work processes one example at a time, producing an 
estimate of the output value(s) based on the input 
values. The resulting error is used as an estimate of 
the quality of prediction of the trained network. 

In back-propagation learning, we usually start with 
a training set and use the back-propagation algorithm 
to compute the synaptic weights of the network. The 
hope is that the neural network so designed will gen- 
eralise. A network is said to generalise well when the 
input-output relationship computed by network is 
correct (or nearly correct) for input/output patterns 
never used in training the network. Generalisation is 
not a mystical property of neural networks, but it can 
be compared to the effect of a good non-linear inter- 
polation of the input data [S]. Principle of generalisa- 
tion is shown in Fig. 3a. When the learning process 
is repeated too many iterations (i.e. the neural net- 
work is overtrained or overfitted, between over- 
trainig and overfitting is no difference), the network 

may memorise the training data and therefore be less 
able to generalise between similar input-output pat- 
terns. The network gives nearly perfect results for 
examples from the training set, but fails for examples 
from the test set. Overfitting can be compared to im- 
proper choose of the degree of polynom in the poly- 
nomial regression (Fig. 3b). Severe overfitting can 
occur with noisy data, even when there are many 
more training cases than weights. 

The basic condition for good generalisation is suf- 
ficiently large set of the training cases. This training 
set must be in the same time representative subset of 
the set of all cases that you want to generalise to. The 
importance of this condition is related to the fact that 
there are two different types of generalisation: inter- 
polation and extrapolation. Interpolation applies to 
cases that are more or less surrounded by nearby 
training cases; everything else is extrapolation. In 
particular, cases that are outside the range of the 
training data require extrapolation. Interpolation can 
often be done reliably, but extrapolation is notori- 
ously unreliable. Hence it is important to have suffi- 
cient training data to avoid the need for extrapola- 
tion. Methods for selecting good training sets arise 
from experimental design [9]. 

For an elementary discussion of overfitting, see 
[lo]. For a more rigorous approach, see the article by 
Geman et al. [I I]. 

Given a fixed amount of training data, there are 
some effective approaches to avoiding overfitting, 
and hence getting good generalisation: 

4. I. Model selection 

The crucial question in the model selection is 
‘How many hidden units should I use?‘. Some books 
and articles offer ‘rules of thumb’ for choosing a 
topology, for example the size of the hidden layer to 
be somewhere between the input layer size and the 
output layer size [ 121 ‘, or some other rules, but such 
rules are total nonsense. There is no way to deter- 
mine a good network topology just from the number 
of inputs and outputs. It depends critically on the 
number of training cases, the amount of noise, and the 

’ Warning: this book is really bad. 
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complexity of the function or classification you are 
trying to learn. An intelligent choice of the number 
of hidden units depends on whether you are using 
early stopping (see later) or some other form of regu- 
larisation (see weight decay). If not, you must simply 
try many networks with different numbers of hidden 
units, estimate the generalisation error for each one, 
and choose the network with the minimum estimated 
generalisation error. 

Other problem in model selection is how many 
hidden layers use. In multi-layer feed forward neural 
network with any of continuous non-linear hidden- 
layer activation functions, one hidden layer with an 
arbitrarily large number of units suffices for the ‘uni- 
versal approximation’ property [ 13-151. Anyway, 
there is no theoretical reason to use more than two 
hidden layers. In [16] was given a constructive proof 
about the limits (large, but limits nonetheless) on the 
number of hidden neurons in two-hidden neural net- 
works. In practise, we need two hidden layers for the 
learning of the function, that is mostly continuous, but 
has a few discontinuities [17]. Unfortunately, using 
two hidden layers exacerbates the problem of local 
minima, and it is important to use lots of random ini- 
tialisations or other methods for global optimisation. 
Other problem is, that the additional hidden layer 
makes the gradient more unstable, i.e. that training 
process slows dramatically. It is strongly recom- 
mended use one hidden layer and then, if using a large 
number of hidden neurons does not solve the prob- 
lem, it may be worth trying the second hidden layer. 

4.2. Weight decay 

Weight decay adds a penalty term to the error 
function. The usual penalty is the sum of squared 
weights times a decay constant. In a linear model, this 
form of weight decay is equivalent to ridge regres- 
sion. Weight decay is a subset of regularisation 
methods. The penalty term in weight decay, by defi- 
nition, penalises large weights. Other regularisation 
methods may involve not only the weights but vari- 
ous derivatives of the output function [ 151. The 
weight decay penalty term causes the weights to con- 
verge to smaller absolute values than they otherwise 
would. Large weights can hurt generalisation in two 
different ways. Excessively large weights leading to 
hidden units can cause the output function to be too 

rough, possibly with near discontinuities. Exces- 
sively large weights leading to output units can cause 
wild outputs far beyond the range of the data if the 
output activation function is not bounded to the same 
range as the data. The main risk with large weights is 
that the non-linear node outputs could be in one of the 
flat parts of the transfer function, where the deriva- 
tive is zero. In such case the learning is irreversibily 
stoped. This is why Fahlman [41] proposed to use the 
modification f( (’ )(l - f( ,$ >) + 0.1 instead of 
f< 5 )(l -f( 5 >) (see p. 17). The offset term allows the 
continuation of the learning even with large weights. 
To put it another way, large weights can cause ex- 
cessive variance of the output [ 111. For discussion of 
weight decay see for example [18]. 

