
Package ‘arules’
April 7, 2018

Version 1.6-1

Date 2018-04-04

Title Mining Association Rules and Frequent Itemsets

Description Provides the infrastructure for representing,
manipulating and analyzing transaction data and patterns (frequent
itemsets and association rules). Also provides
C implementations of the association mining algorithms Apriori and Eclat.

Classification/ACM G.4, H.2.8, I.5.1

URL https://github.com/mhahsler/arules, http://lyle.smu.edu/IDA/arules

BugReports https://github.com/mhahsler/arules

Depends R (>= 3.4.0), Matrix (>= 1.2-0)

Imports stats, methods, graphics, utils

Suggests pmml, XML, arulesViz, testthat

License GPL-3

Copyright The code for apriori and eclat in src/rapriori.c was
obtained from http://www.borgelt.net/ and is Copyright (C)
1996-2003 Christian Borgelt. All other code is Copyright (C)
Michael Hahsler, Christian Buchta, Bettina Gruen and Kurt
Hornik.

RoxygenNote 6.0.1

NeedsCompilation yes

Author Michael Hahsler [aut, cre, cph],
Christian Buchta [aut, cph],
Bettina Gruen [aut, cph],
Kurt Hornik [aut, cph],
Ian Johnson [ctb, cph],
Christian Borgelt [ctb, cph]

Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>

Repository CRAN

Date/Publication 2018-04-07 03:48:04 UTC

1

https://github.com/mhahsler/arules
http://lyle.smu.edu/IDA/arules
https://github.com/mhahsler/arules

2 R topics documented:

R topics documented:
abbreviate . 3
addComplement . 4
Adult . 5
affinity . 7
APappearance-class . 8
apriori . 10
AScontrol-classes . 12
ASparameter-classes . 13
associations-class . 15
combine . 16
coverage . 18
crossTable . 19
DATAFRAME . 20
discretize . 21
dissimilarity . 24
duplicated . 27
eclat . 28
Epub . 29
Groceries . 30
hierarchy . 31
hits . 33
image . 35
Income . 36
inspect . 38
interestMeasure . 38
is.closed . 46
is.maximal . 47
is.redundant . 48
is.significant . 49
is.superset . 50
itemCoding . 51
itemFrequency . 53
itemFrequencyPlot . 54
itemMatrix-class . 56
itemSetOperations . 59
itemsets-class . 60
length . 61
LIST . 62
match . 64
merge . 65
Mushroom . 66
predict . 67
proximity-classes . 68
random.transactions . 69
read.PMML . 71
read.transactions . 72

abbreviate 3

ruleInduction . 74
rules-class . 76
sample . 78
setOperations . 79
size . 80
sort . 81
subset . 82
SunBai . 84
support . 84
supportingTransactions . 86
tidLists-class . 87
transactions-class . 89
unique . 93
weclat . 94
write . 95
[-methods . 97

Index 99

abbreviate Abbreviate function for item labels in transactions, itemMatrix and
associations

Description

Provides the generic function and the methods to abbreviate long item labels in transactions, asso-
ciations (rules and itemsets) and transaction ID lists. Note that abbreviate is not a generic and this
arules defines a generic with the R’s abbreviate as the default.

Usage

abbreviate(names.arg, ...)
S4 method for signature 'itemMatrix'
abbreviate(names.arg, minlength = 4, ..., method = "both.sides")
S4 method for signature 'rules'
abbreviate(names.arg, minlength = 4, ..., method = "both.sides")
S4 method for signature 'itemsets'
abbreviate(names.arg, minlength = 4, ..., method = "both.sides")
S4 method for signature 'transactions'
abbreviate(names.arg, minlength = 4, ..., method = "both.sides")
S4 method for signature 'tidLists'
abbreviate(names.arg, minlength = 4, ..., method = "both.sides")

Arguments

names.arg an object of class "transactions", "itemMatrix", "itemsets", "rules" or "tidLists".
minlength number of characters allowed in abbreviation
method apply to level and value (both.sides)
... further arguments passed on to the default abbreviation function.

4 addComplement

Author(s)

Sudheer Chelluboina and Michael Hahsler based on code by Martin Vodenicharov.

See Also

abbreviate in base.

Examples

data(Adult)
inspect(head(Adult, 1))

Adult_abbr <- abbreviate(Adult, 15)
inspect(head(Adult_abbr, 1))

addComplement Add Complement-items to Transactions

Description

Provides the generic function addComplement and the S4 methods for transactions. This function
adds for given items complement items. That is it adds an artificial item to each transactions which
does not contain the original item.

Usage

addComplement(x, labels, complementLabels=NULL)

Arguments

x an object of class transactions.

labels character strings; item labels for which complements should be created.
complementLabels

character strings; labels for the artificial complement-items. If omitted then the
original label is prepended by "!" to form the complement-item label.

Value

Returns an object of class transactions with complement-items added.

Author(s)

Michael Hahsler

See Also

transactions-class, merge

Adult 5

Examples

data("Groceries")

add a complement-items for "whole milk" and "other vegetables"
g2 <- addComplement(Groceries, c("whole milk", "other vegetables"))
inspect(head(g2, 3))

use a custom label for the complement-item
g2 <- addComplement(g2, "coffee", "NO coffee")
inspect(head(g2, 3))

Adult Adult Data Set

Description

The AdultUCI data set contains the questionnaire data of the “Adult” database (originally called the
“Census Income” Database) formatted as a data.frame. The Adult data set contains the data already
prepared and coerced to transactions for use with arules.

Usage

data("Adult")
data("AdultUCI")

Format

The AdultUCI data set contains a data frame with 48842 observations on the following 15 variables.

age a numeric vector.

workclass a factor with levels Federal-gov, Local-gov, Never-worked, Private, Self-emp-inc,
Self-emp-not-inc, State-gov, and Without-pay.

education an ordered factor with levels Preschool < 1st-4th < 5th-6th < 7th-8th < 9th < 10th
< 11th < 12th < HS-grad < Prof-school < Assoc-acdm < Assoc-voc < Some-college <
Bachelors < Masters < Doctorate.

education-num a numeric vector.

marital-status a factor with levels Divorced, Married-AF-spouse, Married-civ-spouse, Married-spouse-absent,
Never-married, Separated, and Widowed.

occupation a factor with levels Adm-clerical, Armed-Forces, Craft-repair, Exec-managerial,
Farming-fishing, Handlers-cleaners, Machine-op-inspct, Other-service, Priv-house-serv,
Prof-specialty, Protective-serv, Sales, Tech-support, and Transport-moving.

relationship a factor with levels Husband, Not-in-family, Other-relative, Own-child, Unmarried,
and Wife.

race a factor with levels Amer-Indian-Eskimo, Asian-Pac-Islander, Black, Other, and White.

sex a factor with levels Female and Male.

6 Adult

capital-gain a numeric vector.

capital-loss a numeric vector.

fnlwgt a numeric vector.

hours-per-week a numeric vector.

native-country a factor with levels Cambodia, Canada, China, Columbia, Cuba, Dominican-Republic,
Ecuador, El-Salvador, England, France, Germany, Greece, Guatemala, Haiti, Holand-Netherlands,
Honduras, Hong, Hungary, India, Iran, Ireland, Italy, Jamaica, Japan, Laos, Mexico,
Nicaragua, Outlying-US(Guam-USVI-etc), Peru, Philippines, Poland, Portugal, Puerto-Rico,
Scotland, South, Taiwan, Thailand, Trinadad&Tobago, United-States, Vietnam, and
Yugoslavia.

income an ordered factor with levels small < large.

Details

The “Adult” database was extracted from the census bureau database found at http://www.census.
gov/ in 1994 by Ronny Kohavi and Barry Becker, Data Mining and Visualization, Silicon Graphics.
It was originally used to predict whether income exceeds USD 50K/yr based on census data. We
added the attribute income with levels small and large (>50K).

We prepared the data set for association mining as shown in the section Examples. We removed the
continuous attribute fnlwgt (final weight). We also eliminated education-num because it is just a
numeric representation of the attribute education. The other 4 continuous attributes we mapped to
ordinal attributes as follows:

age cut into levels Young (0-25), Middle-aged (26-45), Senior (46-65) and Old (66+).

hours-per-week cut into levels Part-time (0-25), Full-time (25-40), Over-time (40-60) and
Too-much (60+).

capital-gain and capital-loss each cut into levels None (0), Low (0 < median of the values greater
zero < max) and High (>=max).

Author(s)

Michael Hahsler

Source

http://www.ics.uci.edu/~mlearn/MLRepository.html

References

A. Asuncion \& D. J. Newman (2007): UCI Repository of Machine Learning Databases. Irvine,
CA: University of California, Department of Information and Computer Science.

The data set was first cited in Kohavi, R. (1996): Scaling Up the Accuracy of Naive-Bayes Classi-
fiers: a Decision-Tree Hybrid. Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining.

http://www.census.gov/
http://www.census.gov/
http://www.ics.uci.edu/~mlearn/MLRepository.html

affinity 7

Examples

data("AdultUCI")
dim(AdultUCI)
AdultUCI[1:2,]

remove attributes
AdultUCI[["fnlwgt"]] <- NULL
AdultUCI[["education-num"]] <- NULL

map metric attributes
AdultUCI[["age"]] <- ordered(cut(AdultUCI[["age"]], c(15,25,45,65,100)),

labels = c("Young", "Middle-aged", "Senior", "Old"))

AdultUCI[["hours-per-week"]] <- ordered(cut(AdultUCI[["hours-per-week"]],
c(0,25,40,60,168)),
labels = c("Part-time", "Full-time", "Over-time", "Workaholic"))

AdultUCI[["capital-gain"]] <- ordered(cut(AdultUCI[["capital-gain"]],
c(-Inf,0,median(AdultUCI[["capital-gain"]][AdultUCI[["capital-gain"]]>0]),
Inf)), labels = c("None", "Low", "High"))

AdultUCI[["capital-loss"]] <- ordered(cut(AdultUCI[["capital-loss"]],
c(-Inf,0, median(AdultUCI[["capital-loss"]][AdultUCI[["capital-loss"]]>0]),
Inf)), labels = c("None", "Low", "High"))

create transactions
Adult <- as(AdultUCI, "transactions")
Adult

affinity Computing Affinity Between Items

Description

Provides the generic function affinity and the S4 methods to compute and return a similarity
matrix with the affinities between items for a set of transactions.

Usage

affinity(x)

Arguments

x a matrix or an object of class itemMatrix or transactions.

8 APappearance-class

Details

Affinity between the two items i and j is defined by Aggarwal et al. (2002) as

A(i, j) =
sup({i, j})

sup({i}) + sup({j})− sup({i, j})
,

where sup(.) is the support measure. This means that affinity is the Jaccard similarity between
items.

Value

returns an object of class ar_similarity which represents the affinities between items in x.

Author(s)

Michael Hahsler

References

Charu C. Aggarwal, Cecilia Procopiuc, and Philip S. Yu (2002) Finding localized associations in
market basket data, IEEE Trans. on Knowledge and Data Engineering, 14(1):51–62.

See Also

dissimilarity, ar_similarity-class, itemMatrix-class

Examples

data("Adult")

choose a sample, calculate affinities
s <- sample(Adult, 500)
s

a <- affinity(s)
image(a)

APappearance-class Class APappearance — Specifying the appearance Argument of Apri-
ori to Implement Rule Templates

Description

Specifies the restrictions on the associations mined by apriori. These restrictions can implement
certain aspects of rule templates described by Klemettinen (1994).

Note that appearance is only supported by the implementation of apriori.

APappearance-class 9

Objects from the Class

If appearance restrictions are used, an appearance object will be created automatically within the
apriori function using the information in the named list of the function’s appearance argument.
In this case, the item labels used in the list will be automatically matched against the items in the
used transaction database. The list can contain the following elements:

lhs, rhs, both, items, none: character vectors giving the labels of the items which can appear in
the specified place (rhs, lhs or both for rules and items for itemsets). none specifies, that the
items mentioned there cannot appear anywhere in the rule/itemset. Note that items cannot be
specified in more than one place (i.e., you cannot specify an item in lhs and rhs, but have to
specify it as both).

default: one of "both", "lhs", "rhs", "none". Specified the default appearance for all items
not explicitly mentioned in the other elements of the list. Leave unspecified and the code will
guess the correct setting.

Objects can also be created by calls of the form new("APappearance", ...). In this case, item
IDs (column numbers of the transactions incidence matrix) have to be used instead of labels.

Slots

set: an integer scalar indicating how many items are specified for each of lhs, rhs, items, both and
none

items: an integer vector of item IDs (column numbers)

labels: a character vector of item labels

default: a character scalar indicating the value for default appearance

Author(s)

Michael Hahsler and Bettina Gruen

References

Christian Borgelt (2004) Apriori — Finding Association Rules/Hyperedges with the Apriori Algo-
rithm. www.borgelt.net/apriori.html

M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen and A. I. Verkamo (1994). Finding In-
teresting Rules from Large Sets of Discovered Association Rules. In Proceedings of the Third
International Conference on Information and Knowledge Management, 401–407.

See Also

apriori

Examples

data("Adult")

find only frequent itemsets which do not contain small or large income
is <- apriori(Adult, parameter = list(support= 0.1, target="frequent"),

www.borgelt.net/apriori.html

10 apriori

appearance = list(none = c("income=small", "income=large")))
itemFrequency(items(is))["income=small"]
itemFrequency(items(is))["income=large"]

find itemsets that only contain small or large income, or young age
is <- apriori(Adult, parameter = list(support= 0.1, target="frequent"),

appearance = list(items = c("income=small", "income=large", "age=Young")))
inspect(head(is))

find only rules with income-related variables in the right-hand-side.
incomeItems <- grep("^income=", itemLabels(Adult), value = TRUE)
incomeItems
rules <- apriori(Adult, parameter = list(support=0.2, confidence = 0.5),

appearance = list(rhs = incomeItems))
inspect(head(rules))

Note: For more complicated restrictions you have to mine all rules/itemsets and
then filter the results afterwards.

apriori Mining Associations with Apriori

Description

Mine frequent itemsets, association rules or association hyperedges using the Apriori algorithm.
The Apriori algorithm employs level-wise search for frequent itemsets. The implementation of
Apriori used includes some improvements (e.g., a prefix tree and item sorting).

Usage

apriori(data, parameter = NULL, appearance = NULL, control = NULL)

Arguments

data object of class transactions or any data structure which can be coerced into
transactions (e.g., a binary matrix or data.frame).

parameter object of class APparameter or named list. The default behavior is to mine
rules with minimum support of 0.1, minimum confidence of 0.8, maximum of 10
items (maxlen), and a maximal time for subset checking of 5 seconds (maxtime).

appearance object of class APappearance or named list. With this argument item appear-
ance can be restricted (implements rule templates). By default all items can
appear unrestricted.

control object of class APcontrol or named list. Controls the algorithmic performance
of the mining algorithm (item sorting, report progress (verbose), etc.)

apriori 11

Details

Calls the C implementation of the Apriori algorithm by Christian Borgelt for mining frequent item-
sets, rules or hyperedges.

Note: Apriori only creates rules with one item in the RHS (Consequent)! The default value
in APparameter for minlen is 1. This means that rules with only one item (i.e., an empty an-
tecedent/LHS) like

{} => {beer}

will be created. These rules mean that no matter what other items are involved, the item in the RHS
will appear with the probability given by the rule’s confidence (which equals the support). If you
want to avoid these rules then use the argument parameter=list(minlen=2).

Notes on run time and memory usage: If the minimum support is chosen too low for the dataset,
then the algorithm will try to create an extremely large set of itemsets/rules. This will result in
very long run time and eventually the process will run out of memory. To prevent this, the default
maximal length of itemsets/rules is restricted to 10 items (via the parameter element maxlen=10)
and the time for checking subsets is limited to 5 seconds (via maxtime=5). The output will show
if you hit these limits in the "checking subsets" line of the output. The time limit is only checked
when the subset size increases, so it may run significantly longer than what you specify in maxtime.
Setting maxtime=0 disables the time limit.

Interrupting execution with Control-C/Esc is not recommended. Memory cleanup will be prevented
resulting in a memory leak. Also, interrupts are only checked when the subset size increases, so it
may take some time till the execution actually stops.

Value

Returns an object of class rules or itemsets.

Author(s)

Michael Hahsler and Bettina Gruen

References

R. Agrawal, T. Imielinski, and A. Swami (1993) Mining association rules between sets of items in
large databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 207–216, Washington D.C.

