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Lecture 10:

Nonlinear regression models
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Outline
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▪ Motivation

▪ Correlated vs. uncorrelated variables

▪ Correlation coefficient

▪ Linear regression 

▪ Nonlinear models (regression trees, RBF networks)
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Motivation
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Problem:  Let us suppose that we know some information about a car (e.g. 
cylinders, horsepower, weight, acceleration, model etc) and we would like to 
estimate the fuel consumption (e.g. expressed as miles per gallon)

Example [autoMpg.arff   from    http://archive.ics.uci.edu/ml/datasets.html]

@relation autoMpg

@attribute cylinders { 8, 4, 6, 3, 5} @attribute displacement real

@attribute horsepower real @attribute weight real @attribute acceleration real 

@attribute model { 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82} 

@attribute origin { 1, 3, 2} 

@attribute class real 

@data

8,307,130,3504,12,70,1,18

8,350,165,3693,11.5,70,1,15

4,113,95,2372,15,70,3,24

6,198,95,2833,15.5,70,1,22

6,199,97,2774,15.5,70,1,18  
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Motivation

4

Problem:  Let us suppose that we know some information about a car (e.g. 
cylinders, horsepower, weight, acceleration, model etc) and we would like to 
estimate the fuel consumption (e.g. expressed as miles per gallon)

Example [autoMpg.arff   from    http://archive.ics.uci.edu/ml/datasets.html]

@relation autoMpg

@attribute cylinders { 8, 4, 6, 3, 5} @attribute displacement real

@attribute horsepower real @attribute weight real @attribute acceleration real 

@attribute model { 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82} 

@attribute origin { 1, 3, 2} 

@attribute class real

@data

8,307,130,3504,12,70,1,18

8,350,165,3693,11.5,70,1,15

4,113,95,2372,15,70,3,24

6,198,95,2833,15.5,70,1,22

6,199,97,2774,15.5,70,1,18  

We are looking for a dependence between the 

fuel consumption (class attribute in the dataset)  

the car characteristics (first 7 attributes in the 

dataset)
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A simpler example

5

Some synthetic 2D data  

x

y

x

y

Set 1

Set 2

x

y Set 3

What can we say about the data in 
each set?
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A simpler example
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Some synthetic 2D data  

x

y

x

y

Set 1

Set 2

x

y Set 3

Set 1: the data seem to be “positively 
correlated” = when x increases y also 
increases 
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A simpler example
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Some synthetic 2D data  

x

y

x

y

Set 1

Set 2

x

y Set 3

Set 2: the data seem to be “negatively 
correlated” = when x increases  y 
decreases
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A simpler example
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Some synthetic 2D data  

x

y

x

y

Set 1

Set 2

x

y Set 3

Set 3: the data does not seem to be 
correlated (it seems to be just a cloud of 
points)

Questions: 

▪ How can be measured the degree of 
correlation?

▪ What kind of correlation?
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Correlation coefficient
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How can be measured the degree of correlation?  

[reminder – Probability and Statistics]

▪ For instance, by using the Pearson correlation coefficient – it expresses the 
degree of linear correlation between two variables 
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Remark:  -1<=R(X,Y)<=1

▪ R(X,Y) close to 1: positive 
linear correlation

▪ R(X,Y) close to -1: negative 
linear correlation

▪ R(X,Y) close to 0:  no linear 
correlation (however, X and Y 
could be nonlinearly correlated)
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Linear regression
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What kind of correlation?     [reminder – Probability and Statistics]

Simplest case:   Linear dependence between two variables:  Y=w1X+w0

▪ X= predictor (independent, input, explanatory) variable

▪ Y= predicted (dependent, response, explained) variable

▪ Aim of linear regression:  estimate the parameters w1 and w0 such that the 
available data for the variables X (i.e. x1,x2,…, xn) and Y (i.e. y1,y2,…, yn) are 
well explained by the linear function, i.e. the sum of squared errors is 
minimized 
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Simple linear regression
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Reminder:  some linear algebra
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Finding the vector w which minimizes SSE(w) is equivalent with finding the 
critical point of SSE, i.e. solving the following equation with respect to w:
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Multiple linear regression
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Remark:  the same approach can be extended in the case when there are d 
predicting variables  (e.g. as in the autoMPG dataset)
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Linear regression - regularization

13

Remark:  if the matrix DTD is singular (the inverse cannot be computed) then 

the objective function (SSE) is modified by adding a so-called regularization 

term which will modify the matrix of the linear system in such a way that it 

becomes invertible).