4.3. Early stopping 

Early stopping is the most commonly used method 
for avoiding overfitting. The principle of early stop- 
ping is to divide data into two sets, training and vali- 
dation, and compute the validation error periodically 
during training. Training is stopped when the valida- 
tion error rate starts to go up. It is important to re- 
alise that the validation error is not a good estimate 
of the generalisation error. One method for getting an 
estimate of the generalisation error is to run the net 
on a third set of data, the test set, that is not used at 
all during the training process [ 191. The disadvantage 
of split-sample validation is that it reduces the amount 
of data available for both training and validation. 

Other possibility how to get an estimate of the 
generalisation is to use the so-called cross-validation 
[20]. Cross-validation is an improvement on split- 
sample validation that allows you to use all of the data 
for training. In k-fold cross-validation, you divide the 
data into k subsets of equal size. You train the net k 
times, each time leaving out one of the subsets from 
training, but using only the omitted subset to com- 
pute whatever error criterion interests you. If k equals 
the sample size, this is called leave-one-out cross- 
validation. While various people have suggested that 
cross-validation be applied to early stopping, the 
proper way of doing that is not obvious. The disad- 
vantage of cross-validation is that you have to retrain 
the net many times. But in the case of MLF neural 
networks the variability between the results obtained 
on different trials is often caused with the fact, that 
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the learning was ended up in many different local sight is used in the construction of the approximating 
minima. Therefore the cross-validation method is mapping of parameters on the result. The big prob- 
more suitable for neural networks without the danger lem is the fact, that ANNs cannot explain their pre- 
to fall into local minima (e.g. radial basis function, diction, the processes taking place during the training 
RBF, neural networks [83]). There exist a method of a network are not well interpretable and this area 
similar to the cross-validation, the so-called boot- is still under development [24,25]. The number of 
strapping [21,22]. Bootstrapping seems to work bet- weights in an ANN is usually quite large and time for 
ter than cross-validation in many cases. training the ANN is too high. 

Early stopping has its advantages (it is fast, it re- 
quires only one major decision by the user: what 
proportion of validation cases to use) but also some 
disadvantages (how many patterns are used for train- 
ing and for validation set [23], how to split data into 
training and test set, how to know that validation er- 
ror really goes up). 

6. Improvements of back-propagation algorithm 

5. Advantages and disadvantages of MLF neural 
networks 

The application of MLF neural networks offers the 
following useful properties and capabilities: 

(1) Leaning. ANNs are able to adapt without as- 
sistance of the user. 

(2) Nonlinearity. A neuron is a non-linear device. 
Consequently, a neural network is itself non-linear. 
Nonlinearity is very important property, particularly, 
if the relationship between input and output is inher- 
ently non-linear. 

(3) Input-output mapping. In supervised training, 
each example consists of a unique input signal and the 
corresponding desired response. An example picked 
from the training set is presented to the network, and 
the weight coefficients are modified so as to min- 
imise the difference between the desired output and 
the actual response of the network. The training of the 
network is repeated for many examples in the train- 
ing set until the network reaches the stable state. Thus 
the network learns from the examples by construct- 
ing an input-output mapping for the problem. 

The main difficulty of standard back-propagation 
algorithm, as it was described earlier, is its slow con- 
vergence, which is a typical problem for simple gra- 
dient descent methods. As a result, a large number of 
modifications based on heuristic arguments have been 
proposed to improve the performance of standard 
back-propagation. From the point of view of optimi- 
sation theory, the difference between the desired out- 
put and the actual output of an MLF neural network 
produces an error value which can be expressed as a 
function of the network weights. Training the net- 
work becomes an optimisation problem to minimise 
the error function, which may also be considered an 
objective or cost function. There are two possibilities 
to modify convergence behaviour, first to modify the 
objective function and second to modify the proce- 
dure by which the objective function is optimised. In 
a MLF neural network, the units (and therefore the 
weights) can be distinguished by their connectivity, 
for example whether they are in the output or the 
hidden layer. This gives rise to a third family of pos- 
sible modifications, differential scaling. 

6.1. Modifications to the objective function and dif- 
ferential scaling 

(4) Robustness. MLF neural networks are very ro- 
bust, i.e. their performance degrades gracefully in the 
presence of increasing amounts of noise (contrary e.g. 
to PLS). 

However, there are some problems and disadvan- 
tages of ANNs too. For some problems approxima- 
tion via sigmoidal functions ANNs are slowly con- 
verging - a reflection of the fact that no physical in- 

Differential scaling strategies and modifications to 
the objective function of standard back-propagation 
are usually suggested by heuristic arguments. Modi- 
fications to the objective function include the use of 
different error metrics and output or transfer func- 
tions. 