Christian Borgelt and Rudolf Kruse (2002) Induction of Association Rules: Apriori Implementa-
tion. 15th Conference on Computational Statistics (COMPSTAT 2002, Berlin, Germany) Physica
Verlag, Heidelberg, Germany.

Christian Borgelt (2003) Efficient Implementations of Apriori and Eclat. Workshop of Frequent
Item Set Mining Implementations (FIMI 2003, Melbourne, FL, USA).

APRIORI Implementation: www.borgelt.net/apriori.html

See Also

APparameter-class, APcontrol-class, APappearance-class, transactions-class, itemsets-class,
rules-class

www.borgelt.net/apriori.html

12 AScontrol-classes

Examples

data("Adult")
Mine association rules.
rules <- apriori(Adult,
parameter = list(supp = 0.5, conf = 0.9, target = "rules"))
summary(rules)

AScontrol-classes Classes AScontrol, APcontrol, ECcontrol — Specifying the control Ar-
gument of apriori() and eclat()

Description

The AScontrol class holds the algorithmic parameters for the used mining algorithms. APcontrol
and ECcontrol directly extend AScontrol with additional slots for parameters only suitable for the
algorithms Apriori (APcontrol) and Eclat (ECcontrol).

Objects from the Class

A suitable default control object will be automatically created by the apriori or the eclat function.
By specifying a named list (names equal to slots) as control argument for the apriori or the eclat
function, default values can be replaced by the values in the list. Objects can also be created by calls
of the form new("APcontrol", ...) or new("ECcontrol", ...).

Slots

Common slots defined in AScontrol:

sort: an integer scalar indicating how to sort items with respect to their frequency: (default: 2)

1: ascending
-1: descending
0: do not sort
2: ascending

-2: descending with respect to transaction size sum

verbose: a logical indicating whether to report progress

Additional slots for Apriori in APcontrol:

filter: a numeric scalar indicating how to filter unused items from transactions (default: 0.1)

= 0: do not filter items with respect to. usage in sets
< 0: fraction of removed items for filtering
> 0: take execution times ratio into account

tree: a logical indicating whether to organize transactions as a prefix tree (default: TRUE)

heap: a logical indicating whether to use heapsort instead of quicksort to sort the transactions
(default: TRUE)

ASparameter-classes 13

memopt: a logical indicating whether to minimize memory usage instead of maximize speed (de-
fault: FALSE)

load: a logical indicating whether to load transactions into memory (default: TRUE)

Additional slots for Eclat in ECcontrol:

sparse: a numeric value for the threshold for sparse representation (default: 7)

Methods

coerce signature(from = "NULL", to = "APcontrol")

coerce signature(from = "list", to = "APcontrol")

coerce signature(from = "NULL", to = "ECcontrol")

coerce signature(from = "list", to = "ECcontrol")

Author(s)

Michael Hahsler and Bettina Gruen

References

Christian Borgelt (2004) Apriori — Finding Association Rules/Hyperedges with the Apriori Algo-
rithm. www.borgelt.net/apriori.html

See Also

apriori, eclat

ASparameter-classes Classes ASparameter, APparameter, ECparameter — Specifying the
parameter Argument of apriori() and eclat()

Description

The ASparameter class holds the mining parameters (e.g., minimum support) for the used mining
algorithms. APparameter and ECparameter directly extend ASparameter with additional slots for
parameters only suitable for the Apriori (APparameter) or the Eclat algorithms (ECparameter).

Objects from the Class

A suitable default parameter object will be automatically created by the apriori or the eclat
function. By specifying a named list (names equal to slots) as parameter argument for the apriori
or the eclat function, default values can be replaced by the values in the list. Objects can be created
by calls of the form new("APparameter", ...) or new("ECparameter", ...).

www.borgelt.net/apriori.html

14 ASparameter-classes

Slots

Common slots defined in ASparameter:

support: a numeric value for the minimal support of an item set (default: 0.1)

minlen: an integer value for the minimal number of items per item set (default: 1 item)

maxlen: an integer value for the maximal number of items per item set (default: 10 items)

target: a character string indicating the type of association mined. One of

• "frequent itemsets"

• "maximally frequent itemsets"

• "closed frequent itemsets"

• "rules" (only available for Apriori; use ruleInduction for eclat.)
• "hyperedgesets" (only available for Apriori; see references for the definition of associ-

ation hyperedgesets)

ext: a logical indicating whether to produce extended information on quality measures (e.g., lhs.support)
(default: FALSE)

Additional slots for Apriori in APparameter:

confidence: a numeric value for the minimal confidence of rules/association hyperedges (default:
0.8). For frequent itemsets it is set to NA.

smax: a numeric value for the maximal support of itemsets/rules/hyperedgesets (default: 1)

arem: a character string indicating the used additional rule evaluation measure (default: "none")
given by one of

"none": no additional evaluation measure
"diff": absolute confidence difference
"quot": difference of confidence quotient to 1
"aimp": absolute difference of improvement to 1
"info": information difference to prior
"chi2": normalized χ2 measure

aval: a logical indicating whether to return the additional rule evaluation measure selected with
arem.

minval: a numeric value for the minimal value of additional evaluation measure selected with arem
(default: 0.1)

originalSupport: a logical indicating whether to use for minimum support the original definition
of the support of a rule (lhs and rhs) instead of lhs support. Make sure to use ext = TRUE if
originalSupport is set to FALSE (default: TRUE)

maxtime: Time limit in seconds for checking subsets. maxtime=0 disables the time limit. (default:
5 seconds)

Additional slots for Eclat in ECparameter:

tidLists: a logical indicating whether to return also a list of supporting transactions (transaction
IDs) (default: FALSE)

associations-class 15

Methods

coerce signature(from = "NULL", to = "APparameter")

coerce signature(from = "list", to = "APparameter")

coerce signature(from = "NULL", to = "ECparameter")

coerce signature(from = "list", to = "ECparameter")

show signature(object = "ASparameter")

Author(s)

Michael Hahsler and Bettina Gruen

References

Christian Borgelt (2004) Apriori — Finding Association Rules/Hyperedges with the Apriori Algo-
rithm. www.borgelt.net/apriori.html

See Also

apriori, eclat, weclat (for weighted rule mining), ruleInduction

associations-class Class associations - A Set of Associations

Description

The associations class is a virtual class which is extended to represent mining result (e.g., sets
of itemsets or rules). The class provides accessors for the quality slot and a method for sorting the
associations.

Objects from the Class

A virtual class: No objects may be created from it.

Slots

quality: a data.frame for quality measures (e.g., interest measures as support or confidence). Each
quality measure is a named vector with the same length as the number of elements in the set
of associations and each vector element belongs to the association with the same index.

info: a list which is used to store algorithm specific mining information. Typically it contains a
least the elements "data" (name of the transaction data set), "ntransactions" (length of the
data set), "support" (the minimum support used for mining).

www.borgelt.net/apriori.html

16 combine

Methods

info<- signature(x = "associations"); replaces the info list.

info signature(x = "associations"); returns the info list.

items signature(x = "associations"); dummy method. This method has to be implemented
by all subclasses of associations and return the items which make up each association as an
object of class itemMatrix.

labels signature(object = "associations"); dummy method. This method has to be imple-
mented by all subclasses of associations and return a vector of length(object) of labels
for the elements in the association.

length signature(x = "associations"); dummy method. This method has to be implemented
by all subclasses of associations and return the number of elements in the association.

quality<- signature(x = "associations"); replaces the quality data.frame. The lengths of the
vectors in the data.frame have to equal the number of associations in the set.

quality signature(x = "associations"); returns the quality data.frame.

show signature(object = "associations")

Subclasses

itemsets-class, rules-class

Author(s)

Michael Hahsler

See Also

sort, write, length, is.subset, is.superset, sets, unique, itemMatrix-class

combine Combining Objects

Description

Provides the S4 methods to combine several objects based on itemMatrix into a single object.

Note, use union rather than c to combine several mined itemsets (or rules) into a single set.

Usage

S4 method for signature 'itemMatrix'
c(x, ..., recursive = FALSE)

S4 method for signature 'transactions'
c(x, ..., recursive = FALSE)

combine 17

S4 method for signature 'rules'
c(x, ..., recursive = FALSE)

S4 method for signature 'itemsets'
c(x, ..., recursive = FALSE)

Arguments

x first object.

... further objects of the same class as x to be combined.

recursive a logical. If recursive=TRUE, the function recursively descends through lists
combining all their elements into a vector.

Value

An object of the same class as x.

Author(s)

Michael Hahsler

See Also

itemMatrix-class, transactions-class, rules-class, itemsets-class

Examples

data("Adult")

combine transactions
a1 <- Adult[1:10]
a2 <- Adult[101:110]

aComb <- c(a1, a2)
summary(aComb)

combine rules (can contain the same rule multiple times)
r1 <- apriori(Adult[1:1000])
r2 <- apriori(Adult[1001:2000])
rComb <- c(r1, r2)
rComb

union of rules (a set with only unique rules: same as unique(rComb))
rUnion <- union(r1,r2)
rUnion

18 coverage

coverage Calculate coverage for rules

Description

Provides the generic function and the needed S4 method to calculate the coverage (support of the
left-hand-side) of rules.

Usage

coverage(x, transactions = NULL, reuse = TRUE)

Arguments

x the set of rules.

transactions the data set used to generate ’x’. Only needed if the quality slot of ’x’ does not
contain support and confidence.

reuse reuse support and confidence stored in ’x’ or recompute from transactions?

Details

Coverage (also called cover or LHS-support) is the support of the left-hand-side of the rule, i.e.,
supp(X). It represents a measure of to how often the rule can be applied.

Coverage is quickly calculated from the rules quality measures (support and confidence) stored in
the quality slot. If these values are not present, then the support of the LHS is counted using the
data supplied in transactions.

Coverage is also one of the measures available via the function interestMeasures.

Value

A numeric vector of the same length as x containing the coverage values for the sets in x.

Author(s)

Michael Hahsler

See Also

interestMeasure, rules-class

crossTable 19

Examples

data("Income")

find and some rules (we only use 5 rules here) and calculate coverage
rules <- apriori(Income)[1:5]
quality(rules) <- cbind(quality(rules), coverage = coverage(rules))

inspect(rules)

crossTable Cross-tabulate joint occurrences across pairs of items

Description

Provides the generic function crossTable and the S4 method to cross-tabulate joint occurrences
across pairs of items.

Usage

crossTable(x, ...)
S4 method for signature 'itemMatrix'
crossTable(x, measure = c("count", "support", "probability",
"lift", "chiSquared"), sort = FALSE)

Arguments

x object to be cross-tabulated (transactions or itemMatrix).

measure measure to return. Default is co-occurence counts.

sort sort the items by support.

... aditional arguments.

Value

A symmetric matrix of n time n, where n is the number of items times in x. The matrix contains the
co-occurrence counts between pairs of items.

Author(s)

Michael Hahsler

See Also

transactions-class, itemMatrix-class.

20 DATAFRAME

Examples

data("Groceries")

ct <- crossTable(Groceries, sort=TRUE)
ct[1:5, 1:5]

sp <- crossTable(Groceries, measure="support", sort=TRUE)
sp[1:5,1:5]

lift <- crossTable(Groceries, measure="lift", sort=TRUE)
lift[1:5,1:5]

chi2 <- crossTable(Groceries, measure="chiSquared", sort=TRUE)
chi2[1:5,1:5]

DATAFRAME Data.frame Representation for arules Objects

Description

Provides the generic function DATAFRAME and the S4 methods to create a data.frame representation
from some arules objects. based on rules. These methods are used for the coercion to a data.frame,
but offers more control over the coercion process (item separators, etc.).

Usage

DATAFRAME(from, ...)

Arguments

from the object to be converted into a data.frame (rules, itemsets, transactions).

... further arguments.

Details

Using DATAFRAME is equivalent to the standard coercion as(x, "data.frame"). However, for
rules, the argument separate = TRUE will produce separate columns for the LHS and the RHS of
the rule. Furthermore, the arguments itemSep, setStart, setEnd (and ruleSep for separate = FALSE)
will be passed on to the label method.

Value

a data.frame.

Author(s)

Michael Hahsler

discretize 21

See Also

coerce,rules,data.frame-method, coerce,itemsets,data.frame-method, coerce,transactions,data.frame-method,
labels,itemMatrix-method, LIST

Examples

data(Adult)

DATAFRAME(head(Adult))
DATAFRAME(head(Adult), setStart = '', itemSep = ' + ', setEnd = '')

rules <- apriori(Adult,
parameter = list(supp = 0.5, conf = 0.9, target = "rules"))

rules <- head(rules, by = "conf")

default coercions (same as as(rules, "data.frame"))
DATAFRAME(rules)

DATAFRAME(rules, separate = TRUE)
DATAFRAME(rules, separate = TRUE, setStart = '', itemSep = ' + ', setEnd = '')

discretize Convert a Continuous Variable into a Categorical Variable

Description

This function implements several basic unsupervised methods to convert continuous variables into
a categorical variables (factor) suitable for association rule mining. For convenience, a whole
data.frame can be discretized (i.e., all numeric columns are discretized).

Usage

discretize(x, method = "frequency", breaks = 3,
labels = NULL, include.lowest = TRUE, right = FALSE, dig.lab = 3,
ordered_result = FALSE, infinity = FALSE, onlycuts = FALSE,
categories, ...)

discretizeDF(df, methods = NULL, default = NULL)

Arguments

x a numeric vector (continuous variable).

method discretization method. Available are: "interval" (equal interval width), "frequency"
(equal frequency), "cluster" (k-means clustering) and "fixed" (categories
specifies interval boundaries). Note that equal frequency does not achieve per-
fect equally sized groups if the data contains duplicated values.

22 discretize

breaks, categories

categories is deprecated, use breaks. either number of categories or a vector
with boundaries for discretization (all values outside the boundaries will be set
to NA).

labels character vector; labels for the levels of the resulting category. By default, labels
are constructed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor..

include.lowest logical; should the first interval be closed to the left?

right logical; should the intervals be closed on the right (and open on the left) or vice
versa?

dig.lab integer; number of digits used to create labels.

ordered_result logical; return a ordered factor?

infinity logical; should the first/last break boundary changed to +/-Inf?

onlycuts logical; return only computed interval boundaries?

... for method "cluster" further arguments are passed on to kmeans. .

df data.frame; each numeric column in the data.frame is discretized.

methods named list of lists or a data.frame; the named list contains list of discretization
parameters (see parameters of discretize) for each numeric column (see de-
tails). If no specific discretization is specified for a column, then the default
settings for discretize are used. Note: the names have to match exactly. If
a data.frame is specified, then the discretization breaks in this data.frame are
applied to df.

default named list; parameters for discretize used for all columns not specified in
methods.

Details

discretize only implements unsupervised discretization. See packages arulesCBA, discretiza-
tion or RWeka for supervised discretization.

discretizeDF applies discretization to each numeric column. Individual discretization parameters
can be specified in the form: methods = list(column_name1 = list(method = ,...), column_name2 = list(...)).

Value

A factor representing the categorized continuous variable with attribute "discretized:breaks" in-
dicating the used breaks or and "discretized:method" giving the used method. If onlycuts = TRUE
is used, a vector with the calculated interval boundaries is returned.

discretizeDF returns a discretized data.frame.

Author(s)

Michael Hahsler

discretize 23

Examples

data(iris)
x <- iris[,1]

look at the distribution before discretizing
hist(x, breaks = 20, main = "Data")

def.par <- par(no.readonly = TRUE) # save default
layout(mat = rbind(1:2,3:4))

convert continuous variables into categories (there are 3 types of flowers)
the default method is equal frequency
table(discretize(x, breaks = 3))
hist(x, breaks = 20, main = "Equal Frequency")
abline(v = discretize(x, breaks = 3,

onlycuts = TRUE), col = "red")
Note: the frequencies are not exactly equal because of ties in the data

equal interval width
table(discretize(x, method = "interval", breaks = 3))
hist(x, breaks = 20, main = "Equal Interval length")
abline(v = discretize(x, method = "interval", breaks = 3,

onlycuts = TRUE), col = "red")

k-means clustering
table(discretize(x, method = "cluster", breaks = 3))
hist(x, breaks = 20, main = "K-Means")
abline(v = discretize(x, method = "cluster", breaks = 3,

onlycuts = TRUE), col = "red")

user-specified (with labels)
table(discretize(x, method = "fixed", breaks = c(-Inf, 6, Inf),

labels = c("small", "large")))
hist(x, breaks = 20, main = "Fixed")
abline(v = discretize(x, method = "fixed", breaks = c(-Inf, 6, Inf),

onlycuts = TRUE), col = "red")

par(def.par) # reset to default

prepare the iris data set for association rule mining
use default discretization
irisDisc <- discretizeDF(iris)
head(irisDisc)

specify discretization for the petal columns
irisDisc <- discretizeDF(iris, methods = list(

Petal.Length = list(method = "frequency", breaks = 3,
labels = c("short", "medium", "long")),

Petal.Width = list(method = "frequency", breaks = 2,
labels = c("narrow", "wide"))

))
head(irisDisc)

24 dissimilarity

discretize new data using the same discretization scheme as the
data.frame supplied in methods. Note: NAs may occure if a new
value falls outside the range of values observed in the
originally discretized table (use argument infinity = TRUE in
discretize to prevent this case.)
discretizeDF(iris[sample(1:nrow(iris), 5),], methods = irisDisc)

dissimilarity Dissimilarity Computation

Description

Provides the generic function dissimilarity and the S4 methods to compute and returns distances
for binary data in a matrix, transactions or associations which can be used for grouping and
clustering. See Hahsler (2016) for an introduction to distance-based clustering of association rules.