Examples:

▪ Tikhonov regularization (ridge regression)
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Remarks: 

▪ the parameter of the regularization term (lambda) is usually chosen 

adaptively based on cross-validation

▪ the penalty term “discourages”  the large values of the weights
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Linear regression - regularization

14

Remark:  if the matrix DTD is singular (the inverse cannot be computed) then 

the objective function (SSE) is modified by adding a so-called regularization 

term which will modify the matrix of the linear system in such a way that it 

becomes invertible).

Examples:

▪ Lasso regularization
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Remarks: 

▪ In this case the optimization problem is solved by using numerical methods

▪ Is useful for high dimensional data with many irrelevant features (leading to 

sparse models)
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Generalized linear models
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Main idea:  instead of yi=w1xi+w0 the output (yi) is modelled through a random 

variable with a distribution having a mean f(w1xi+w0)

Main elements of a GLM (generalized linear model):

▪ Mean function:  f    

▪ Link function:  f-1

▪ Probability distribution

Mean function Link function Distribution

f(u)=u identity normal

f(u)=-1/u inverse exponential, gamma

f(u)=exp(u) Log Poisson

f(u)=1/(1+exp(-u)) Logit Bernoulli
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Generalized linear models

16

Main idea:  instead of yi=wxi the output (yi) is modelled through a random 

variable with a distribution having a mean f(wxi)

Main elements of a GLM (generalized linear model):

▪ Mean function:  f    

▪ Link function:  f-1

▪ Probability distribution

Mean function Link function Distribution

f(u)=u identity normal

f(u)=-1/u inverse exponential, gamma

f(u)=exp(u) Log Poisson

f(u)=1/(1+exp(-u)) Logit Bernoulli

least

squares

regression
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Generalized linear models

17

Main idea:  instead of yi=wxi the output (yi) is modelled through a random 

variable with a distribution having a mean f(wxi)

Main elements of a GLM (generalized linear model):

▪ Mean function:  f    

▪ Link function:  f-1

▪ Probability distribution

Mean function Link function Distribution

f(u)=u identity normal

f(u)=-1/u inverse exponential, gamma

f(u)=exp(u) Log Poisson

f(u)=1/(1+exp(-u)) Logit Bernoulli

Logistic 

regression
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Nonlinear regression
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What about the cases when the dependence between the predicted variable 

and the predictor(s) is not linear?

Other models are needed

x

y Set 4

Examples:

▪ Regression trees

▪ Nonlinear neural networks



Data mining - Lecture 10 19

Nonlinear regression
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Main idea:

▪ A nonlinear relationship can be modelled through local linear functions (one 

linear function per region)

▪ The regression process would then consist of two steps:

▪ Identify the regions by splitting the space of the decision variables

▪ Identify a regression model (e.g. a linear one) for each of the 

identified regions

x

y

a b
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Regression trees
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Reminder:

Decision tree = hierarchical structure containing in the internal nodes 

conditions on the predictor variables and on the leaf nodes information on the 

predicted variables (e.g. class);  if the predicted variable is discrete 

(categorical/ nominal) then the decision tree is in fact a classification tree
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Regression trees

21

Reminder:

Decision tree = hierarchical structure containing in the internal nodes 

conditions on the predictor variables and on the leaf nodes information on the 

predicted variables (e.g. class);  if the predicted variable is discrete 

(categorical/ nominal) then the decision tree is in fact a classification tree

Question:

▪ What about the case when the 

predicting variable is 

continuous? (e.g. we would like 

to obtain not only a yes/no 

answer to the “weather-play” 

problem but a value in [0,1] 

expressing the degree of 

decision between 0 (no) and 1 

(yes)
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Regression trees
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Main idea:

▪ Use a similar process of splitting the space of the decision (predictor) 

variables as in the case of trees used for classification 

▪ In the case of continuous predictor variables the splitting condition  

is of the one of the types:  variable < value  or variable > value or 

variable in [min,max]

▪ Infer a regression model (e.g. a linear model) for each region identified by 

the splitting procedure

x

y

(Very) simple example -> piecewise 

linear model:

a b

x<a

y=x+1

x<b

y=a+1 y=a+b+1-x
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Nonlinear regression
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Beyond piecewise linear models:

▪ Extending basic linear regression by using derived input features:

y=w0+w1h1(x)+w2h2(x)+…+wmhm(x)

(x can be a vector and hi a function associating a scalar/vector to another 

vector)

Particular case 1.  Polynomial models:  y= w0+w1x+w2x
2+…+wmxm

(x is a scalar)

x

y

Particular case 2.   

Kernel-based models: hi are functions 

which can take significant values only for a 

limited region of the input space. 

▪ when these functions are with radial 

symmetry (e.g. gaussian functions) then 

we obtain the so-called RBF networks 

(a particular case of neural networks)
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RBF networks

RBF - “Radial Basis Function”:

Architecture:

– Two levels of functional units

– Aggregation functions:

• Hidden units:  distance 

between the input vector 

and the corresponding 

center vector

• Output units: weighted sum
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Rmk: hidden units do not have

bias values (activation thresholds) 
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RBF networks

The activation functions for the hidden neurons 

are functions with radial symmetry

– Hidden units generates a significant 

output signal only for input vectors 

which are close enough to the 

corresponding center vector

The activation functions for the output units are 

usually linear functions

N K M

C W

centers weights
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RBF networks

Examples of functions with radial 

symmetry:
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Rmk:  the parameter σ controls the width of the gaussian
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RBF networks
Computation of the output signal:
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The vectors  Ck can be interpreted as prototypes; 

- only input vectors similar to the prototype of the hidden unit “activate” that 

unit

- the output of the network for a given input vector will be influenced only by 

the output of the hidden units having centers close enough to the input vector

Data mining - Lecture 10
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RBF networks
Each hidden unit is “sensitive” to a region 

in the input space corresponding to a 

neighborhood of its center. This region 

is called receptive field

The size of the receptive field depends on 

the parameter σ
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RBF networks
• The receptive fields of all hidden 

units covers the input space

• A good covering of the input space 
is essential for the approximation 
power of the network 

• Too small or too large values of the 
width of the radial basis function 
lead to inappropriate covering of the 
input space

-10 -7.5 -5 -2.5 2.5 5 7.5 10

0.2

0.4

0.6

0.8

1

undercovering overcovering

appropriate covering
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RBF networks
• The receptive fields of all hidden 

units covers the input space

• A good covering of the input space 
is essential for the approximation 
power of the network 

• Too small or too large values of the 
width of the radial basis function 
lead to inappropriate covering of the 
input space

undercovering
overcovering

appropriate covering

σ=0.01

σ=1

σ=100
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RBF networks
RBF networks are universal approximators:  

a network with N inputs and M outputs can approximate any 

function defined on RN, taking values in RM, as long as there are 

enough hidden units

The theoretical foundations of RBF networks are:

• Theory of approximation

• Theory of regularization

Data mining - Lecture 10



32

RBF networks
Adaptive parameters:

• Centers (prototypes) corresponding to hidden units

• Receptive field widths (parameters of the radial symmetry 

activation functions)

• Weights associated to connections between the hidden and 

output layers

Learning variants:

• Simultaneous learning of all parameters (similar to 

BackPropagation)

– Rmk: same drawbacks as multilayer perceptron’s 

BackPropagation

• Separate learning of parameters: centers,  widths, weights

Data mining - Lecture 10
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RBF networks
Separate learning :

Training set:   {(x1,d1), …, (xL,dL)}

1.  Estimating of the centers:  simplest variant

• K=L  (nr of centers = nr of examples), 

• Ck=xk  (this corresponds to the case of exact 

interpolation: see the example for XOR) 