Several logarithmic metrics have been proposed as 
an alternative to the quadratic error of standard 
back-propagation. For a speech recognition problem, 
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Franzini [26] reported a reduction of 50% in learning 
time using 

E=-~~ln(l-(x,-.$!,)2) (12) 
P * 

compared to quadratic error ( p is the number of pat- 
terns, o is the number of output neurons). The most 
frequently used alternative error metrics are moti- 
vated by information theoretic learning paradigms 
[27,28]. A commonly used form, often referred to as 
the cross-entropy function, is 

E=z[-Z;ln(x,)-(l-i,).ln(l-x,)] 
k 

(13) 

Training a network to minimise the cross-entropy 
objective function can be interpreted as minimising 
the Kullback-Liebler information distance [29] or 
maximising the mutual information [30]. Faster 
learning has frequently been reported for information 
theoretic error metrics compared to the quadratic er- 
ror [31,32]. Learning with logarithmic error metrics 
was also less prone to get stuck in a local minima 
[3 1,321. 

The sigmoid logistic function used by standard 
back-propagation algorithm can be generalised to 

f(5)= K l+exp(-D.5) -L (14) 

In standard back-propagation K = D = 1 and L = 
0. The parameter D (sharpness or slope) of the sig- 
moidal transfer function can be absorbed into weights 
without loss of generality [33] and it is therefore set 
to one in most treatments. Lee and Bien [34] found 
that a network was able to more closely approximate 
a complex non-linear function when the back-propa- 
gation algorithm included learning the parameters K, 
D and L as well as weights. A bipolar sigmoid func- 
tion (tanh) with asymptotic bounds at - 1 and + 1 is 
frequently used to increase the convergence speed. 
Other considerations have led to the use of different 
functions [35] or approximations [361. 

Scaling the learning rate of a unit by its connec- 
tivity leads to units in different layers having differ- 
ent values of learning rate. The simplest version, di- 
viding learning rate by the fan-in (the fan-in of a unit 
is the number of input connections it has with units 
in the preceding layer), is frequently used [37,38]. 

Other scaling methods with higher order dependence 
to fan-in or involving the number of connections be- 
tween a layer and both its preceding and succeeding 
layers have also been proposed to improve conver- 
gence [39,40]. Samad [36] replaced the derivative of 
the logistic function f’( 5 ) = f( 5 Xl - f( 5 )) for the 
output unit by its maximum value of 0.25 as well as 
dividing the backpropagated error by the fan-out (the 
fan-out of the unit is the number of output connec- 
tions it has to units in the succeeding layer) of the 
source unit. Fahlman [41] found that f( (Xl -f( 5)) 
+ 0.1 worked better than either f( 6 Xl - f( 5 )) or its 
total removal from the error formulae. 

6.2. Modifications to the optimisation algorithm 

Optimisation procedures can be broadly classified 
into zero-order methods (more often referred to as 
minimisation without evaluating derivatives) which 
make use of function evaluations only, first order 
methods which make additional use of the gradient 
vector (first partial derivatives) and second order 
methods that make additional use of the Hessian 
(matrix of second partial derivatives) or its inverse. In 
general, higher order methods converge in fewer iter- 
ations and more accurately than lower order methods 
because of the extra information they employ but they 
require more computation per iteration. 

Minimisation using only function evaluation is a 
little problematic, because these methods do not scale 
well to problems having in excess of about 100 pa- 
rameters (weights). However Battiti and Tecchiolli 
1421 employed two variants of the adaptive random 
search algorithm (usually referred as random walk 
[43]) and reported similar results both in speed and 
generalisation to back-propagation with adaptive 
stepsize. The strategy in random walk is to fix a step 
size and attempt to take a step in any random direc- 
tion from the current position. If the error decreases, 
the step is taken or else another direction is tried. If 
after a certain number of attempts a step cannot be 
taken, the stepsize is reduced and another round of 
attempts is tried. The algorithm terminates when a 
step cannot be taken without reducing the stepsize 
below a threshold value. The main disadvantage of 
random walk is that its success depends upon a care- 
ful choice of many tuning parameters. Another algo- 
rithm using only function evaluations is the polytope, 



D. Suozil et al. / Chemometrics and Intelligent Laboratory Systems 39 (1997) 43-62 51 

in which the network weights form the vertices of a 
polytope [44]. The polytope algorithm is slow but is 
able to reduce the result of objective function to a 
lower value than standard back-propagation [45]. In 
the last years also some stochastic minimisation al- 
gorithms, as e.g. simulated annealing [46,47], were 
tried for adjusting the weight coefficients [48]. The 
disadvantage of these algorithms is their slowness, if 
their parameters are set so, that algorithms should 
converge into global minima of the objective func- 
tion. With faster learning they tend to fall into deep 
narrow local minima, with results similar to overfit- 
ting. In practice they are therefore usually let run for 
a short time, and the resulting weights are used as 
initial parameters for backpropagation. 

Classical steepest descent algorithm without the 
momentum is reported [42] to be very slow to con- 
verge because it oscillates from side to side across the 
ravine. The addition of a momentum term can help 
overcome this problem because the step direction is 
no longer steepest descent but modified 
ous direction. 