Usage

dissimilarity(x, y = NULL, method = NULL, args = NULL, ...)

S4 method for signature 'itemMatrix'
dissimilarity(x, y = NULL, method = NULL, args = NULL,
which = "transactions")

S4 method for signature 'associations'
dissimilarity(x, y = NULL, method = NULL, args = NULL,
which = "associations")

S4 method for signature 'matrix'
dissimilarity(x, y = NULL, method = NULL, args = NULL)

Arguments

x the set of elements (e.g., matrix, itemMatrix, transactions, itemsets, rules).

y NULL or a second set to calculate cross dissimilarities.

method the distance measure to be used. Implemented measures are (defaults to "jaccard"):

"affinity": measure based on the affinity, a similarity measure between
items. It is defined as the average affinity between the items in two transac-
tions (see Aggarwal et al. (2002)). If x is not the full transaction set args
needs to contain either precalculated affinities as element "affinities" or
the transaction set as "transactions".

"cosine": the cosine distance.
"dice": the Dice’s coefficient defined by Dice (1945). Similar to Jaccard but

gives double the weight to agreeing items.
"euclidean": the euclidean distance.

dissimilarity 25

"jaccard": the number of items which occur in both elements divided by the
total number of items in the elements (Sneath, 1957). This measure is often
also called: binary, asymmetric binary, etc.

"matching": the Matching coefficient defined by Sokal and Michener (1958).
This coefficient gives the same weight to presents and absence of items.

"pearson": 1 − r if r > 1 and 1 otherwise. r is Pearson’s correlation coeffi-
cient.

"phi": same as pearson. Pearson’s correlation coefficient reduces to the phi
coefficient for the 2x2 contingency tables used here.

For associations the following additional measures are available:

"toivonen": Method described in Toivonen et al. (1995). For rules this mea-
sure is only defined between rules with the same consequent. The distance
between two rules is defined as the number of transactions which is covered
by only one of the two rules. The transactions used to mine the associations
has to be passed on via args as element "transactions".

"gupta": Method described in Gupta et al. (1999). The distance between two
rules is defined as 1 minus the proportion of transactions which are covered
by both rules in the transactions covered by each rule individually. The
transactions used to mine the associations has to be passed on via args as
element "transactions".

args a list of additional arguments for the methods.

which a character string indicating if the dissimilarity should be calculated between
transactions/associations (default) or items (use "items").

... further arguments.

Value

returns an object of class dist.

Author(s)

Michael Hahsler

References

Aggarwal, C.C., Cecilia Procopiuc, and Philip S. Yu. (2002) Finding localized associations in
market basket data. IEEE Trans. on Knowledge and Data Engineering 14(1):51–62.

Dice, L. R. (1945) Measures of the amount of ecologic association between species. Ecology 26,
pages 297–302.

Gupta, G., Strehl, A., and Ghosh, J. (1999) Distance based clustering of association rules. In
Intelligent Engineering Systems Through Artificial Neural Networks (Proceedings of ANNIE 1999),
pages 759-764. ASME Press.

Hahsler, M. (2016) Grouping association rules using lift. In C. Iyigun, R. Moghaddess, and A.
Oztekin, editors, 11th INFORMS Workshop on Data Mining and Decision Analytics (DM-DA
2016).

26 dissimilarity

Sneath, P. H. A. (1957) Some thoughts on bacterial classification. Journal of General Microbiology
17, pages 184–200.

Sokal, R. R. and Michener, C. D. (1958) A statistical method for evaluating systematic relationships.
University of Kansas Science Bulletin 38, pages 1409–1438.

Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K. and Mannila H. (1995) Pruning and
grouping discovered association rules. In Proceedings of KDD’95.

See Also

affinity, dist-class, itemMatrix-class, associations-class.

Examples

cluster items in Groceries with support > 5%
data("Groceries")

s <- Groceries[,itemFrequency(Groceries)>0.05]
d_jaccard <- dissimilarity(s, which = "items")
plot(hclust(d_jaccard, method = "ward.D2"), main = "Dendrogram for items")

cluster transactions for a sample of Adult
data("Adult")
s <- sample(Adult, 500)

calculate Jaccard distances and do hclust
d_jaccard <- dissimilarity(s)
hc <- hclust(d_jaccard, method = "ward.D2")
plot(hc, labels = FALSE, main = "Dendrogram for Transactions (Jaccard)")

get 20 clusters and look at the difference of the item frequencies (bars)
for the top 20 items) in cluster 1 compared to the data (line)
assign <- cutree(hc, 20)
itemFrequencyPlot(s[assign==1], population=s, topN=20)

calculate affinity-based distances between transactions and do hclust
d_affinity <- dissimilarity(s, method = "affinity")
hc <- hclust(d_affinity, method = "ward.D2")
plot(hc, labels = FALSE, main = "Dendrogram for Transactions (Affinity)")

cluster association rules
rules <- apriori(Adult, parameter=list(support=0.3))
rules <- subset(rules, subset = lift > 2)

use affinity to cluster rules
Note: we need to supply the transactions (or affinities) from the
dataset (sample).
d_affinity <- dissimilarity(rules, method = "affinity",

args = list(transactions = s))
hc <- hclust(d_affinity, method = "ward.D2")
plot(hc, main = "Dendrogram for Rules (Affinity)")

create 4 groups and inspect the rules in the first group.

duplicated 27

assign <- cutree(hc, k = 3)
inspect(rules[assign == 1])

duplicated Find Duplicated Elements

Description

Provides the generic function duplicated and the S4 methods for itemMatrix and associations.
duplicated finds duplicated elements in an itemMatrix. It returns a logical vector indicating
which elements are duplicates.

Note that duplicated can also be used to find transactions with identical items and identical rules
and itemsets stored in rules and itemsets.

Usage

duplicated(x, incomparables = FALSE, ...)

Arguments

x an object of class itemMatrix or associations.

... further arguments (currently unused).

incomparables argument currently unused.

Value

A logical vector indicating duplicated elements.

Author(s)

Michael Hahsler

See Also

unique, rules-class, itemsets-class, itemMatrix-class

Examples

data("Adult")

r1 <- apriori(Adult[1:1000], parameter = list(support = 0.5))
r2 <- apriori(Adult[1001:2000], parameter = list(support = 0.5))

Note this creates a collection of rules from two sets of rules
r_comb <- c(r1, r2)
duplicated(r_comb)

28 eclat

eclat Mining Associations with Eclat

Description

Mine frequent itemsets with the Eclat algorithm. This algorithm uses simple intersection operations
for equivalence class clustering along with bottom-up lattice traversal.

Usage

eclat(data, parameter = NULL, control = NULL)

Arguments

data object of class transactions or any data structure which can be coerced into
transactions (e.g., binary matrix, data.frame).

parameter object of class ECparameter or named list (default values are: support 0.1 and
maxlen 5)

control object of class ECcontrol or named list for algorithmic controls.

Details

Calls the C implementation of the Eclat algorithm by Christian Borgelt for mining frequent itemsets.

Eclat can also return the transaction IDs for each found itemset using tidLists=TRUE as a parameter
and the result can be retrieved as a tidLists object with method tidLists() for class itemsets.
Note that storing transaction ID lists is very memory intensive, creating transaction ID lists only
works for minimum support values which create a relatively small number of itemsets. See also
supportingTransactions.

ruleInduction can be used to generate rules from the found itemsets.

A weighted version of ECLAT is available as function weclat. This version can be used to perform
weighted association rule mining (WARM).

Value

Returns an object of class itemsets.

Author(s)

Michael Hahsler and Bettina Gruen

Epub 29

References

Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. (1997) New algo-
rithms for fast discovery of association rules. Technical Report 651, Computer Science Department,
University of Rochester, Rochester, NY 14627.

Christian Borgelt (2003) Efficient Implementations of Apriori and Eclat. Workshop of Frequent
Item Set Mining Implementations (FIMI 2003, Melbourne, FL, USA).

ECLAT Implementation: http://www.borgelt.net/eclat.html

See Also

ECparameter-class, ECcontrol-class, transactions-class, itemsets-class, weclat, apriori,
ruleInduction, supportingTransactions

Examples

data("Adult")
Mine itemsets with minimum support of 0.1 and 5 or less items
itemsets <- eclat(Adult,
parameter = list(supp = 0.1, maxlen = 5))
itemsets

Create rules from the itemsets
rules <- ruleInduction(itemsets, Adult, confidence = .9)
rules

Epub Epub Data Set

Description

The Epub data set contains the download history of documents from the electronic publication plat-
form of the Vienna University of Economics and Business Administration. The data was recorded
between Jan 2003 and Dec 2008.

Usage

data(Epub)

Format

Object of class transactions with 15729 transactions and 936 items. Item labels are document
IDs of the from "doc_11d". Session IDs and time stamps for transactions are also provided.

Author(s)

Michael Hahsler

http://www.borgelt.net/eclat.html

30 Groceries

Source

Provided by Michael Hahsler from ePub-WU at http://epub.wu-wien.ac.at.

Groceries Groceries Data Set

Description

The Groceries data set contains 1 month (30 days) of real-world point-of-sale transaction data from
a typical local grocery outlet. The data set contains 9835 transactions and the items are aggregated
to 169 categories.

If you use this data set in your paper, please refer to the paper in the references section.

Usage

data(Groceries)

Format

Object of class transactions.

Author(s)

Michael Hahsler

Source

The data set is provided for arules by Michael Hahsler, Kurt Hornik and Thomas Reutterer.

References

Michael Hahsler, Kurt Hornik, and Thomas Reutterer (2006) Implications of probabilistic data
modeling for mining association rules. In M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nuernberger,
and W. Gaul, editors, From Data and Information Analysis to Knowledge Engineering, Studies in
Classification, Data Analysis, and Knowledge Organization, pages 598–605. Springer-Verlag.

http://epub.wu-wien.ac.at

hierarchy 31

hierarchy Support for Item Hierarchies

Description

Often an item hierarchy is available for datasets used for association rule mining. For example in
a supermarket dataset items like "bread" and "beagle" might belong to the item group (category)
"baked goods."

We provide support to use the item hierarchy to aggregate items to different group levels, to produce
multi-level transactions and to filter spurious associations mined from multi-level transactions.

Usage

S4 method for signature 'itemMatrix'
aggregate(x, by)
S4 method for signature 'itemsets'
aggregate(x, by)
S4 method for signature 'rules'
aggregate(x, by)
addAggregate(x, by, postfix = "*")
filterAggregate(x)

Arguments

x an transactions, itemsets or rules object.

by name of a field (hierarchy level) available in itemInfo or a vector of character
strings (factor) of the same length as items in x by which should be aggregated.
Items receiving the same label in by will be aggregated into a single, higher-level
item.

postfix characters added to mark group-level items.

Details

Transactions can store item hierarchies as additional columns in the itemInfo data.frame ("labels"
is reserved for the item labels).

Aggregation: To perform analysis at a group level of the item hierarchy, aggregate() produces
a new object with items aggregated to a given group level. A group-level item is present if one or
more of the items in the group are present in the original object. If rules are aggregated, and the
aggregation would lead to the same aggregated group item in the lhs and in the rhs, then that group
item is removed from the lhs. Rules or itemsets, which are not unique after the aggregation, are
also removed. Note also that the quality measures are not applicable to the new rules and thus are
removed. If these measures are required, then aggregate the transactions before mining rules.

Multi-level analysis: To analyze relationships between individual items and item groups, addAggregate()
creates a new transactions object which contains both, the original items and group-level items
(marked with a given postfix). In association rule mining, all items are handled the same, which
means that we will produce a large number of rules of the type

32 hierarchy

itemA => groupofitemA

with a confidence of 1. This happens also to itemsets filterAggregate() can be used to filter
these spurious rules or itemsets.

Value

aggregate() returns an object of the same class as x encoded with a number of items equal to
the number of unique values in by. Note that for associations (itemsets and rules) the number of
associations in the returned set will most likely be reduced since several associations might map
to the same aggregated association and aggregate returns a unique set. If several associations map
to a single aggregated association then the quality measures of one of the original associations is
randomly chosen.

addAggregate() returns a new transactions object with the original items and the group-items
added. filterAggregateRules() returns a new rules object with the spurious rules remove.

Author(s)

Michael Hahsler

Examples

data("Groceries")
Groceries

Groceries contains a hierarchy stored in itemInfo
head(itemInfo(Groceries))

aggregate by level2: items will become labels at level2
Note that the number of items is therefore reduced to 55
Groceries_level2 <- aggregate(Groceries, by = "level2")
Groceries_level2
head(itemInfo(Groceries_level2)) ## labels are alphabetically sorted!

compare orginal and aggregated transactions
inspect(head(Groceries, 2))
inspect(head(Groceries_level2, 2))

create lables manually (organize items by the first letter)
mylevels <- toupper(substr(itemLabels(Groceries), 1, 1))
head(mylevels)

Groceries_alpha <- aggregate(Groceries, by = mylevels)
Groceries_alpha
inspect(head(Groceries_alpha, 2))

aggregate rules
Note: you could also directly mine rules from aggregated transactions to

hits 33

get support, lift and support
rules <- apriori(Groceries, parameter=list(supp=0.005, conf=0.5))
rules
inspect(rules[1])

rules_level2 <- aggregate(rules, by = "level2")
inspect(rules_level2[1])

mine multi-level rules:
(1) add aggregate items. These items are followed by a *
Groceries_multilevel <- addAggregate(Groceries, "level2")
summary(Groceries_multilevel)
inspect(head(Groceries_multilevel))

rules <- apriori(Groceries_multilevel,
parameter = list(support = 0.01, conf = .9))

inspect(head(rules, by = "lift"))
this contains many spurous rules of type 'item X => aggregare of item X'
with a confidence of 1 and high lift.

filter spurious rules resulting from the aggregation
rules <- filterAggregate(rules)
inspect(head(rules, by = "lift"))

hits Computing Transaction Weights With HITS

Description

Compute the hub weights of a collection of transactions using the HITS (hubs and authorities)
algorithm.

Usage

hits(data, iter = 16L, tol = NULL,
type = c("normed", "relative", "absolute"), verbose = FALSE)

Arguments

data an object of or coercible to class transactions.

iter an integer value specifying the maximum number of iterations to use.

tol convergence tolerance (default FLT_EPSILON).

type a string value specifying the norming of the hub weights. For "normed" scale
the weights to unit length (L2 norm), and for "relative" to unit sum.

verbose a logical specifying if progress and runtime information should be displayed.

34 hits

Details

Model a collection of transactions as a bipartite graph of hubs (transactions) and authorities (items)
with unit arcs and free node weights. That is, a transaction weight is the sum of the (normalized)
weights of the items and vice versa. The weights are estimated by iterating the model to a steady-
state using a builtin convergence tolerance of FLT_EPSILON for (the change in) the norm of the
vector of authorities.

Value

A numeric vector with transaction weights for data.

Author(s)

Christian Buchta

References

K. Sun and F. Bai (2008). Mining Weighted Association Rules without Preassigned Weights. IEEE
Transactions on Knowledge and Data Engineering, 4 (30), 489–495.

See Also

Class transactions, function weclat

Examples

data(SunBai)

calculate transaction weigths
w <- hits(SunBai)
w

add transaction weight to the dataset
transactionInfo(SunBai)[["weight"]] <- w
transactionInfo(SunBai)

calulate regular item frequencies
itemFrequency(SunBai, weighted = FALSE)

calulate weighted item frequencies
itemFrequency(SunBai, weighted = TRUE)

image 35

image Visual Inspection of Binary Incidence Matrices

Description

Provides the S4 methods image to generate level plots to visually inspect binary incidence matrices,
i.e., objects based on itemMatrix (e.g., transactions, tidLists, items in itemsets or rhs/lhs in rules).
These plots can be used to identify problems in a data set (e.g., recording problems with some
transactions containing all items).