Data mining - Lecture 10
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RBF networks
Example (particular case) :  RBF network to represent XOR

• 2 input units

• 4 hidden units

• 1 output unit

0

1

1

0

Centers:

Hidden unit 1:  (0,0)

Hidden unit 2:  (1,0)

Hidden unit 3:  (0,1)

Hidden unit 4:  (1,1)

Weights:

w1:  0

w2:  1

w3:  1

w4:  0

Activation function:

g(u)=1 if u=0

g(u)=0 if u<>0

This approach cannot be applied for general approximation problems

Data mining - Lecture 10
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RBF networks
Separate learning :

Training set:   {(x1,d1), …, (xL,dL)}

1. Estimating of the centers

• K<L :  the centers are established 

• by random selection from the training set

• simple but not very effective

• by systematic selection from the training set (Orthogonal 

Least Squares)

• by using a clustering method

Data mining - Lecture 10
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RBF networks
Orthogonal Least Squares:

• Incremental selection of centers such that the error on the training set 

is minimized

• The new center is chosen such that it is orthogonal on the space 

generated by the previously chosen centers (this process is based on 

the Gram-Schmidt orthogonalization method) 

• This approach is related with regularization theory and ridge regression

Data mining - Lecture 10
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RBF networks
Clustering:

• Identify K groups in the input data {X1,…,XL} such that data in a group 

are sufficiently similar and data in different groups are sufficiently 

dissimilar

• Each group has a representative (e.g. the mean of data in the group) 

which can be considered the center 

• The algorithms for estimating the representatives of data belong to the 

class of partitional clustering methods

• Classical algorithm: K-means

Data mining - Lecture 10
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RBF networks

Incremental variant:

• Start with a small number of centers, randomly initialized

• Scan the set of input data:

– If there is a center close enough to the data then this center is 

slightly adjusted in order to become even closer to the data

– if the data is dissimilar enough with respect to all centers then a 

new center is added (the new center will be initialized with the data 

vector)

Data mining - Lecture 10



39

RBF networks

Incremental variant:
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RBF networks

2. Estimating the receptive fields widths.

Heuristic rules:

kunit by  drepresente orsinput vect:,..., ),,(
1

  tocenters closest  the:,...,),,(
1

]1,5.0[, center toclosest  the),,(

centersbetween  distance maximal  ,
2

1

1

1

1

max
max





=

=

=

=

==

==

k

k

q

j

qjk

k

k

jm
m

j

jk

k

kjjk

k

XXXCd
q

σ

CmCCCCd
m

σ

CCCCdσ

d
K

d





Data mining - Lecture 10



41

RBF networks

3. Estimating the weights of 

connections between hidden 

and output layers:

• This is equivalent with the 

problem of training one layer 

linear network

• Variants:

– Apply linear algebra tools 

(pseudo-inverse 

computation)

– Apply Widrow-Hoff 

learning (training based on 

the gradient method 

applied to one layer neural 

networks) 

▪ Initialization:  

wij(0):=rand(-1,1)  (the weights are randomly 

initialized in [-1,1]), 

k:=0  (iteration counter)

▪ Iterative process

REPEAT

FOR l:=1,L DO

Compute yi(l) and deltai(l)=di(l)-yi(l),  i=1,M    

Adjust the weights: wij:=wij+eta*deltai(l)*xj(l)

Compute the SSE(W) for the new values of 

the weights

k:=k+1

UNTIL SSE(W)<E* OR k>kmax

(E*=approximation error, kmax=maximal 

number of iterations)

Data mining - Lecture 10
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RBF vs. BP networks
RBF networks:

• 1 hidden layer

• Distance based aggregation 

function for the hidden units

• Activation functions with radial 

symmetry for hidden units

• Linear output units

• Separate training of adaptive 

parameters

• Similar with local approximation 

approaches

BP networks:

• many hidden layers

• Weighted sum as aggregation 

function for the hidden units

• Sigmoidal activation functions for 

hidden neurons

• Linear/nonlinear output units

• Simultaneous training of adaptive 

parameters

• Similar with global approximation 

approaches

Data mining - Lecture 10