+ cyddk' 
IJ 

+ CIA+~) 

by the previ- 

(15) 

where (Y is the mometum factor (cy E (0, 1)). In ef- 
fect, momentum utilises second order information but 
requires only one step memory and uses only local 
information. In order to overcome the poor conver- 
gence properties of standard back-propagation, nu- 
merous attempts to adapt learning rate and momen- 
tum have been reported. Vogl et al. [49] adapted both 
learning step and momentum according to the change 
in error on the last step or iteration. Another adaptive 
strategy is to modify the learning parameters accord- 
ing to changes in step direction as opposed to changes 
in the error value. A measure of the change in step 
direction is gradient correlation or the angle between 
the gradient vectors VE, and VE,_ i. The learning 
rules have several versions [26,50]. Like standard 
back-propagation the above adaptive algorithms have 
one value of learning term for each weight in the 
network. Another option is to have an adaptive leam- 
ing rate for each weight in the network. Jacobs [51] 

proposed four heuristics to achieve faster rates of 
convergence. A more parsimonious strategy, called 
SuperSAB [52], learned three times faster than stan- 
dard back-propagation. Other two methods that are 
effective are Quickprop 1431 and RPROP [53]. Chen 
and Mars [54] report an adaptive strategy which can 
be implemented in pattern mode learning and which 
incorporates the value of the error change between 
iterations directly into the scaling of learning rate. 

Newton’s method for optimisation uses Hessian 
matrix of second partial derivatives to compute step 
length and direction. For small scale problems where 
the second derivatives are easily calculated the 
method is extremely efficient but it does not scale 
well to larger problems because not only the second 
partial derivatives have to be calculated at each itera- 
tion but the Hessian must also be inverted. A way 
how to avoid this problem is to compute an approxi- 
mation to the Hessian or its inverse iteratively. Such 
methods are described as quasi-Newton or variable 
metric. There are two frequently used versions of 
quasi-Newton: the Davidson-Fletcher-Powell (DFP) 
algorithm and the Broydon-Fletcher-Goldfarb- 
Shanno (BFGS) algorithm. In practise, van der Smagt 
[55] found DFP to converge to a minimum in only one 
third of 10000 trials. In a comparison study, Barnard 
[56] found the BFGS algorithm to be similar in aver- 
age performance to conjugate gradient. In a function 
estimation problem [45], BFGS was able to reduce the 
error to a lower value than conjugate gradient, stan- 
dard back-propagation and a polytope algorithm 
without derivatives. Only the Levenberg-Marquardt 
method [57-591 reduced the error to a lower value 
than BFGS. The main disadvantage of these methods 
is that storage space of Hessian matrix is propor- 
tional to the squarednumber of weights of the net- 
work. 

An alternative second-order minimisation tech- 
nique is conjugate gradient optimisation [60-621. 
This algorithm restricts each step direction to be con- 
jugate to all previous step directions. This restriction 
simplifies the computation greatly because it is no 
longer necessary to store or calculate the Hessian or 
its inverse. There exist two main versions of conju- 
gate gradients: Fletcher-Reeves version [63] and Po- 
lal-Ribiere version [64]. The later version is said to 
be faster and more accurate because the former makes 
more simplifying assumptions. Performance compar- 
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ison of standard back-propagation and traditional 
conjugate gradients seems to be task dependent. For 
example, according to [55] Fletcher-Reeves conju- 
gate gradients were not as good as standard back- 
propagation on the XOR task but better than stan- 
dard back-propagation on two function estimation 
tasks. Another point of comparison between algo- 
rithms is their ability to reduce error on learning the 
training set. De Groot and Wurtz [45] report that con- 
jugate gradients were able to reduce error on a func- 
tion estimation problem some 1000 times than stan- 
dard back-propagation in 10 s of CPU time. Compar- 
ing conjugate gradients and standard back-propa- 
gation without momentum on three different classifi- 
cation tasks, method of conjugate gradients was able 
to reduce the error more rapidly and to a lower value 
than back-propagation for the given number of itera- 
tions [65]. Since most of the computational burden in 
conjugate gradients algorithms involves the line 
search, it would be an advantage to avoid line 
searches by calculating the stepsize analytically. 
Moller 1661 has introduced an algorithm, which did 
this, making use of gradient difference information. 

7. Applications of neural networks in chemistry 

Interests in applications of neural networks in 
chemistry have grown rapidly since 1986. The num- 
ber of articles concerning applications of neural net- 
works in chemistry has an exponentially increasing 
tendency (151, p. 161). In this part some papers deal- 
ing with the use of back-propagation MLF neural 
networks in chemistry will be reviewed. Such papers 
cover a broad spectrum of tasks, e.g. theoretical as- 
pects of use of the neural networks, various problems 
in spectroscopy including calibration, study of chem- 
ical sensors applications, QSAR studies, proteins 
folding, process control in chemical industry, etc. 

7.1. Theoretical aspects of the use of back-propa- 
gation MLF neural networks 

Some theoretical aspects of neural networks were 
discussed in chemical literature. Tendency of MLF 
ANN to ‘memorise’ data (i.e. the predictive ability of 
network is substantially lowered, if the number of 
neurons in hidden layer is increased - parabolic de- 

pendence) is discussed in [67]. The network de- 
scribed in this article was characterised by a parame- 
ter p, that is the ratio of the number of data points in 
a learning set to the number of connections (i.e., the 
number of ANN internal degrees of freedom). This 
parameter was analysed also in [68,69]). In several 
other articles some attention was devoted to analysis 
of the ANN training. The mean square error MSE is 
used as a criterion of network training. 