Usage

S4 method for signature 'itemMatrix'
image(x,

xlab = "Items (Columns)",
ylab = "Elements (Rows)", ...)

S4 method for signature 'transactions'
image(x,

xlab = "Items (Columns)",
ylab = "Transactions (Rows)", ...)

S4 method for signature 'tidLists'
image(x,

xlab="Transactions (Columns)",
ylab="Items/itemsets (Rows)", ...)

Arguments

x the object (itemMatrix, transactions or tidLists).

xlab, ylab labels for the plot.

... further arguments passed on to image in package Matrix which in turn are
passed on to levelplot in lattice.

Author(s)

Michael Hahsler

See Also

image (for dgTMatrix in Matrix), levelplot (in lattice), itemMatrix-class, transactions-class,
tidLists-class

36 Income

Examples

data("Epub")

in this data set we can see that not all
items were available from the beginning.
image(Epub[1:1000])

Income Income Data Set

Description

The IncomeESL data set originates from an example in the book ‘The Elements of Statistical Learn-
ing’ (see Section source). The data set is an extract from this survey. It consists of 8993 instances
(obtained from the original data set with 9409 instances, by removing those observations with the
annual income missing) with 14 demographic attributes. The data set is a good mixture of cate-
gorical and continuous variables with a lot of missing data. This is characteristic of data mining
applications. The Income data set contains the data already prepared and coerced to transactions.

Usage

data("Income")
data("IncomeESL")

Format

IncomeESL is a data frame with 8993 observations on the following 14 variables.

income an ordered factor with levels [0,10) < [10,15) < [15,20) < [20,25) < [25,30) <
[30,40) < [40,50) < [50,75) < 75+

sex a factor with levels male female
marital status a factor with levels married cohabitation divorced widowed single

age an ordered factor with levels 14-17 < 18-24 < 25-34 < 35-44 < 45-54 < 55-64 < 65+

education an ordered factor with levels grade <9 < grades 9-11 < high school graduate <
college (1-3 years) < college graduate < graduate study

occupation a factor with levels professional/managerial sales laborer clerical/service
homemaker student military retired unemployed

years in bay area an ordered factor with levels <1 < 1-3 < 4-6 < 7-10 < >10

dual incomes a factor with levels not married yes no

number in household an ordered factor with levels 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9+

number of children an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9+

householder status a factor with levels own rent live with parents/family

type of home a factor with levels house condominium apartment mobile Home other

ethnic classification a factor with levels american indian asian black east indian hispanic
pacific islander white other

language in home a factor with levels english spanish other

Income 37

Details

To create Income (the transactions object), the original data frame in IncomeESL is prepared in a
similar way as described in ‘The Elements of Statistical Learning.’ We removed cases with missing
values and cut each ordinal variable (age, education, income, years in bay area, number in house-
hold, and number of children) at its median into two values (see Section examples).

Author(s)

Michael Hahsler

Source

Impact Resources, Inc., Columbus, OH (1987).

Obtained from the web site of the book: Hastie, T., Tibshirani, R. \& Friedman, J. (2001) The
Elements of Statistical Learning. Springer-Verlag.

Examples

data("IncomeESL")
IncomeESL[1:3,]

remove incomplete cases
IncomeESL <- IncomeESL[complete.cases(IncomeESL),]

preparing the data set
IncomeESL[["income"]] <- factor((as.numeric(IncomeESL[["income"]]) > 6) +1,

levels = 1 : 2 , labels = c("$0-$40,000", "$40,000+"))

IncomeESL[["age"]] <- factor((as.numeric(IncomeESL[["age"]]) > 3) +1,
levels = 1 : 2 , labels = c("14-34", "35+"))

IncomeESL[["education"]] <- factor((as.numeric(IncomeESL[["education"]]) > 4) +1,
levels = 1 : 2 , labels = c("no college graduate", "college graduate"))

IncomeESL[["years in bay area"]] <- factor(
(as.numeric(IncomeESL[["years in bay area"]]) > 4) +1,
levels = 1 : 2 , labels = c("1-9", "10+"))

IncomeESL[["number in household"]] <- factor(
(as.numeric(IncomeESL[["number in household"]]) > 3) +1,
levels = 1 : 2 , labels = c("1", "2+"))

IncomeESL[["number of children"]] <- factor(
(as.numeric(IncomeESL[["number of children"]]) > 1) +0,
levels = 0 : 1 , labels = c("0", "1+"))

creating transactions
Income <- as(IncomeESL, "transactions")
Income

38 interestMeasure

inspect Display Associations and Transactions in Readable Form

Description

Provides the generic function inspect and S4 methods to display associations and transactions plus
additional information formatted for online inspection.

Usage

inspect(x, ...)

Arguments

x a set of associations or transactions or an itemMatrix.

... additional arguments can be used to customize the output: setStart, setEnd,
itemSep and ruleSep. Items are printed only one per line in case the output
lines get very long. This can also be directly controlled using linebreak.

Author(s)

Michael Hahsler and Kurt Hornik

See Also

itemMatrix-class, itemsets-class, rules-class, transactions-class

Examples

data("Adult")
rules <- apriori(Adult)
inspect(rules[1000])

inspect(rules[1000], ruleSep = "---->", itemSep = " + ", setStart = "", setEnd ="",
linebreak = FALSE)

interestMeasure Calculate Additional Interest Measures

Description

Provides the generic function interestMeasure and the needed S4 method to calculate various
additional interest measures for existing sets of itemsets or rules. Definitions and equations can be
found in Hahsler (2015).

http://michael.hahsler.net/research/association_rules/measures.html

interestMeasure 39

Usage

interestMeasure(x, measure, transactions = NULL, reuse = TRUE, ...)

Arguments

x a set of itemsets or rules.

measure name or vector of names of the desired interest measures (see details for avail-
able measures). If measure is missing then all available measures are calculated.

transactions the transaction data set used to mine the associations or a set of different trans-
actions to calculate interest measures from (Note: you need to set reuse=FALSE
in the later case).

reuse logical indicating if information in quality slot should be reuse for calculating
the measures. This speeds up the process significantly since only very little (or
no) transaction counting is necessary if support, confidence and lift are already
available. Use reuse=FALSE to force counting (might be very slow but is neces-
sary if you use a different set of transactions than was used for mining).

... further arguments for the measure calculation.

Details

For itemsets X the following measures are implemented:

"allConfidence" (Omiencinski, 2003) Is defined on itemsets as the minimum confidence of all
possible rule generated from the itemset.
Range: [0, 1]

"crossSupportRatio", cross-support ratio (Xiong et al., 2003) Defined on itemsets as the ratio
of the support of the least frequent item to the support of the most frequent item, i.e., min(supp(x∈X))

max(supp(x∈X)) .
Cross-support patterns have a ratio smaller than a set threshold. Normally many found pat-
terns are cross-support patterns which contain frequent as well as rare items. Such patterns
often tend to be spurious.
Range: [0, 1]

"lift" Probability (support) of the itemset over the product of the probabilities of all items in the
itemset, i.e., supp(X)∏

x∈X
supp(X)

. This is a measure of dependence similar to lift for rules.

Range: [0,∞] (1 indicated independence)

"support", supp (Agrawal et al., 1996) Support is an estimate of P (X) a measure of generality
of the itemset.
Range: [0, 1]

"count" Absolute support count of the itemset.
Range: [0,∞]

For rules X ⇒ Y the following measures are implemented. In the following we use the notation
supp(X ⇒ Y) = supp(X ∪ Y) to indicate the support of the union of the itemsets X and Y ,
i.e., the proportion of the transactions that contain both itemsets. We also use X as the complement
itemset to X with supp(X) = 1− supp(X), i.e., the proportion of transactions that do not contain
X .

40 interestMeasure

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002) Defined
as conf(X ⇒ Y)− supp(Y)

Range: [−.5, 1]

"chiSquared", χ2 (Liu et al., 1999) The chi-squared statistic to test for independence between the
lhs and rhs of the rule. The critical value of the chi-squared distribution with 1 degree of
freedom (2x2 contingency table) at α = 0.05 is 3.84; higher chi-squared values indicate that
the lhs and the rhs are not independent.
Note that the contingency table is likely to have cells with low expected values and that thus
Fisher’s Exact Test might be more appropriate (see below).
Called with significance=TRUE, the p-value of the test for independence is returned instead
of the chi-squared statistic. For p-values, substitutes effects can be tested using the parameter
complements = FALSE.
Range: [0,∞]or p-value scale

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002) The certainty factor is a mea-
sure of variation of the probability that Y is in a transaction when only considering transactions
with X. An inreasing CF means a decrease of the probability that Y is not in a transaction that
X is in. Negative CFs have a similar interpretation.
Range: [−1, 1] (0 indicates independence)

"collectiveStrength" Collective strength (S).
Range: [0,∞]

"confidence", conf (Agrawal et al., 1996) Rule confidence is an estimate of P (Y |X) calculated
as supp(X⇒Y)

supp(X) . Confidence is a measure of validity.

Range [0, 1]

"conviction" (Brin et al. 1997) Defined as supp(X)supp(Y)

supp(X∪Y)
.

Range: [0,∞] (1 indicates unrelated items)

"cosine" (Tan et al., 2004) Defined as supp(X∪Y)√
(supp(X)supp(Y))

Range: [0, 1]

"count" Absolute support count of the rule.
Range: [0,∞]

"coverage", cover, LHS-support Support of the left-hand-side of the rule, i.e., supp(X). A mea-
sure of to how often the rule can be applied.
Range: [0, 1]

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999) Confidence con-
firmed by its negative as conf(X ⇒ Y)− conf(X ⇒ Y).
Range: [−1, 1]

"casualConfidence", casual confidence (Kodratoff, 1999) Confidence reinforced by negatives given
by 1

2 (conf(X ⇒ Y) + conf(Y ⇒ X)).
Range: [0, 1]

"casualSupport", casual support (Kodratoff, 1999) Support improved by negatives given by supp(X∪
Y)− supp(X ∪ Y).
Range: [−1, 1]

interestMeasure 41

"counterexample", example and counter-example rate supp(X∪Y)−supp(X∪Y)
supp(X∪Y)

Range: [0, 1]

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999) Defined by supp(X∪Y)−supp(X∪
Y).
Range: [0, 1]

"doc", difference of confidence (Hofmann and Wilhelm, 2001) Defined as conf(X ⇒ Y) −
conf(X ⇒ Y).
Range: [−1, 1]

"fishersExactTest", Fisher’s exact test (Hahsler and Hornik, 2007) p-value of Fisher’s exact test
used in the analysis of contingency tables where sample sizes are small. By default comple-
mentary effects are mined, substitutes can be found by using the parameter complements = FALSE.
Note that it is equal to hyper-confidence with significance=TRUE.
Range: [0, 1] (p-value scale)

"gini", Gini index (Tan et al., 2004) Measures quadratic entropy.
Range: [0, 1] (0 for independence)

"hyperLift" (Hahsler and Hornik, 2007) Adaptation of the lift measure which is more robust for
low counts. It is based on the idea that under independence the count cXY of the transactions
which contain all items in a rule X ⇒ Y follows a hypergeometric distribution (represented
by the random variable CXY) with the parameters given by the counts cX and cY .
Hyper-lift is defined as:

hyperlift(X ⇒ Y) =
cXY

Qδ[CXY]
,

where Qδ[CXY] is the quantile of the hypergeometric distribution given by δ. The quantile
can be given as parameter d (default: d=0.99).
Range: [0,∞] (1 indicates independence)

"hyperConfidence" (Hahsler and Hornik, 2007) Confidence level for observation of too high/low
counts for rules X ⇒ Y using the hypergeometric model. Since the counts are drawn from
a hypergeometric distribution (represented by the random variable CXY) with known param-
eters given by the counts cX and cY , we can calculate a confidence interval for the observed
counts cXY stemming from the distribution. Hyper-confidence reports the confidence level
(significance level if significance=TRUE is used) for

complements - 1− P [CXY >= cXY |cX , cY]

substitutes - 1− P [CXY < cXY |cX , cY].

A confidence level of, e.g., > 0.95 indicates that there is only a 5% chance that the count for
the rule was generated randomly.
By default complementary effects are mined, substitutes can be found by using the parameter
complements = FALSE.
Range: [0, 1]

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010) IR is defined as |supp(X)−supp(Y)|
supp(X)+supp(Y)−supp(X⇒Y))

gauges the degree of imbalance between two events that the lhs and the rhs are contained in
a transaction. The ratio is close to 0 if the conditional probabilities are similar (i.e., very
balanced) and close to 1 if they are very different.
Range: [0, 1] (0 indicates a balanced rule)

42 interestMeasure

"implicationIndex", implication index (Gras, 1996) Defined as
√
N supp(X∪Y)−supp(X)supp(Y)√

supp(X)supp(Y)
.

Represents a variation of the Lerman similarity.
Range: [0, 1] (0 means independence)

"importance" (MS Analysis Services) Log likelihood of the right-hand side of the rule, given the
left-hand side of the rule.
log10(L(X ⇒ Y)/L(X ⇒ Ȳ))

where L is the Laplace corrected confidence.
Range: [−Inf, Inf]

"improvement" (Bayardo et al., 2000) The improvement of a rule is the minimum difference be-
tween its confidence and the confidence of any more general rule (i.e., a rule with the same
consequent but one or more items removed in the LHS). Defined as minX′⊂X(conf(X ⇒
Y)− conf(X ′ ⇒ Y)

Range: [0, 1]

"jaccard", Jaccard coefficient (Tan and Kumar, 2000) sometimes also called Coherence (Wu et al., 2010)
Null-invariant measure defined as supp(X∪Y)

supp(X)+supp(Y)−supp(X∪Y)

Range: [−1, 1] (0 for independence)

"jMeasure", J-measure, J (Smyth and Goodman, 1991) Measures cross entrophy.
Range: [0, 1] (0 for independence)

"kappa" (Tan and Kumar, 2000) Defined as supp(X∪Y)+supp(X∪Y)−supp(X)supp(Y)−supp(X)supp(Y)

1−supp(X)supp(Y)−supp(X)supp(Y)

Range: [−1, 1] (0 means independence)

"klosgen", Klosgen (Tan and Kumar, 2000) Defined as
√
supp(X ∪ Y)conf(X ⇒ Y)−supp(Y)

Range: [−1, 1] (0 for independence)

"kulczynski" (Wu, Chen and Han, 2010; Kulczynski, 1927) Calculate the null-invariant Kulczyn-
ski measure with a preference for skewed patterns.
Range: [0, 1]

"lambda", Goodman-Kruskal λ, predictive association (Tan and Kumar, 2000) Range: [0, 1]

"laplace", Laplace corrected confidence, L (Tan and Kumar 2000) Estimates confidence with
increasing each count by 1. Prevents counts of 0 and L decreases with lower support.
Range: [0, 1]

"leastContradiction", least contradiction (Aze and Kodratoff, 2004 supp(X∪Y)−supp(X∪Y)
supp(Y) .

Range: [−1, 1]

"lerman", Lerman similarity (Lerman, 1981) Defined as
√
N supp(X∪Y)−supp(X)supp(Y)√

supp(X)supp(Y)

Range: [0, 1]

"leverage", PS (Piatetsky-Shapiro 1991) PS is defined as supp(X ⇒ Y) − supp(X)supp(Y).
It measures the difference of X and Y appearing together in the data set and what would
be expected if X and Y where statistically dependent. It can be interpreted as the gap to
independence.
Range: [−1, 1] (0 indicates intependence)

"lift", interest factor (Brin et al. 1997) Lift quantifies dependence between X and Y by supp(X∪Y)
supp(X)supp(Y) .

Range: [0,∞] (1 means independence)

interestMeasure 43

"maxConfidence" (Wu et al. 2010) Null-invariant measure defined asmax(conf(X ⇒ Y), conf(X ⇒
Y)).
Range: [0, 1]

"mutualInformation", uncertainty, M (Tan et al., 2002) Measures the information gain for Y
provided by X.
Range: [0, 1] (0 for independence)

"oddsRatio", odds ratio α (Tan et al., 2004) The odds of finding X in transactions which contain
Y divided by the odds of finding X in transactions which do not contain Y.
Range: [0,∞] (1 indicates that Y is not associated to X)

"phi", correlation coefficient φ (Tan et al., 2004 Equivalent to Pearsons Product Moment Corre-
lation Coefficient ρ.
Range: [−1, 1] (0 when X and Y are independent)

"ralambrodrainy", Ralambrodrainy Measure (Diatta et al., 2007) Range: [0, 1]

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008) RLD evaluates the deviation
of the support of the whole rule from the support expected under independence given the
supports of the LHS and the RHS. The code was contributed by Silvia Salini.
Range: [0, 1]

"rulePowerFactor", rule power factor (Ochin et al., 2016) Product of support and confidence.
Can be seen as rule confidence weighted by support.
Range: [0, 1]

"sebag", Sebag measure (Sebag and Schoenauer, 1988) Defined as supp(X∪Y)

supp(X∪Y)

Range: [0, 1]

"support", supp (Agrawal et al., 1996) Support is an estimate of P (X ∪ Y) and measures the
generality of the rule.
Range: [0, 1]

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996) Defined as supp(X∪Y)
supp(X)supp(Y)−

1. Is equivalent to lift(X ⇒ Y)− 1

Range: [−1, 1] (0 for independence)

"yuleQ", Yule’s Q (Tan and Kumar, 2000) Defined as α−1
α+1 where α is the odds ratio.

Range: [−1, 1]

"yuleY", Yule’s Y (Tan and Kumar, 2000) Defined as
√
α−1√
α+1

where α is the odds ratio.

Range: [−1, 1]

Value

If only one measure is used, the function returns a numeric vector containing the values of the
interest measure for each association in the set of associations x.

If more than one measures are specified, the result is a data.frame containing the different measures
for each association.

NA is returned for rules/itemsets for which a certain measure is not defined.

44 interestMeasure

Author(s)

Michael Hahsler

References

Hahsler, Michael (2015). A Probabilistic Comparison of Commonly Used Interest Measures for As-
sociation Rules, 2015, URL: http://michael.hahsler.net/research/association_rules/measures.
html.

Agrawal, R., H Mannila, R Srikant, H Toivonen, AI Verkamo (1996). Fast Discovery of Association
Rules. Advances in Knowledge Discovery and Data Mining 12 (1), 307–328.

Aze, J. and Y. Kodratoff (2004). Extraction de pepites de connaissances dans les donnees: Une
nouvelle approche et une etude de sensibilite au bruit. In Mesures de Qualite pour la fouille de
donnees. Revue des Nouvelles Technologies de l’Information, RNTI.

Bernard, Jean-Marc and Charron, Camilo (1996). L’analyse implicative bayesienne, une methode
pour l’etude des dependances orientees. II : modele logique sur un tableau de contingence Mathe-
matiques et Sciences Humaines, Volume 135 (1996), p. 5–18.

Bayardo, R. , R. Agrawal, and D. Gunopulos (2000). Constraint-based rule mining in large, dense
databases. Data Mining and Knowledge Discovery, 4(2/3):217–240.

Berzal, Fernando, Ignacio Blanco, Daniel Sanchez and Maria-Amparo Vila (2002). Measuring the
accuracy and interest of association rules: A new framework. Intelligent Data Analysis 6, 221–235.

Brin, Sergey, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur (1997). Dynamic itemset count-
ing and implication rules for market basket data. In SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data, pages 255–264, Tucson, Arizona, USA.

Diatta, J., H. Ralambondrainy, and A. Totohasina (2007). Towards a unifying probabilistic im-
plicative normalized quality measure for association rules. In Quality Measures in Data Mining,
237–250, 2007.

Hahsler, Michael and Kurt Hornik (2007). New probabilistic interest measures for association rules.
Intelligent Data Analysis, 11(5):437–455.

Hofmann, Heike and Adalbert Wilhelm (2001). Visual comparison of association rules. Computa-
tional Statistics, 16(3):399–415.

Kenett, Ron and Silvia Salini (2008). Relative Linkage Disequilibrium: A New measure for as-
sociation rules. In 8th Industrial Conference on Data Mining ICDM 2008, July 16–18, 2008,
Leipzig/Germany.

Kodratoff, Y. (1999). Comparing Machine Learning and Knowledge Discovery in Databases: An
Application to Knowledge Discovery in Texts. Lecture Notes on AI (LNAI) - Tutorial series.

Kulczynski, S. (1927). Die Pflanzenassoziationen der Pieninen. Bulletin International de l’Academie
Polonaise des Sciences et des Lettres, Classe des Sciences Mathematiques et Naturelles B, 57–203.

Lerman, I.C. (1981). Classification et analyse ordinale des donnees. Paris.

Liu, Bing, Wynne Hsu, and Yiming Ma (1999). Pruning and summarizing the discovered associa-
tions. In KDD ’99: Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 125–134. ACM Press, 1999.

Ochin, Suresh Kumar, and Nisheeth Joshi (2016). Rule Power Factor: A New Interest Measure in
Associative Classification. 6th International Conference On Advances In Computing and Commu-
nications, ICACC 2016, 6-8 September 2016, Cochin, India.

http://michael.hahsler.net/research/association_rules/measures.html
http://michael.hahsler.net/research/association_rules/measures.html

interestMeasure 45

Omiecinski, Edward R. (2003). Alternative interest measures for mining associations in databases.
IEEE Transactions on Knowledge and Data Engineering, 15(1):57–69, Jan/Feb 2003.

Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In: Knowledge
Discovery in Databases, pages 229–248.

Sebag, M. and M. Schoenauer (1988). Generation of rules with certainty and confidence factors
from incomplete and incoherent learning bases. In Proceedings of the European Knowledge Ac-
quisition Workshop (EKAW’88), Gesellschaft fuer Mathematik und Datenverarbeitung mbH, 28.1–
28.20.

Smyth, Padhraic and Rodney M. Goodman (1991). Rule Induction Using Information Theory.
Knowledge Discovery in Databases, 159–176.

Tan, Pang-Ning and Vipin Kumar (2000). Interestingness Measures for Association Patterns: A
Perspective. TR 00-036, Department of Computer Science and Engineering University of Min-
nesota.

Tan, Pang-Ning, Vipin Kumar, and Jaideep Srivastava (2002). Selecting the right interestingness
measure for association patterns. In Proceedings of the eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining (KDD ’02), ACM, 32–41.

Tan, Pang-Ning, Vipin Kumar, and Jaideep Srivastava (2004). Selecting the right objective measure
for association analysis. Information Systems, 29(4):293–313.

Wu, T., Y. Chen, and J. Han (2010). Re-examination of interestingness measures in pattern mining:
A unified framework. Data Mining and Knowledge Discovery, 21(3):371-397, 2010.

Xiong, Hui, Pang-Ning Tan, and Vipin Kumar (2003). Mining strong affinity association patterns
in data sets with skewed support distribution. In Bart Goethals and Mohammed J. Zaki, editors,
Proceedings of the IEEE International Conference on Data Mining, November 19–22, 2003, Mel-
bourne, Florida, pages 387–394.

See Also

itemsets-class, rules-class

Examples

data("Income")
rules <- apriori(Income)

calculate a single measure and add it to the quality slot
quality(rules) <- cbind(quality(rules),
hyperConfidence = interestMeasure(rules, measure = "hyperConfidence",
transactions = Income))

inspect(head(rules, by = "hyperConfidence"))

calculate several measures
m <- interestMeasure(rules, c("confidence", "oddsRatio", "leverage"),
transactions = Income)
inspect(head(rules))
head(m)

calculate all available measures for the first 5 rules and show them as a

46 is.closed

table with the measures as rows
t(interestMeasure(head(rules, 5), transactions = Income))

calculate measures on a differnt set of transactions (I use a sample here)
Note: reuse = TRUE (default) would just return the stored support on the
data set used for mining
newTrans <- sample(Income, 100)
m2 <- interestMeasure(rules, "support", transactions = newTrans, reuse = FALSE)
head(m2)

is.closed Find Closed Itemsets

Description

Provides the generic function and the S4 method is.closed for finding closed itemsets. The closure
of an itemset is its largest proper superset which has the same support (is contained in exactly the
same transactions). An itemset is closed, if it is its own closure (Pasquier et al. 1999).

Usage

is.closed(x)

Arguments

x a set of itemsets.

Value

a logical vector with the same length as x indicating for each element in x if it is a closed itemset.

Author(s)

Michael Hahsler

References

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal (1999). Discovering frequent closed
itemsets for association rules. In Proceeding of the 7th International Conference on Database
Theory, Lecture Notes In Computer Science (LNCS 1540), pages 398–416. Springer, 1999.

See Also

itemsets-class

is.maximal 47

is.maximal Find Maximal Itemsets

Description

Provides the generic function and the S4 method is.maximal for finding maximal itemsets.

Usage

is.maximal(x,...)
S4 method for signature 'itemMatrix'
is.maximal(x)

Arguments

x the set of itemsets, rules or an itemMatrix object.

... further arguments.

Details

An itemset is maximal in a set if no proper superset of the itemset is contained in the set (Zaki et
al., 1997).

We define here maximal rules, as the rules generated by maximal itemsets.

Value

a logical vector with the same length as x indicating for each element in x if it is a maximal itemset.

Author(s)

Michael Hahsler

References

Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li (1997). New algo-
rithms for fast discovery of association rules. Technical Report 651, Computer Science Department,
University of Rochester, Rochester, NY 14627.

See Also

is.superset, itemMatrix-class, itemsets-class

48 is.redundant

is.redundant Find Redundant Rules

Description

Provides the generic functions and the S4 method is.redundant to find redundant rules.

Usage

is.redundant(x, ...)
S4 method for signature 'rules'
is.redundant(x, measure = "confidence")

Arguments

x a set of rules.

measure measure used to check for redundancy.

... additional arguments.

Details

A rule is redundant if a more general rules with the same or a higher confidence exists. That is,
a more specific rule is redundant if it is only equally or even less predictive than a more general
rule. A rule is more general if it has the same RHS but one or more items removed from the LHS.
Formally, a rule X ⇒ Y is redundant if

∃X ′ ⊂ X conf(X ′ ⇒ Y) ≥ conf(X ⇒ Y).

This is equivalent to a negative or zero improvement as defined by Bayardo et al. (2000). In this
implementation other measures than confidence, e.g. improvement of lift, can be used as well.

Value

returns a logical vector indicating which rules are redundant.

Author(s)

Michael Hahsler and Christian Buchta

References

Bayardo, R. , R. Agrawal, and D. Gunopulos (2000). Constraint-based rule mining in large, dense
databases. Data Mining and Knowledge Discovery, 4(2/3):217–240.

See Also

interestMeasure

is.significant 49

Examples

data("Income")

mine some rules with the consequent "language in home=english"
rules <- apriori(Income, parameter = list(support = 0.5),

appearance = list(rhs = "language in home=english", default = "lhs"))

for better comparison we sort the rules by confidence and add Bayado's improvement
rules <- sort(rules, by = "confidence")
quality(rules)$improvement <- interestMeasure(rules, measure = "improvement")
inspect(rules)
is.redundant(rules)

redundant rules
inspect(rules[is.redundant(rules)])

non-redundant rules
inspect(rules[!is.redundant(rules)])

is.significant Find Significant Rules

Description

Provides the generic functions and the S4 method is.significant to find rules where the LHS and
the RHS depend on each other. This uses Fisher’s exact test and corrects for multiple comparisons.

Usage

is.significant(x, transactions, method = "fisher",
alpha = 0.01, adjust = "bonferroni")

Arguments

x a set of rules.

transactions set of transactions used to mine the rules.

method test to use. Options are "fisher", "chisq". Note that the contingency table
is likely to have cells with low expected values and that thus Fisher’s Exact Test
might be more appropriate than the chi-squared test.

alpha required significance level.

adjust method to adjust for multiple comparisons. Options are "none", "bonferroni", "holm", "fdr",
etc. (see p.adjust)

Value

returns a logical vector indicating which rules are significant.

50 is.superset

Author(s)

Michael Hahsler

See Also

interestMeasure, p.adjust

Examples

data("Income")
rules <- apriori(Income, parameter = list(support = 0.5))
is.significant(rules, Income)

inspect(rules[is.significant(rules, Income)])

is.superset Find Super and Subsets

Description

Provides the generic functions and the S4 methods is.subset and is.superset for finding super
or subsets in associations and itemMatrix objects.

Usage

is.subset(x, y = NULL, proper = FALSE, sparse = TRUE, ...)
is.superset(x, y = NULL, proper = FALSE, sparse = TRUE, ...)

Arguments

x, y associations or itemMatrix objects. If y = NULL, the super or subset structure
within set x is calculated.

proper a logical indicating if all or just proper super or subsets.

sparse a logical indicating if a sparse (ngCMatrix) rather than a dense logical matrix
sgould be returned. Sparse computation preserves a significant amount of mem-
ory and is much faster for large sets.

... currently unused.

Details

looks for each element in x which elements in y are supersets or subsets. Note that the method can
be very slow and memory intensive if x and/or y contain many elements.

For rules, the union of lhs and rhs is used a the set of items.

itemCoding 51

Value

returns a logical matrix or a sparse ngCMatrix (for sparse=TRUE) with length(x) rows and length(y)
columns. Each logical row vector represents which elements in y are supersets (subsets) of the cor-
responding element in x. If either x or y have length zero, NULL is returned instead of a matrix.

Author(s)

Michael Hahsler and Ian Johnson

See Also

associations-class, itemMatrix-class

Examples

data("Adult")
set <- eclat(Adult, parameter = list(supp = 0.8))

find the supersets of each itemset in set
is.superset(set, set)
is.superset(set, set, sparse = FALSE)

itemCoding Item Coding — Handling Item Labels and Column IDs

Description

Provides the generic functions and the S4 methods for converting item labels into column IDs used
in the binary matrix representation and vice versa.

decode converts from the numeric (column IDs) representation to readable item labels. decode is
used by LIST.

encode converts from readable item labels to an itemMatrix using a given coding. With this method
it is possible to create several compatible itemMatrix objects (i.e., use the same binary representa-
tion for items) from data.

recode recodes an itemMatrix object so its coding is compatible with another object or the matrix
follows a certain order of items.

Usage

decode(x, ...)
S4 method for signature 'list'
decode(x, itemLabels)
S4 method for signature 'numeric'
decode(x, itemLabels)

encode(x, ...)
S4 method for signature 'list'

52 itemCoding

encode(x, itemLabels, itemMatrix = TRUE)
S4 method for signature 'character'
encode(x, itemLabels, itemMatrix = TRUE)
S4 method for signature 'numeric'
encode(x, itemLabels, itemMatrix = TRUE)

recode(x, ...)
S4 method for signature 'itemMatrix'
recode(x, itemLabels = NULL, match = NULL)

Arguments

x a vector or a list of vectors of character strings (for encode) or of numeric (for
decode), or an object of class itemMatrix (for recode).

itemLabels a vector of character strings used for coding where the position of an item label
in the vector gives the item’s column ID. The used itemLabels vector can be
obtained from itemMatrix, transactions and associations by the method
itemLabels.

itemMatrix return an object of class itemMatrix otherwise an object of the same class as x
is returned.

match an itemMatrix object whose item coding x should match.

... further arguments.

Value

recode always returns an object of class itemMatrix.

For encode with itemMatrix = TRUE an object of class itemMatrix is returned. Otherwise the
result is of the same type as x, e.g., a list or a vector.

Author(s)

Michael Hahsler

See Also

LIST, associations-class, itemMatrix-class

Examples

data("Adult")

Example 1: Manual decoding
get code
iLabels <- itemLabels(Adult)
head(iLabels)

get undecoded list and decode in a second step
list <- LIST(Adult[1:5], decode = FALSE)
list

itemFrequency 53

decode(list, itemLabels = iLabels)

Example 2: Manually create an itemMatrix
data <- list(

c("income=small", "age=Young"),
c("income=large", "age=Middle-aged")
)

iM <- encode(data, iLabels)
iM

inspect(iM)

use the itemMatrix to create transactions
as(iM, "transactions")

Example 3: use recode
select first 100 transactions and all education-related items
sub <- Adult[1:100, itemInfo(Adult)$variables == "education"]
itemLabels(sub)
image(sub)

recode to match Adult again
sub.recoded <- recode(sub, match = Adult)
image(sub.recoded)

itemFrequency Getting Frequency/Support for Single Items

Description

Provides the generic function itemFrequency and S4 methods to get the frequency/support for all
single items in an objects based on itemMatrix. For example, it is used to get the single item
support from an object of class transactions without mining.