MSE = (# of compds. X # of out units) (16) 

While the MSE for a learning set decreases with 
time of learning, predictive ability of the network has 
parabolic dependence. It is optimal to stop net train- 
ing before complete convergence has occurred (the 
so-called ‘early stopping’) [70]. In [71] were shown 
benefits of statistical averaging of network progno- 
sis. The problem of overlitting and the importance of 
cross-validation were studied in [72]. Some methods 
of the design of training and test set (i.e. methods 
raised from experimental design) were discussed in 
[9]. Together with the design of training and test set 
stands in the forefront of interest also a problem 
which variables to use as input into the neural net- 
works (‘feature selection’). For the determining the 
best subset of a set containing n variables there exist 
several possibilities: 

* A complete analysis of all subsets. This analy- 
sis is possible only for small number of descriptors. 
It was reported only for linear regression analysis, not 
for the neural networks. 

* A heuristic stepwise regression analysis. This 
type of methods includes forward, backward and 
Efroymson’s forward stepwise regression based on 
the value of the F-test. Such heuristic approaches are 
widely used in regression analysis [73]. Another pos- 
sibility is to use a stepwise model selection based on 
the Akaike information criterion [74]. Similar ap- 
proaches were also described as methods for feature 
selection for neural networks [75]. 

. A genetic algorithm, evolutionary program- 
ming. Such methods were not used for neural net- 
works because of their high computational demands. 
Application of these techniques for linear regression 
analysis was reported [76-781. 

* Direct estimations (pruning methods). These 
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techniques are most widely used by the ANN re- 
searchers. An evaluation of a variable by such meth- 
ods is done by introducing a sensitivity term for vari- 
able. Selection of variables by such methods in QSAR 
studies was pioneered by Wikel and Dow [79]. Sev- 
eral pruning methods were used and compared in [80]. 

Some work was also done in the field of improve- 
ment of the standard back-propagation algorithm, e.g. 
by use of the conjugate gradient algorithm [81] or the 
Flashcard Algorithm [82], that is reported to be able 
to avoid local minima. Other possibility to avoid lo- 
cal minima is to use another neural network architec- 
ture. Among the most promising belongs the radial 
basis neural (RBF) neural network [83]. RBF and 
MLF ANN were compared in [84]. 

7.2. Spectroscopy 

The problem of establishing correlation between 
different types of spectra (infrared, NMR, UV, VIS, 
etc.) and the chemical structure of the corresponding 
compound is so crucial, that the back-propagation 
neural networks approach was applied in many spec- 
troscopic problems. The main two directions in the 
use of neural networks for spectroscopy related prob- 
lems are the evaluation of the given spectrum and the 
simulation of the spectrum of the given compound. 
Almost all existing spectra have been used as inputs 
to the neural networks (i.e. evaluation): NMR spectra 
[SS-881, mass spectra [89-931, infrared spectra 
[94,95,84,96-981, fluorescence [99] and X-ray fluo- 
rescence spectra [IOO-1021, gamma ray spectra 
[ 103,104], Auger electron spectra [ 1051, Raman spec- 
tra [106,107], Mijssbauer spectra [ 1081, plasma spec- 
tra [109], circular dichroism spectra [I IO,1 Ill. An- 
other type of neural networks application in spec- 
troscopy is the prediction of the spectrum of the given 
compound (Raman: [112], NMR: [113-1151, IR: 
[I 161). 

7.3. Process control 

In process control almost all the data come from 
non-linear equations or from non-linear processes and 
are therefore very hard to model and predict. Process 
control was one of the first fields in chemistry to 
which the neural network approach was applied. The 
basic problems in the process control and their solu- 

tion using neural networks are described in [I 171. The 
main goal of such studies is to receive a network that 
is able to predict a potential fault before it occurs 
[ 118,119]. Another goal of neural networks applica- 
tion in process control is control of the process itself. 
In [ 1201 a method for extracting information from 
spectroscopic data was presented and studied by 
computer simulations. Using a reaction with non- 
trivial mechanism as model, outcomes in form of 
spectra were generated, coded, and fed into a neural 
network. Through proper training the network was 
able to capture the information concerning the reac- 
tion hyperplane, and predict outcomes of the reaction 
depending on past history. Kaiming et al. in their ar- 
ticle [I211 used a neural network control strategy for 
fed-batch baker’s yeast cultivation. A non-linear sin- 
gle-input single-output system was identified by the 
neural network, where the input variable was the feed 
rate of glucose and the output variable was the 
ethanol concentration. The training of the neural net- 
work was done by using the data of on-off control. 
The explanation of results showed that such neural 
network could control the ethanol concentration at the 
setpoint effectively. In a review [122] are stated 27 
references of approaches used to apply intelligent 
neural-like (i.e., neural network-type) signal process- 
ing procedures to solve a problem of acoustic emis- 
sion and active ultrasonic process control measure- 
ment problems. 