Usage

itemFrequency(x, ...)

S4 method for signature 'itemMatrix'
itemFrequency(x, type, weighted = FALSE)

Arguments

x an object.

... further arguments are passed on.

54 itemFrequencyPlot

type a character string specifying if "relative" frequency/support or "absolute"
frequency/support (item counts) is returned. (default: "relative").

weighted should support be weighted by transactions weights stored as column "weight"
in transactionInfo?

Value

itemFrequency returns a named numeric vector. Each element is the frequency/support of the
corresponding item in object x. The items appear in the vector in the same order as in the binary
matrix in x.

Author(s)

Michael Hahsler

See Also

itemFrequencyPlot, itemMatrix-class, transactions-class

Examples

data("Adult")
itemFrequency(Adult, type = "relative")

itemFrequencyPlot Creating a Item Frequencies/Support Bar Plot

Description

Provides the generic function itemFrequencyPlot and the S4 method to create an item frequency
bar plot for inspecting the item frequency distribution for objects based on itemMatrix (e.g.,
transactions, or items in itemsets and rules).

Usage

itemFrequencyPlot(x, ...)
S4 method for signature 'itemMatrix'
itemFrequencyPlot(x, type = c("relative", "absolute"),

weighted = FALSE, support = NULL, topN = NULL,
population = NULL, popCol = "black", popLwd = 1,
lift = FALSE, horiz = FALSE,
names = TRUE, cex.names = graphics::par("cex.axis"),
xlab = NULL, ylab = NULL, mai = NULL, ...)

itemFrequencyPlot 55

Arguments

x the object to be plotted.

... further arguments are passed on (see barplot from possible arguments).

type a character string indicating whether item frequencies should be displayed rela-
tive of absolute.

weighted should support be weighted by transactions weights stored as column "weight"
in transactionInfo?

support a numeric value. Only display items which have a support of at least support.
If no population is given, support is calculated from x otherwise from the pop-
ulation. Support is interpreted relative or absolute according to the setting of
type.

topN a integer value. Only plot the topN items with the highest item frequency or lift
(if lift = TRUE). The items are plotted ordered by descending support.

population object of same class as x; if x is a segment of a population, the population mean
frequency for each item can be shown as a line in the plot.

popCol plotting color for population.

popLwd line width for population.

lift a logical indicating whether to plot the lift ratio between instead of frequencies.
The lift ratio is gives how many times an item is more frequent in x than in
population.

horiz a logical. If horiz = FALSE (default), the bars are drawn vertically. If TRUE, the
bars are drawn horizontally.

names a logical indicating if the names (bar labels) should be displayed?

cex.names a numeric value for the expansion factor for axis names (bar labels).

xlab a character string with the label for the x axis (use an empty string to force no
label).

ylab a character string with the label for the y axis (see xlab).

mai a numerical vector giving the plots margin sizes in inches (see ‘? par’).

Value

A numeric vector with the midpoints of the drawn bars; useful for adding to the graph.

Author(s)

Michael Hahsler

See Also

itemFrequency, itemMatrix-class

56 itemMatrix-class

Examples

data(Adult)

the following example compares the item frequencies
of people with a large income (boxes) with the average in the data set
Adult.largeIncome <- Adult[Adult %in%
"income=large"]

simple plot
itemFrequencyPlot(Adult.largeIncome)

plot with the averages of the population plotted as a line
(for first 72 variables/items)
itemFrequencyPlot(Adult.largeIncome[, 1:72],
population = Adult[, 1:72])

plot lift ratio (frequency in x / frequency in population)
for items with a support of 20% in the population
itemFrequencyPlot(Adult.largeIncome,

population = Adult, support = 0.2,
lift = TRUE, horiz = TRUE)

itemMatrix-class Class itemMatrix — Sparse Binary Incidence Matrix to Represent Sets
of Items

Description

The itemMatrix class is the basic building block for transactions, itemsets and rules in package
arules. The class contains a sparse Matrix representation of items (a set of itemsets or transactions)
and the corresponding item labels.

Details

Sets of itemsets are represented as sparse binary matrices. If you work with several itemMatrices at
the same time (e.g., several transaction sets, lhs and rhs of a rule, etc.), then the encoding (itemLabes
and order of the items in the binary matrix) in the different itemMatrices is important and needs to
conform. See itemCoding to learn how to encode and recode itemMatrix objects.

Objects from the Class

Objects can be created by calls of the form new("itemMatrix", ...). However, most of the
time objects will be created by coercion from a matrix, list or data.frame.

itemMatrix-class 57

Slots

data: Object of class ngCMatrix (from package Matrix) which stores item occurrences in sparse
representation. Note that the ngCMatrix is column-oriented and itemMatrix is row-oriented
with each row representing an element (an itemset, a transaction, etc.). As a result, the
ngCMatrix in this slot is always a transposed version of the binary incidence matrix in itemMatrix.

itemInfo: a data.frame which contains named vectors of the length equal to the number of ele-
ments in the set. If the slot is not empty (contains no item labels), the first element in the
data.frame must have the name "labels" and contain a character vector with the item labels
used for representing an item. In addition to the item labels, the data.frame can contain arbi-
trary named vectors (of the same length) to represent, e.g., variable names and values which
were used to create the binary items or hierarchical category information associated with each
item label.

itemsetInfo: a data.frame which may contain additional information for the rows (mostly repre-
senting itemsets) in the matrix.

Methods

coerce signature(from = "matrix", to = "itemMatrix"); expects from to be a binary matrix
only containing 0s and 1s.

coerce signature(from = "itemMatrix", to = "matrix"); coerces to a dense 0-1 matrix of
storage.mode "integer" instead of "double" to save memory.

coerce signature(from = "list", to = "itemMatrix"); from is a list of vectors. Each vector
contains one set/transaction/. . . .

coerce signature(from = "itemMatrix", to = "list"); see also the methods for LIST.

coerce signature(from = "itemMatrix", to = "ngCMatrix"); access the sparse matrix
representation. Note, the ngCMatrix contains a transposed from of the itemMatrix.

coerce signature(from = "ngCMatrix", to = "itemMatrix"); Note, the ngCMatrix has to
be transposed with items as rows!

c signature(object = "itemMatrix"); combine.

dim signature(x = "itemMatrix"); returns the dimensions of the itemMatrix.

dimnames, rownames, colnames signature(x = "itemMatrix"); returns row (itemsetID) and
column (item) names.

dimnames signature(x = "itemMatrix"); returns dimnames.

dimnames<- signature(x = "itemMatrix", value = "list"); replace dimnames.

%in% signature(x = "itemMatrix", table = "character"); matches the strings in table
against the item labels in x and returns a logical vector indicating if a row (itemset) in x con-
tains any of the items specified in table. Note that there is a %in% method with signature(x = "itemMatrix", table = "character").
This method is described in together with match.

%ain% signature(x = "itemMatrix", table = "character"); matches the strings in table
against the item labels in x and returns a logical vector indicating if a row (itemset) in x
contains all of the items specified in table.

%oin% signature(x = "itemMatrix", table = "character"); matches the strings in table
against the item labels in x and returns a logical vector indicating if a row (itemset) in x
contains only items specified in table.

58 itemMatrix-class

%pin% signature(x = "itemMatrix", table = "character"); matches the strings in table
against the item labels in x (using partial matching) and returns a logical vector indicating if
a row (itemset) in x contains any of the items specified in table.

itemLabels signature(object = "itemMatrix"); returns the item labels used for encoding as
a character vector.

itemLabels<- signature(object = "itemMatrix"); replaces the item labels used for encoding.

itemInfo signature(object = "itemMatrix"); returns the whole item/column information
data.frame including labels.

itemInfo<- signature(object = "itemMatrix"); replaces the item/column info by a data.frame.

itemsetInfo signature(object = "itemMatrix"); returns the item set/row information data.frame.

itemsetInfo<- signature(object = "itemMatrix"); replaces the item set/row info by a data.frame.

labels signature(x = "transactions"); returns labels for the itemsets. The following argu-
ments can be used to customize the representation of the labels: itemSep, setStart and
setEnd.

nitems signature(x = "itemMatrix"); returns the number of items (number in columns) in the
itemMatrix.

show signature(object = "itemMatrix")

summary signature(object = "itemMatrix")

Author(s)

Michael Hahsler

See Also

LIST, c, duplicated, inspect, is.subset, is.superset, itemFrequency, itemFrequencyPlot,
itemCoding, match, length, sets, subset, unique, [-methods, image, ngCMatrix-class (from
Matrix), transactions-class, itemsets-class, rules-class

Examples

set.seed(1234)

Generate random data and coerce data to itemMatrix.
m <- matrix(runif(100000)>0.8, ncol=20)
dimnames(m) <- list(NULL, paste("item", c(1:20), sep=""))
i <- as(m, "itemMatrix")

Get the number of elements (rows) in the itemMatrix.
length(i)

Get first 5 elements (rows) of the itemMatrix as list.
as(i[1:5], "list")

Get first 5 elements (rows) of the itemMatrix as matrix.
as(i[1:5], "matrix")

itemSetOperations 59

Get first 5 elements (rows) of the itemMatrix as sparse ngCMatrix.
Warning: for efficiency reasons, the ngCMatrix you get is transposed!
as(i[1:5], "ngCMatrix")

Get labels for the first 5 itemsets (first default and then with
custom formating)
labels(i[1:5])
labels(i[1:5], itemSep = " + ", setStart = "", setEnd = "")

create itemsets from itemMatrix
is <- new("itemsets", items = i[1:3])
inspect(is)

create rules (rhs and lhs cannot share items so I use
itemSetdiff here). Also assign (random) support.
rules <- new("rules", lhs=itemSetdiff(i[4:6],i[1:3]), rhs=i[1:3],

quality = data.frame(support = runif(3)))
inspect(rules)

itemSetOperations Itemwise Set Operations

Description

Provides the generic functions and the S4 methods for itemwise set operations on items in an item-
Matrix. The regular set operations regard each itemset in an itemMatrix as an element. Itemwise
operations regard each item as an element and operate on the items of pairs if corresponding item-
sets (first itemset in x with first itemset in y, second with second, etc.).

Usage

itemUnion(x, y)
itemSetdiff(x, y)
itemIntersect(x, y)

Arguments

x,y two itemMatrix objects with the same number of rows (itemsets).

Value

An object of class itemMatrix is returned.

Author(s)

Michael Hahsler

See Also

itemMatrix-class

60 itemsets-class

Examples

data("Adult")

fsets <- eclat(Adult, parameter = list(supp = 0.5))
inspect(fsets[1:4])
inspect(itemUnion(items(fsets[1:2]), items(fsets[3:4])))
inspect(itemSetdiff(items(fsets[1:2]), items(fsets[3:4])))
inspect(itemIntersect(items(fsets[1:2]), items(fsets[3:4])))

itemsets-class Class itemsets — A Set of Itemsets

Description

The itemsets class represents a set of itemsets and the associated quality measures.

Note that the class can also represent a multiset of itemsets with duplicated elements. Duplicated
elements can be removed with unique.

Objects from the Class

Objects are the result of calling the functions apriori (e.g., with target="frequent itemsets" in
the parameter list) or eclat. Objects can also be created by calls of the form new("itemsets", ...).

Slots

items: object of class itemMatrix containing the items in the set of itemsets

quality: a data.frame containing the quality measures for the itemsets

tidLists: object of class tidLists containing the IDs of the transactions which support each
itemset. The slot contains NULL if no transactions ID list is available (transactions ID lists are
only available for eclat).

Extends

Class associations, directly.

Methods

coerce signature(from = "itemsets", to = "data.frame"); represent the itemsets in read-
able form

items signature(x = "itemsets"); returns the itemMatrix representing the set of itemsets

items<- signature(x = "itemsets"); replaces the itemMatrix representing the set of itemsets

itemInfo signature(object = "itemsets"); returns the whole item information data frame
including item labels

labels signature(object = "itemsets"); returns labels for the itemsets as a character vector.
The labels have te following format: "item1, item2,..., itemn"

length 61

itemLabels signature(object = "itemsets"); returns the item labels used to encode the item-
sets as a character vector. The index for each label is the column index of the item in the
binary matrix.

nitems signature(x = "itemsets"); number of all possible items in the binary matrix represen-
tation of the object.

summary signature(object = "itemsets")

tidLists signature(object = "itemsets"); returns the transaction ID list

Author(s)

Michael Hahsler

See Also

[-methods, apriori, c, duplicated, eclat, inspect, is.maximal, length, match, sets, size,
subset, associations-class, tidLists-class

Examples

data("Adult")

Mine frequent itemsets with Eclat.
fsets <- eclat(Adult, parameter = list(supp = 0.5))

Display the 5 itemsets with the highest support.
fsets.top5 <- sort(fsets)[1:5]
inspect(fsets.top5)

Get the itemsets as a list
as(items(fsets.top5), "list")

Get the itemsets as a binary matrix
as(items(fsets.top5), "matrix")

Get the itemsets as a sparse matrix, a ngCMatrix from package Matrix.
Warning: for efficiency reasons, the ngCMatrix you get is transposed
as(items(fsets.top5), "ngCMatrix")

length Getting the Number of Elements

Description

S4 methods for length which return the number of elements of objects defined in the package
arules.

62 LIST

Usage

S4 method for signature 'rules'
length(x)

S4 method for signature 'itemsets'
length(x)

S4 method for signature 'tidLists'
length(x)

S4 method for signature 'itemMatrix'
length(x)

Arguments

x an object of class transactions, rules, itemsets, tidLists, or itemMatrix.

Details

For itemMatrix and transactions the length is defined as the number of rows (transactions) in
the binary incidence matrix.

For sets of associations (rules, itemsets and associations in general) the length is defined as
the number of elements in the set (i.e., the number of rules or itemsets).

For tidLists the length is the number of lists (one per item or itemset) in the object.

Value

An integer scalar giving the “length” of x.

Author(s)

Michael Hahsler

LIST List Representation for Objects Based on Class itemMatrix

Description

Provides the generic function LIST and the S4 methods to create a list representation from objects
based on itemMatrix (e.g., transactions, tidLists, or itemsets). These methods can be used
for the coercion to a list.

LIST 63

Usage

LIST(from, ...)

S4 method for signature 'itemMatrix'
LIST(from, decode = TRUE)

S4 method for signature 'transactions'
LIST(from, decode = TRUE)

S4 method for signature 'tidLists'
LIST(from, decode = TRUE)

Arguments

from the object to be converted into a list.

... further arguments.

decode a logical controlling whether the items/transactions are decoded from the col-
umn numbers internally used by itemMatrix to the names stored in the object
from. The default behavior is to decode.

Details

Using LIST with decode = TRUE is equivalent to the standard coercion as(x, "list"). LIST
returns the object from as a list of vectors. Each vector represents one row of the itemMatrix (e.g.,
items in a transaction or itemset).

Value

a list primitive.

Author(s)

Michael Hahsler

See Also

decode, coerce,itemMatrix,list-method, itemMatrix-class, DATAFRAME

Examples

data(Adult)

default coercions (same as as(Adult[1:5], "list"))
LIST(Adult[1:5])

coercion without item decoding
LIST(Adult[1:5], decode = FALSE)

64 match

match Value Matching

Description

Provides the generic function match and the S4 methods for associations, transactions and itemMa-
trices. match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for the items in the itemsets (left operand) with the items in the table (right
operand).

arules defines additional binary operators for matching itemsets: %pin% uses partial matching on
the table; %ain% itemsets have to match/include all items in the table; %oin% itemsets can only
match/include the items in the table. The binary matching operators or often used in subset.

Usage

match(x, table, nomatch = NA_integer_, incomparables = NULL)

x %in% table
x %pin% table
x %ain% table
x %oin% table

Arguments

x an object of class itemMatrix, transactions or associations.

table a set of associations or transactions to be matched against.

nomatch the value to be returned in the case when no match is found.

incomparables not implemented.

Value

match: An integer vector of the same length as x giving the position in table of the first match if
there is a match, otherwise nomatch.

%in%, %pin%, %ain%, %oin%: A logical vector, indicating if a match was located for each element of
x.