7.4. Protein folding 

Proteins are made up of elementary building 
blocks, the amino acids. These amino acids are ar- 
ranged sequentially in a protein, the sequence is 
called the primary structure. This linear structure 
folds and turns into three-dimensional structure that 
is referred as secondary structure (a-helix, P-sheet). 
Because the secondary structure of a protein is very 
important to biological activity of the protein, there 
is much interest in predicting the secondary struc- 
tures of proteins from their primary structures. In re- 
cent years numerous papers have been published on 
the use of neural networks to predict secondary 
structure of proteins from their primary structure. The 
pioneers in this field were Qian and Sejnowski [ 1231. 
Since this date many neural networks systems for 
predicting secondary structure of proteins were de- 



54 D. Svozil et al. / Chemometrics and Intelligent Laboratory Systems 39 (1997) 43-62 

veloped. For example, Vieth et al. [124] developed a 
complex, cascaded neural network designed to pre- 
dict the secondary structure of globular proteins. 
Usually the prediction of protein secondary structure 
by a neural network is based on three states (alpha- 
helix, beta-sheet and coil). However, there was a re- 
cent report of a protein with a more detailed sec- 
ondary structure, the 310-helix. In application of a 
neural network to the prediction of multi-state sec- 
ondary structures [ 1251, some problems were dis- 
cussed. The prediction of globular protein secondary 
structures was studied by a neural network. Applica- 
tion of a neural network with a modular architecture 
to the prediction of protein secondary structures (al- 
pha-helix, beta-sheet and coil) was presented. Each 
module was a three-layer neural network. The results 
from the neural network with a modular architecture 
and with a simple three-layer structure were com- 
pared. The prediction accuracy by a neural network 
with a modular architecture was reported higher than 
the ordinary neural network. Some attempts were also 
done to predict tertiary structure of proteins. In 11261 
is described a software for the prediction of the 3-di- 
mensional structure of protein backbones by neural 
network. This software was tested on the case of 
group of oxygen transport proteins. The success rate 
of the distance constraints reached 90%, which 
showed its reliability. 

7.5. Quantitative structure activity relationship 

Quantitative structure activity relationship 
(QsAR) or quantitative structure property relation- 
ship (QSPR) investigations in the past two decades 
have made significant progress in the search for 
quantitative relations between structure and property. 
The basic modelling method in these studies is a 
multilinear regression analysis. The non-linear rela- 
tionships were successfully solved by neural net- 
works, that in this case act as a function aproximator. 
The use of feed-forward back-propagation neural 
networks to perform the equivalence of multiple lin- 
ear regression has been examined in [127] using arti- 
ficial structured data sets and real literature data. 
Neural networks predictive ability has been assessed 
using leave-one-out cross-validation and training/test 
set protocols. While networks have been shown to fit 
data sets well, they appear to suffer from some dis- 

advantages. In particular, they have performed poorly 
in prediction for the QSAR data examined in this 
work, they are susceptible to chance effects, and the 
relationships developed by the networks are difficult 
to interpret. Other comparison between multiple lin- 
ear regression analysis and neural networks can be 
found in [128,129]. In a review (113 refs.) [130] 
QSAR analysis was found to be appropriate for use 
with food proteins. PLS (partial least-squares regres- 
sion), neural networks, multiple regression analysis 
and PCR (principal component regression) were used 
for modelling of hydrophobity of food proteins and 
were compared. Neural networks can be also used to 
perform analytical computation of similarity of 
molecular electrostatic potential and molecular shape 
[131]. Concrete applications of the neural networks 
can be found for example in [132-13.51. 

7.6. Analytical chemistry 

The use of neural networks in analytical chem- 
istry is not limited only to the field of spectroscopy. 
The general use of neural networks in analytical 
chemistry was discussed in [136]. Neural networks 
were successfully used for prediction of chromatog- 
raphy retention indices [137-1391, or in analysis of 
chromatographic signals [ 1401. Also processing of 
signal from the chemical sensors was intensively 
studied [141-1441. 

8. Internet resources 

In World-Wide-Web you can find many informa- 
tion resources concerning neural networks and their 
applications. This chapter will provide general infor- 
mation about such resources. 

The news usenet group comp.ai.neural-nets is in- 
tended as a discussion forum about artificial neural 
networks. There is an archive of comp.ai.neural-nets 
on the WWW at http://asknpac.npac.syr.edu. The 
frequently asked question (FAQ) list from this news- 
group can be found in http://ftp://ftp.sas.com/ 
pub/ neural/ FAQ.html. Others news groups par- 
tially connected with neural networks are compthe- 
ory.self-org-sys, compaigenetic and comp.ai.fuzzy. 

The Internet mailing list dealing with all aspects of 
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neural networks is called Neuron-Digest, to sub- 
scribe send e-mail to neuron-request@cattell.psych. 
upenn.edu. 

Some articles about neural networks can be found 
in Journal of Artificial Intelligence Research, 
(http://www.cs.washington.edu/research/jair/ 
home.html) or in Neural Edge Library (http:// 
www.clients.globalweb.co.uk/nctt/newsletter/). 

A very good and complex list of on-line and some 
off-line articles about all aspects of the back-propa- 
gation algorithm is the Backpropagator’s review, 
(http://www.cs.washington.edu/research/jair/ 
home.html). 

The most complex set of technical reports, articles 
and Ph.D. thesis can be found at the so-called Neuro- 
prose (ftp:// archive.cis.ohio-state.edu/ pub/ 
neuroprose). Another large collection of neural net- 
work papers and software is at the Finish University 
Network (ftp:// ftp.funet.fi/ pub/ sci/ neural). It 
contains the major part of the public domain soft- 
ware and papers (e.g. mirror of Neuroprose). Many 
scientific groups dealing with neural network prob- 
lems has their own WWW sites with downloadable 
technical reports, e.g. Electronic Circuit Design 
Workgroup (http:// www.eeb.ele.tue.nl/ neural/ 
reports.htmll, Institute for Research in Cognitive Sci- 
ence (http:// www.cis.upenn.edu/ N ircs/ 
Abstracts.html), UTCS (http:// www.cs.utexas. 
edu/ users/ nn/ pages/ publications/ publications. 
html), IDIAP (http:// www.idiap.ch/ html/ idiap- 
networkshtml) etc. 