Author(s)

Michael Hahsler

See Also

subset, rules-class, itemsets-class, itemMatrix-class

merge 65

Examples

data("Adult")

get unique transactions, count frequency of unique transactions
and plot frequency of unique transactions
vals <- unique(Adult)
cnts <- tabulate(match(Adult, vals))
plot(sort(cnts, decreasing=TRUE))

find all transactions which are equal to transaction 10 in Adult
which(Adult %in% Adult[10])

for transactions we can also match directly with itemLabels.
Find in the first 10 transactions the ones which
contain age=Middle-aged (see help page for class itemMatrix)
Adult[1:10] %in% "age=Middle-aged"

find all transactions which contain items that partially match "age=" (all here).
Adult[1:10] %pin% "age="

find all transactions that only include the item "age=Middle-aged" (none here).
Adult[1:10] %oin% "age=Middle-aged"

find al transaction which contain both items "age=Middle-aged" and "sex=Male"
Adult[1:10] %ain% c("age=Middle-aged", "sex=Male")

merge Adding Items to Data

Description

Provides the generic function merge and the S4 methods for itemMatrix and transactions. The
methods are used to add new items to existing data.

Usage

merge(x, y, ...)

Arguments

x an object of class itemMatrix or transactions.

y an object of the same class as x (or something which can be coerced to that
class).

... further arguments; unused.

Value

Returns a new object of the same class as x with the items in y added.

66 Mushroom

Author(s)

Michael Hahsler

See Also

transactions-class, itemMatrix-class, addComplement

Examples

data("Groceries")

create a random item as a matrix
randomItem <- sample(c(TRUE, FALSE), size=length(Groceries),replace=TRUE)
randomItem <- as.matrix(randomItem)
colnames(randomItem) <- "random item"
head(randomItem, 3)

add the random item to Groceries
g2 <- merge(Groceries, randomItem)
nitems(Groceries)
nitems(g2)
inspect(head(g2,3))

Mushroom Mushroom Data Set

Description

The Mushroom data set includes descriptions of hypothetical samples corresponding to 23 species
of gilled mushrooms in the Agaricus and Lepiota Family. It contains information about 8124 mush-
rooms (transactions). 4208 (51.8%) are edible and 3916 (48.2%) are poisonous. The data contains
22 nomoinal features plus the class attribure (edible or not). These features were translated into 114
items.

Usage

data(Mushroom)

Format

Object of class transactions.

Author(s)

Michael Hahsler

Source

The data set was obtained from the UCI Machine Learning Repository at http://archive.ics.
uci.edu/ml/datasets/Mushroom.

http://archive.ics.uci.edu/ml/datasets/Mushroom
http://archive.ics.uci.edu/ml/datasets/Mushroom

predict 67

References

Alfred A. Knopf (1981). Mushroom records drawn from The Audubon Society Field Guide to
North American Mushrooms. G. H. Lincoff (Pres.), New York.

predict Model Predictions

Description

Provides the S4 method predict for itemMatrix (e.g., transactions). Predicts the membership
(nearest neighbor) of new data to clusters represented by medoids or labeled examples.

Usage

S4 method for signature 'itemMatrix'
predict(object, newdata, labels = NULL, blocksize = 200,...)

Arguments

object medoids (no labels needed) or examples (labels needed).

newdata objects to predict labels for.

labels an integer vector containing the labels for the examples in object.

blocksize a numeric scalar indicating how much memory predict can use for big x and/or
y (approx. in MB). This is only a crude approximation for 32-bit machines (64-
bit architectures need double the blocksize in memory) and using the default
Jaccard method for dissimilarity calculation. In general, reducing blocksize
will decrease the memory usage but will increase the run-time.

... further arguments passed on to dissimilarity. E.g., method.

Value

An integer vector of the same length as newdata containing the predicted labels for each element.

Author(s)

Michael Hahsler

See Also

dissimilarity, itemMatrix-class

68 proximity-classes

Examples

data("Adult")

sample
small <- sample(Adult, 500)
large <- sample(Adult, 5000)

cluster a small sample
d_jaccard <- dissimilarity(small)
hc <- hclust(d_jaccard)
l <- cutree(hc, k=4)

predict labels for a larger sample
labels <- predict(small, large, l)

plot the profile of the 1. cluster
itemFrequencyPlot(large[labels==1, itemFrequency(large) > 0.1])

proximity-classes Classes dist, ar_cross_dissimilarity and ar_similarity — Proximity
Matrices

Description

Simple classes to represent proximity matrices. For compatibility with clustering functions in R, we
represent dissimilarities as the S3 class dist. For cross-dissimilarities and similarities, we provide
the S4 classes ar_cross_dissimilarities and ar_similarities.

Objects from the Class

dist objects are the result of calling the method dissimilarity with one argument or any R
function returning a S3 dist object.

ar_cross_dissimilarity objects are the result of calling the method dissimilarity with two
arguments, by calls of the form new("similarity", ...), or by coercion from matrix.

ar_similarity objects are the result of calling the method affinity, by calls of the form new("similarity", ...),
or by coercion from matrix.

Slots

The S4 classes have a method slot which contains the type of measure used for calculation.

Author(s)

Michael Hahsler

See Also

dist (in package stats), dissimilarity, affinity.

random.transactions 69

random.transactions Simulate a Random Transaction Data Set

Description

Simulates a random transactions object using different methods.

Usage

random.transactions(nItems, nTrans, method = "independent", ...,
verbose = FALSE)

Arguments

nItems an integer. Number of items.

nTrans an integer. Number of transactions.

method name of the simulation method used (default: all items occur independently).

... further arguments used for the specific simulation method (see details).

verbose report progress.

Details

The function generates a nitems times ntrans transaction database.

Currently two simulation methods are implemented:

method "independent" (see Hahsler et al., 2006) All items are treated as independent. The trans-
action size is determined by rpois(lambda− 1) + 1, where lambda can be specified (defaults
to 3). Note that one subtracted from lambda and added to the size to avoid empty transactions.
The items in the transactions are randomly chosen using the numeric probability vector iProb
of length nItems (default: 0.01 for each item).

method "agrawal" (see Agrawal and Srikant, 1994) This method creates transactions with cor-
related items uses the following additional parameters:

lTrans average length of transactions.
nPats number of patterns (potential maximal frequent itemsets) used.
lPats average length of patterns.
corr correlation between consecutive patterns.
cmean mean of the corruption level (normal distr.).
cvar variance of the corruption level.

The simulation is a two-stage process. First, a set of nPats patterns (potential maximal fre-
quent itemsets) is generated. The length of the patterns is Poisson distributed with mean lPats
and consecutive patterns share some items controlled by the correlation parameter corr. For
later use, for each pattern a pattern weight is generated by drawing from an exponential distri-
bution with a mean of 1 and a corruption level is chosen from a normal distribution with mean
cmean and variance cvar.

70 random.transactions

The patterns are created using the following function:
random.patterns(nItems, nPats = 2000, method = "agrawal", lPats = 4, corr = 0.5, cmean = 0.5, cvar = 0.1, iWeight = NULL, verbose = FALSE)

The function returns the patterns as an itemsets objects which can be supplied to random.transactions
as the argument patterns. If no argument patterns is supplied, the default values given
above are used.
In the second step, the transactions are generated using the patterns. The length the trans-
actions follows a Poisson distribution with mean lPats. For each transaction, patterns are
randomly chosen using the pattern weights till the transaction length is reached. For each
chosen pattern, the associated corruption level is used to drop some items before adding the
pattern to the transaction.

Value

Returns an object of class transactions.

Author(s)

Michael Hahsler

References

Michael Hahsler, Kurt Hornik, and Thomas Reutterer (2006). Implications of probabilistic data
modeling for mining association rules. In M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nuernberger,
and W. Gaul, editors, From Data and Information Analysis to Knowledge Engineering, Studies in
Classification, Data Analysis, and Knowledge Organization, pages 598–605. Springer-Verlag.

Rakesh Agrawal and Ramakrishnan Srikant (1994). Fast algorithms for mining association rules in
large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proceedings of the
20th International Conference on Very Large Data Bases, VLDB, pages 487–499, Santiago, Chile.

See Also

transactions-class.

Examples

generate random 1000 transactions for 200 items with
a success probability decreasing from 0.2 to 0.0001
using the method described in Hahsler et al. (2006).
trans <- random.transactions(nItems = 200, nTrans = 1000,

lambda = 5, iProb = seq(0.2,0.0001, length=200))

size distribution
summary(size(trans))

display random data set
image(trans)

use the method by Agrawal and Srikant (1994) to simulate transactions
which contains correlated items. This should create data similar to
T10I4D100K (we just create 100 transactions here to speed things up).

read.PMML 71

patterns <- random.patterns(nItems = 1000)
summary(patterns)

trans2 <- random.transactions(nItems = 1000, nTrans = 100,
method = "agrawal", patterns = patterns)

image(trans2)

plot data with items ordered by item frequency
image(trans2[,order(itemFrequency(trans2), decreasing=TRUE)])

read.PMML Read and Write PMML

Description

This function reads and writes PMML representations (version 4.1) of associations (itemsets and
rules).

Usage

write.PMML(x, file)
read.PMML(file)

Arguments

x a rules or itemsets object.

file name of the PMML file (for read.PMML also a XML root node can be supplied).

Details

Write delegates to package pmml.

Author(s)

Michael Hahsler

References

PMML home page: http://www.dmg.org

See Also

pmml.

http://www.dmg.org

72 read.transactions

Examples

data("Groceries")

rules <- apriori(Groceries, parameter=list(support=0.001))
rules <- head(rules, by="lift")
rules

save rules as PMML
write.PMML(rules, file = "rules.xml")

read rules back
rules2 <- read.PMML("rules.xml")
rules2

compare rules
inspect(rules[1])
inspect(rules2[1])

clean up
unlink("rules.xml")

read.transactions Read Transaction Data

Description

Reads a transaction data file from disk and creates a transactions object.

Usage

read.transactions(file, format = c("basket", "single"), sep = "",
cols = NULL, rm.duplicates = FALSE,
quote = "\"'", skip = 0,
encoding = "unknown")

Arguments

file the file name.

format a character string indicating the format of the data set. One of "basket" or
"single", can be abbreviated.

sep a character string specifying how fields are separated in the data file. The default
("") splits at whitespaces.

cols For the ‘single’ format, cols is a numeric or character vector of length two
giving the numbers or names of the columns (fields) with the transaction and
item ids, respectively. If character, the first line of file is assumed to be a header
with column names. For the ‘basket’ format, cols can be a numeric scalar
giving the number of the column (field) with the transaction ids. If cols = NULL,
the data do not contain transaction ids.

read.transactions 73

rm.duplicates a logical value specifying if duplicate items should be removed from the trans-
actions.

quote a list of characters used as quotes when reading.

skip number of lines to skip in the file before start reading data.

encoding character string indicating the encoding which is passed to readLines or scan
(see Encoding).

Details

For ‘basket’ format, each line in the transaction data file represents a transaction where the items
(item labels) are separated by the characters specified by sep. For ‘single’ format, each line corre-
sponds to a single item, containing at least ids for the transaction and the item.

Value

Returns an object of class transactions.

Author(s)

Michael Hahsler and Kurt Hornik

See Also

transactions-class

Examples

create a demo file using basket format for the example
data <- paste(

"# this is some test data",
"item1, item2",
"item1",
"item2, item3",
sep="\n")

cat(data)
write(data, file = "demo_basket")

read demo data (skip comment line)
tr <- read.transactions("demo_basket", format = "basket", sep=",", skip = 1)
inspect(tr)

create a demo file using single format for the example
column 1 contains the transaction ID and column 2 contains one item
data <- paste(

"trans1 item1",
"trans2 item1",
"trans2 item2",
sep ="\n")

cat(data)
write(data, file = "demo_single")

74 ruleInduction

read demo data
tr <- read.transactions("demo_single", format = "single", cols = c(1,2))
inspect(tr)

tidy up
unlink("demo_basket")
unlink("demo_single")

ruleInduction Rule Induction from Itemsets

Description

Provides the generic function and the needed S4 method to induce all rules which can be generated
by the given set of itemsets from a transactions dataset. This method can be used to create closed
association rules.

Usage

ruleInduction(x, ...)
S4 method for signature 'itemsets'
ruleInduction(x, transactions, confidence = 0.8,

control = NULL)

Arguments

x the set of itemsets from which rules will be induced.

... further arguments.

transactions the transaction dataset used to mine the itemsets. Can be omitted if x contains a
lattice (complete set) of frequent itemsets together with their support counts.

confidence a numeric value giving the minimum confidence for the rules.

control a named list with elements method indicating the method ("apriori" or "ptree"),
and the logical arguments reduce and verbose to indicate if unused items are
removed and if the output should be verbose. Currently, "ptree" is the default
method.

Details

If in control method = "apriori" is used, a very simple rule induction method is used. All rules are
mined from the transactions data set using Apriori with the minimal support found in itemsets. And
in a second step all rules which do not stem from one of the itemsets are removed. This procedure
will be in many cases very slow (e.g., for itemsets with many elements or very low support).

If in control method = "ptree" is used, the transactions are counted into a prefix tree and then
the rules are selectively generated using the counts in the tree. This is usually faster than the above
approach.

ruleInduction 75

If in control reduce = TRUE is used, unused items are removed from the data before creating rules.
This might be slower for large transaction data sets. However, for method = "ptree" this is highly
recommended as the items are further reordered to reduce the counting time.

If argument transactions is missing it is assumed that x contains a lattice (complete set) of fre-
quent itemsets together with their support counts. Then rules can be induced directly without sup-
port counting. This approach is very fast.

For transactions, a set different to the data used for creating the original itemsets can be used,
however, the new set has to conform in terms of items and their order.

This method can be used to produce closed association rules defined by Pei et al. (2000) as rules
X− > Y where both X and Y are closed frequent itemsets. See Example section for code.

Value

An object of class rules.

Author(s)

Christian Buchta and Michael Hahsler

References

Michael Hahsler, Christian Buchta, and Kurt Hornik. Selective association rule generation. Com-
putational Statistics, 23(2):303-315, April 2008.

Jian Pei, Jiawei Han, Runying Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed
Itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(DMKD 2000).

See Also

itemsets-class, rules-class transactions-class

Examples

data("Adult")

find all closed frequent itemsets
closed_is <- apriori(Adult,
parameter = list(target = "closed frequent itemsets", support = 0.4))
closed_is

use rule induction to produce all closed association rules
closed_rules <- ruleInduction(closed_is, Adult,

control = list(verbose = TRUE))

X&Y are already closed, check that X is also closed
closed_rules[is.element(lhs(closed_rules), items(closed_is))]

inspect the resulting closed rules
summary(closed_rules)
inspect(head(closed_rules, by = "lift"))

76 rules-class

use lattice of frequent itemsets
ec <- eclat(Adult, parameter = list(support = 0.4))
rec <- ruleInduction(ec)
rec
inspect(head(rec))

rules-class Class rules — A Set of Rules

Description

The rules class represents a set of rules.

Note that the class can also represent a multiset of rules with duplicated elements. Duplicated
elements can be removed with unique.

Objects from the Class

Objects are the result of calling the function apriori. Objects can also be created by calls of the
form new("rules", ...).

Slots

lhs: Object of class itemMatrix; the left-hand-sides of the rules (antecedents)

rhs: Object of class itemMatrix; the right-hand-sides of the rules (consequents)

quality: a data.frame; typically contains measures like support, confidence and count (i.e., the
absolute support count)

Extends

Class associations, directly.

Methods

coerce signature(from = "rules", to = "data.frame"); represents the set of rules as a
data.frame

generatingItemsets signature(x = "rules"); returns a collection of the itemsets which gen-
erated the rules, one itemset for each rule. Note that the collection can be a multiset and
contain duplicated elements. Use unique to remove duplicates and obtain a proper set. Tech-
nically this method produces the same as the result of method items(), but wrapped into an
itemsets object with support information.

itemInfo signature(object = "rules"); returns the whole item information data frame includ-
ing item labels

itemLabels signature(object = "rules"); returns the item labels used to encode the rules

items signature(x = "rules"); returns for each rule the union of the items in the lhs and rhs
(i.e., the itemsets which generated the rule) as an itemMatrix

rules-class 77

itemLabels signature(object = "rules"); returns the item labels as a character vector. The
index for each label is the column index of the item in the binary matrix.

labels signature(object = "rules"); returns labels for the rules ("lhs => rhs") as a character
vector. The representation can be customized using the additional parameter ruleSep and
parameters for label defined in itemMatrix

lhs signature(x = "rules"); returns the itemMatrix representing the left-hand-side of the rules
(antecedents)

lhs<- signature(x = "rules"); replaces the itemMatrix representing the left-hand-side of the
rules (antecedents)

nitems signature(x = "rules"); number of all possible items in the binary matrix representation
of the object.

rhs signature(x = "rules"); returns the itemMatrix representing the right-hand-side of the
rules (consequents)

rhs<- signature(x = "rules"); replaces the itemMatrix representing the right-hand-side of the
rules (consequents)

summary signature(object = "rules")

Author(s)

Michael Hahsler

See Also

[-methods, apriori, c, duplicated, inspect, length, match, sets, size, subset, associations-class,
itemMatrix-class,

Examples

data("Adult")

Mine rules.
rules <- apriori(Adult, parameter = list(support = 0.4))

Select a subset of rules using partial matching on the items
in the right-hand-side and a quality measure
rules.sub <- subset(rules, subset = rhs %pin% "sex" & lift > 1.3)

Display the top 3 support rules
inspect(head(rules.sub, n = 3, by = "support"))

Display the first 3 rules
inspect(rules.sub[1:3])

Get labels for the first 3 rules
labels(rules.sub[1:3])
labels(rules.sub[1:3], itemSep = " + ", setStart = "", setEnd="",

ruleSep = " ---> ")

78 sample

sample Random Samples and Permutations

Description

Provides the generic function sample and the S4 method to take a sample of the specified size from
the elements of x using either with or without replacement. sample can be used to sample from a
set of transactions or associations.