For the updated list of shareware/freeware neural 
network software look at http://www.emsl.pnl. 
gov:2080/ dots/ tie/ neural/ systems/ 
shareware.html, for the list of commercial software 
look at StatSci (http:// www.scitechint.com/ 
neural.HTM) or at http://www.emsl.pnl.gov:2080/ 
dots/ tie/ neural/ systems/ software.html. Very 
complex list of software is also available in FAQ. 
One of the best freeware neural network simulators 
is the Stuttgart Neural Network Simulator SNNS 
(http://www.informatik.uni-stuttgart.de/ipvr/ 
bv/ projekte/ snns/ snns.html), that is targeted for 
Unix systems. MS-Windows front-end for SNNS 
(http:// www.lans.ece.utexas.edu/ winsnnshtml) is 
available too. 

For experimentation with neural networks there 
are available several databases, e.g. the neural-bench 

Benchmark collection (http:// www.boltz.cs.cmu. 
edu/). For the full list see FAQ. 

You can find nice list of NN societies in the 
WWW at http:// www.emsl.pnl.gov:2080/ dots/ 
tie/ neural/ societies.html and at http:// 
www.ieee.org:80/nnc/research/othemnsoc.html. 

There is a WWW page for Announcements of 
Conferences, Workshops and Other Events on Neu- 
ral Networks at IDIAP in Switzerland (http:// 
www.idiap.ch/ html/ idiap-networks.html). 

9. Example of the application - neural-network 
prediction of carbon-13 NMR chemical shifts of 
alkanes ’ 

13C NMR chemical shifts belong to the so-called 
local molecular properties, where it is possible to as- 
sign unambiguously the given property to an atom 
(vertex) of structural formula (molecular graph). In 
order to correlate 13C NMR chemical shifts with the 
molecular structure we have to possess information 
about the environment of the given vertex. The cho- 
sen atom plays a role of the so-called root [146], a 
vertex distinguished from other vertices of the 
molecular graph. For alkanes embedding frequencies 
1147-1491 specify the number of appearance of 
smaller rooted subtrees that are attached to the root 
of the given tree (alkane), see Figs. 4 and 5. Each 
atom (a non-equivalent vertex in the tree) in an alkane 
(tree) is determined by 13 descriptors d = (d,, d,, 
. . . , d,,) that are used as input activities of neural 
networks. The entry di determines the embedding 
frequency of the ith rooted subtree (Fig. 4) for the 
given rooted tree (the root is specified by that carbon 
atom of which the chemical shift is calculated). Their 
number and form are determined by our requirement 
to have all the rooted trees through 5 vertices. To 
avoid information redundancy, we have deleted those 
rooted trees, which embedding frequencies can be 
exactly determined from embedding frequencies of 
simpler rooted subtrees. This means, that we con- 
sider at most &carbon effects. 

13C NMR chemical shifts of all alkanes from C, 

2 For details about this application see [145]. 
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6 7 8 9 

10 11 12 13 

Fig. 4. List of 13 rooted subtrees that are used for the calculation 
of embedding frequencies. 

to C, available in the book [ 1501 (cf. Ref. [ 15 11) (al- 
kanes C, are not complete) are used as objects in our 
calculations. The total number of all alkanes consid- 
ered in our calculations is 63, they give 326 different 
chemical shifts for topologically non-equivalent posi- 
tions in alkanes. This set of 326 chemical shifts is di- 
vided into the training set and the test set. 

The decomposition of whole set of chemical shifts 
into training and test sets was carried out by making 
use of the Kohonen neural network [4] with architec- 
ture specified by 14 input neurons and 15 X 15 = 275 
output neurons situated on a rectangular grid 15 X 15. 

Fig. 5. Illustrative example of embedding frequencies of a rooted 
tree. 

The input activities of each object (chemical shift) are 
composed of 14 entries, whereby the first 13 entries 
are embedding frequencies and the last, 14th entry, is 
equal to the chemical shift. Details of the used Koho- 
nen network are described in Dayhoff’s textbook 
[152]. We used Kohonen network with parameters 
(Y = 0.2 (learning constant), d, = 10 (initial size of 
neighbourhood), and T = 20 000 (number of learning 
steps). We have used the rectangular type of neigh- 
bourhood and the output activities were determined as 
L, (city-block) distances between input activities and 
the corresponding weights. After finishing the adap- 
tation process, all 326 objects were clustered so that 
each object activates only one output neuron on the 
rectangular grid, and some output neurons are never 
activated and/or some output neurons are activated 
by one or more objects. This means that this decom- 
position of objects through the grid of output neu- 
rons may be considered as a clustering of objects, 
each cluster, composed of one or more objects, being 
specified by a single output neuron. Finally, the 
training set is created so that we shift one object (with 
the lowest serial index) from each cluster to the 
training set and the remaining ones to the test set. 
Then we get training set composed of 112 objects and 
the test set composed of 214 objects. 

The results of our neural-network calculations for 
different numbers of hidden neurons (from one to 
five) are summarised in Table 1. The quantities SEC 
and R, are determined as follows 

SEC2 = &A X,bs - ~&)* 
N 

R*=l- &( 'ohs - xcak >’ 
&( xobs - xmea,)2 

(17) 

(18) 

We see that the best results are produced by the 

Table 1 
Results of neural-network calculations 

Type of neural net. 

(13,1,1) 
(13,2,1) 
(13,3,1) 
(13,4,1) 
(13,5,1) 

Training set 

SEC R2 

1.1387 0.9976 
0.9906 0.9980 
0.8941 0.9998 
0.7517 0.9999 
0.6656 1.0000 

Test set 

SEC R2 

1.1913 0.9837 
1.0980 0.9957 
1.0732 0.9966 
1.0905 0.9946 
1.1041 0.9944 
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Table 2 
Results of LRA calculations 

Type of LRA Training set 

SEC R2 

Test set 

SEC R2 

All objects a 0.9994 0.9900 - 
Training set 0.9307 0.9893 1.1624 0.9872 

a Training set is composed of all 326 objects. 

neural network (13,3,1) composed of three hidden 
neurons, its SEC value for objects from the test set 
being the lowest one. We can observe the following 
interesting property of feed-forward neural networks: 
The SEC value for training set monotonously de- 
creases when the number of hidden neuron increases; 
on the other hand, the SEC value for test set has a 
minimum for three hidden neurons. This means that 
the predictability of neural networks for test objects 
is best for three hidden neurons, further increasing of 
their number does not provide better results for test 
set (this is the so-called overtraining). 

In the framework of linear regression analysis 
(LRA) chemical shifts (in ppm units) are determined 
as a linear combination of all 13 descriptors plus a 
constant term 

(19) 
i= 1 

Two different LRA calculations have been carried 
out. While the first calculation was based on the 
whole set of 326 objects (chemical shifts), the sec- 
ond calculation included only the objects from the 
training set (the same as for neural-network calcula- 
tions). The obtained results are summarised in Table 
2. 

Comparing results of neural-network and LRA 
calculations, we see that the best neural-network cal- 
culation provides slightly better results for training 
objects than LRA. The SEC testing value for neural- 
network calculation is slightly smaller than it is for 
LRA calculation. Table 3 lists precision of predic- 
tions of chemical shifts. It means, for instance, that 
the neural-network (13,3,1) calculation for objects 
from the test set (eighth column in Table 3) provides 
the following prediction: for 74% (78% and 88%) of 
the shifts, the difference between the experimental 
and predicted values was less than 1.0 ppm (1.5 ppm 
and 2.0 ppm, respectively). On the other hand, what 
is very surprising, the LRA based on the training set 
gave slightly better prediction for test objects than the 
neural-network ( 13,3,1) calculation. Precision of pre- 
dictions for differences 1.5 ppm and 2.0 ppm were 
slightly greater for LRA than for NN (neural net- 
work), see the sixth and eighth columns in Table 3. 

As it is apparent from the results, the use of neu- 
ral networks in this case is discutable, because it 
brings only the minimal advantages in comparing 
with linear regression analysis. This means that pos- 
sible nonlinearities in the relationship between em- 
bedding frequencies and chemical shifts are of small 
importance. An effectiveness of neural-network cal- 
culations results from the fact that nonlinearities of 
input-output relationships are automatically taken 
into account. Since, as was mentioned above, nonlin- 
earities in relationships between embedding frequen- 
cies and 13C NMR chemical shifts in alkanes are of 
small (or negligible) importance, neural-network cal- 
culations could not provide considerably better re- 
sults than LRA calculations. Finally, as a byproduct 
of our LRA calculations, we have obtained simple 
linear relationships between 13C NMR chemical shifts 

Table 3 
Precision of prediction a 

Prediction precision Grant Ref. [1.5] Lindeman Ref. [ 111 LRA b all objects LRA ’ NN (13,3,1) 

training test training test 

1 .O ppm 61% 61% 78% 78% 69% 87% 74% 

1.5 ppm 77% 78% 89% 90% 85% 96% 78% 

2.0 ppm 84% 89% 94% 97% 91% 98% 88% 

a Rows indicate percentages of objects predicted by the given model with precision specified by maximum ppm absolute error shown in the 
first column. 
b LRA which used all 326 objects for training set. 
’ LRA which used only 112 objects for training set. 
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in alkanes and embedding frequencies which are more 
precise (see Table 3) than similar relationships con- 
structed by Grant [ 1531 or Lindeman [ 15 11 often used 
in literature (cf. Ref. [lSO]>. 

10. Conclusions 

ANNs should not be used without analysis of the 
problem, because there are many alternatives to the 
use of neural networks for complex approximation 
problems. There are obvious cases when the use of 
neural networks is quite inappropriate, e.g. when the 
system is described with the set of equations, that re- 
flects its physico-chemical behaviour. ANNs is a 
powerful tool, but the classical methods (e.g. MLRA, 
PCA, cluster analysis, pattern recognition etc.) can 
sometimes provide better results in shorter time. 
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