Usage

sample(x, size, replace = FALSE, prob = NULL, ...)

Arguments

x object to be sampled from (a set of associations or transactions).

size sample size.

replace a logical. Sample with replacement?

prob a numeric vector of probability weights.

... further arguments.

Value

An object of the same class as x.

Author(s)

Michael Hahsler

See Also

associations-class, transactions-class, itemMatrix-class.

Examples

data("Adult")

sample with replacement
s <- sample(Adult, 500, replace = TRUE)
s

setOperations 79

setOperations Set Operations

Description

Provides the generic functions and the S4 methods for the set operations union, intersect, setequal,
setdiff and is.element on sets of associations (e.g., rules, itemsets) and itemMatrix.

Usage

union(x, y)
intersect(x, y)
setequal(x, y)
setdiff(x, y)
is.element(el, set)

Arguments

x,y, el, set sets of associations or itemMatrix objects.

Details

All S4 methods for set operations are defined for the class name "ANY" in the signature, so they
should work for all S4 classes for which the following methods are available: match, length and
unique.

Value

union, intersect, setequal and setdiff return an object of the same class as x and y.

is.element returns a logic vector of length el indicating for each element if it is included in set.

Author(s)

Michael Hahsler

See Also

associations-class, itemMatrix-class

Examples

data("Adult")

mine some rules
r <- apriori(Adult)

take 2 subsets
r1 <- r[1:10]

80 size

r2 <- r[6:15]

union(r1,r2)
intersect(r1,r2)
setequal(r1,r2)

size Number of Items

Description

Provides the generic function size and S4 methods to get the size of each element from objects
based on itemMatrix. For example, it is used to get a vector of transaction sizes (i.e., the number
of present items (ones) per element (row) of the binary incidence matrix) from an object of class
transactions).

Usage

size(x, ...)

Arguments

x an object.

... further (unused) arguments.

Value

size returns a numeric vector of length length(x). Each element is the size of the corresponding
element (row in the matrix) in object x. For rules, size returns the sum of the number of elements
in the LHS and the RHS.

Author(s)

Michael Hahsler

See Also

itemMatrix-class, transactions-class

Examples

data("Adult")
summary(size(Adult))

sort 81

sort Sort Associations

Description

Provides the method sort to sort elements in class associations (e.g., itemsets or rules) according
to the value of measures stored in the association’s slot quality (e.g., support).

Usage

S4 method for signature 'associations'
sort(x, decreasing = TRUE, na.last = NA,

by = "support", order = FALSE, ...)

S4 method for signature 'associations'
head(x, n = 6L, by = NULL, decreasing = TRUE, ...)
S4 method for signature 'associations'
tail(x, n = 6L, by = NULL, decreasing = TRUE, ...)

Arguments

x an object to be sorted.

decreasing a logical. Should the sort be increasing or decreasing? (default is decreasing)

na.last na.last is not supported for associations. NAs are always put last.

by a character string specifying the quality measure stored in x to be used to sort x.
If a vector of character strings is specified then the additional strings are used to
sort x in case of ties.

order should a order vector be returned instead of the sorted associations?

n a single integer indicating the number of associations returned.

... Further arguments are ignored.

Details

sort is relatively slow for large sets of associations since it has to copy and rearrange a large data
structure. Note that sorting creates a second copy of the set of associations which can be slow and
memory consuming for large sets. With order = TRUE a integer vector with the order is returned
instead of the reordered associations.

If only the top n associations are needed then head using by performs this faster than calling sort
and then head since it does it without copying and rearranging all the data. tail works in the same
way.

Value

An object of the same class as x.

82 subset

Author(s)

Michael Hahsler

See Also

associations-class

Examples

data("Adult")

Mine rules with APRIORI
rules <- apriori(Adult, parameter = list(supp = 0.6))

rules_by_lift <- sort(rules, by = "lift")

inspect(head(rules))
inspect(head(rules_by_lift))

A faster/less memory consuming way to get the top 5 rules according to lift
(see Details section)
inspect(head(rules, n = 5, by = "lift"))

subset Subsetting Itemsets, Rules and Transactions

Description

Provides the generic function subset and S4 methods to subset associations or transactions (item-
Matrix) which meet certain conditions (e.g., contains certain items or satisfies a minimum lift).

Usage

subset(x, ...)

S4 method for signature 'itemMatrix'
subset(x, subset, ...)

S4 method for signature 'itemsets'
subset(x, subset, ...)

S4 method for signature 'rules'
subset(x, subset, ...)

S4 method for signature 'itemMatrix'
subset(x, subset, ...)

subset 83

Arguments

x object to be subsetted.

subset logical expression indicating elements to keep.

... further arguments to be passed to or from other methods.

Details

subset works on the rows/itemsets/rules of x. The expression given in subset will be evaluated us-
ing x, so the items (lhs/rhs/items) and the columns in the quality data.frame can be directly referred
to by their names.

Important operators to select itemsets containing items specified by their labels are %in% (select
itemsets matching any given item), %ain% (select only itemsets matching all given item), %oin%
(select only itemsets matching only the given item), and %pin% (%in% with partial matching).

Value

An object of the same class as x containing only the elements which satisfy the conditions.

Author(s)

Michael Hahsler

See Also

%in%, %pin%, %ain%, %oin%, itemMatrix-class, itemsets-class, rules-class, transactions-class

Examples

data("Adult")
rules <- apriori(Adult)

select all rules with item "marital-status=Never-married" in
the right-hand-side and lift > 2
rules.sub <- subset(rules, subset = rhs %in% "marital-status=Never-married"

& lift > 2)

use partial matching for all items corresponding to the variable
"marital-status"
rules.sub <- subset(rules, subset = rhs %pin% "marital-status=")

select only rules with items "age=Young" and "workclass=Private" in
the left-hand-side
rules.sub <- subset(rules, subset = lhs %ain%

c("age=Young", "workclass=Private"))

84 support

SunBai The SunBai Data Set

Description

A small example database for weighted association rule mining provided as an object of class
transactions.

Usage

data(SunBai)

Details

The data set contains the example database described in the paper by K. Sun and F.Bai for illustra-
tion of the concepts of weighted association rule mining. weight stored as transaction information
denotes the transaction weights obtained using the HITS algorithm.

Source

K. Sun and F. Bai (2008). Mining Weighted Association Rules without Preassigned Weights. IEEE
Transactions on Knowledge and Data Engineering, 4 (30), 489–495.

See Also

Class transactions, method transactionInfo, function hits.

Examples

data(SunBai)
summary(SunBai)
inspect(SunBai)

transactionInfo(SunBai)

support Support Counting for Itemsets

Description

Provides the generic function and the needed S4 method to count support for given itemsets (and
other types of associations) in a given transaction database.

support 85

Usage

support(x, transactions, ...)
S4 method for signature 'itemMatrix'
support(x, transactions,

type= c("relative", "absolute"), weighted = FALSE, control = NULL)
S4 method for signature 'associations'
support(x, transactions,

type= c("relative", "absolute"), weighted = FALSE, control = NULL)

Arguments

x the set of itemsets for which support should be counted.

... further arguments are passed on.

transactions the transaction data set used for mining.

type a character string specifying if "relative" support or "absolute" support
(counts) are returned for the itemsets in x. (default: "relative")

weighted should support be weighted by transactions weights stored as column "weight"
in transactionInfo?

control a named list with elements method indicating the method ("tidlists" or "ptree"),
and the logical arguments reduce and verbose to indicate if unused items are
removed and if the output should be verbose.

Details

Normally, itemset support is counted during mining the database with a set minimum support.
However, if only the support information for a single or a few itemsets is needed, one might not
want to mine the database for all frequent itemsets.

If in control method = "ptree" is used, the counters for the itemsets are organized in a prefix
tree. The transactions are sequentially processed and the corresponding counters in the prefix tree
are incremented (see Hahsler et al, 2008). This method is used by default since it is typically
significantly faster than tid list intersection.

If in control method = "tidlists" is used, support is counted using transaction ID list intersection
which is used by several fast mining algorithms (e.g., by Eclat). However, Support is determined
for each itemset individually which is slow for a large number of long itemsets in dense data.

If in control reduce = TRUE is used, unused items are removed from the data before creating rules.
This might be slower for large transaction data sets.

Value

A numeric vector of the same length as x containing the support values for the sets in x.

Author(s)

Michael Hahsler and Christian Buchta

86 supportingTransactions

References

Michael Hahsler, Christian Buchta, and Kurt Hornik. Selective association rule generation. Com-
putational Statistics, 23(2):303-315, April 2008.

See Also

itemMatrix-class, associations-class, transactions-class

Examples

data("Income")

find and some frequent itemsets
itemsets <- eclat(Income)[1:5]

inspect the support returned by eclat
inspect(itemsets)

count support in the database
support(items(itemsets), Income)

supportingTransactions

Supporting Transactions

Description

Find transactions which support each of a set of associations and return this information as a trans-
action ID list.

Usage

supportingTransactions(x, transactions, ...)

Arguments

x a set of associations (itemsets, rules, etc.)

transactions an object of class transactions used to mine the associations in x.

... currently unused.

Details

The supporting transactions are all transactions of which the itemset representing the association is
a subset of.

Value

An object of class tidLists containing one transaction ID list per association in x.

tidLists-class 87

Author(s)

Michael Hahsler

See Also

tidLists-class

Examples

data <- list(
c("a","b","c"),
c("a","b"),
c("a","b","d"),
c("b","e"),
c("b","c","e"),
c("a","d","e"),
c("a","c"),
c("a","b","d"),
c("c","e"),
c("a","b","d","e")
)
data <- as(data, "transactions")

mine itemsets
f <- eclat(data, parameter = list(support = .2, minlen=3))
inspect(f)

find supporting Transactions
st <- supportingTransactions(f, data)
st

as(st, "list")

tidLists-class Class tidLists — Transaction ID Lists for Items/Itemsets

Description

Transaction ID lists contains a set of lists. Each list is associated with an item/itemset and stores
the IDs of the transactions which support the item/itemset. tidLists uses the class ngCMatrix to
efficiently store the transaction ID lists as a sparse matrix. Each column in the matrix represents
one transaction ID list.

tidLists can be used for different purposes. For some operations (e.g., support counting) it is
efficient to coerce a transactions database into tidLists where each list contains the transaction
IDs for an item (and the support is given by the length of the list).

The implementation of the Eclat mining algorithm (which uses transaction ID list intersection) can
also produce transaction ID lists for the found itemsets as part of the returned itemsets object.
These lists can then be used for further computation.

88 tidLists-class

Objects from the Class

Objects are created by Eclat if the eclat function is called with tidLists = TRUE in the ECparameter
object, and returned as part of the mined itemsets. Objects can also be created by coercion from
an object of class transactions or by calls of the form new("tidLists", ...).

Slots

data: object of class ngCMatrix.

itemInfo: a data.frame to store item/itemset labels (see itemMatrix class).

transactionInfo: a data.frame with vectors of the same length as the number of transactions.
Each vector can hold additional information e.g., store transaction IDs or user IDs for each
transaction.

Methods

coerce signature(from = "tidLists", to = "ngCMatrix"); access the sparse matrix repre-
sentation. In the ngCMatrix each column represents the transaction IDs for one item/itemset.

coerce signature(from = "tidLists", to = "list")

coerce signature(from = "list", to = "tidLists")

coerce signature(from = "tidLists", to = "matrix")

coerce signature(from = "tidLists", to = "itemMatrix")

coerce signature(from = "tidLists", to = "transactions")

coerce signature(from = "itemMatrix", to = "tidLists"); this also coerces from transactions.

coerce signature(from = "transactions", to = "tidLists")

c signature(x = "tidLists"); combine.

dim signature(x = "tidLists"); returns the dimensions of the sparse Matrix representing the
tidLists.

dimnames, rownames, colnames signature(x = "transactions"); returns row (items/itemsets)
and column (transactionIDs if available) names.

labels signature(x = "transactions"); returns the labels for the itemsets in each transaction
(see itemMatrix).

inspect inspect the transaction ID lists.

itemInfo returns the slot itemInfo.

itemLabels signature(object = "tidLists"); returns the item labels as a character vector.

labels signature(x = "transactions"); returns the labels (transaction IDs).

show signature(object = "tidLists")

summary signature(object = "tidLists")

transactionInfo signature(x = "transactions"): returns the slot transactionInfo.

Author(s)

Michael Hahsler

transactions-class 89

See Also

[-methods, LIST, eclat, image, length, size, ngCMatrix(in Matrix), itemMatrix-class, itemsets-class,
transactions-class

Examples

Create transaction data set.
data <- list(

c("a","b","c"),
c("a","b"),
c("a","b","d"),
c("b","e"),
c("b","c","e"),
c("a","d","e"),
c("a","c"),
c("a","b","d"),
c("c","e"),
c("a","b","d","e")
)

data <- as(data, "transactions")
data

convert transactions to transaction ID lists
tl <- as(data, "tidLists")
tl

inspect(tl)
dim(tl)
dimnames(tl)

inspect visually
image(tl)

mine itemsets with transaction ID lists
f <- eclat(data, parameter = list(support = 0, tidLists = TRUE))
tl2 <- tidLists(f)
inspect(tl2)

transactions-class Class transactions — Binary Incidence Matrix for Transactions

Description

The transactions class represents transaction data used for mining itemsets or rules. It is a di-
rect extension of class itemMatrix to store a binary incidence matrix, item labels, and optionally
transaction IDs and user IDs.

90 transactions-class

Details

Transactions can be created by coercion from lists containing transactions, but also from matrix
and data.frames. However, you will need to prepare your data first (see coercion methods in the
Methods Section and the Example Section below for details on the needed format). Association
rule mining can only use items and does not work with continuous variables.

For example, an item describing a person (i.e., the considered object called a transaction) could be
tall. The fact that the person is tall would be encoded in the transaction containing the item tall. This
is typically encoded in a transaction-by-items matrix by a TRUE value. This is why as.transaction
can deal with logical columns, because it assumes the column stands for an item. The function also
can convert columns with nominal values (i.e., factors) into a series of binary items (one for each
level). So if you have nominal variables then you need to make sure they are factors (and not
characters or numbers) using something like

data[,"a_nominal_var"] <- factor(data[,"a_nominal_var"]).

Continuous variables need to be discretized first. An item resulting from discretization might be
age>18 and the column contains only TRUE or FALSE. Alternatively it can be a factor with levels
age<=18, 50=>age>18 and age>50. These will be automatically converted into 3 items, one for
each level. Have a look at the function discretize for automatic discretization.

Complete examples for how to prepare data can be found in the man pages for Income and Adult.

Transactions are represented as sparse binary matrices of class itemMatrix. If you work with
several transaction sets at the same time, then the encoding (order of the items in the binary matrix)
in the different sets is important. See itemCoding to learn how to encode and recode transaction
sets.

Objects from the Class

Objects are created by coercion from objects of other classes (see Examples section) or by calls of
the form new("transactions", ...).

Slots

itemsetInfo: a data.frame with one row per transaction (each transaction is considered an item-
set). The data.frame can hold columns with additional information, e.g., transaction IDs or
user IDs for each transaction. Note: this slot is inherited from class itemMatrix, but should
be accessed in transactions with the method transactionInfo().

data: object of class ngCMatrix to store the binary incidence matrix (see itemMatrix class)

itemInfo: a data.frame to store item labels (see itemMatrix class)

Extends

Class itemMatrix, directly.

Methods

coerce signature(from = "matrix", to = "transactions"); produces a transactions data set
from a binary incidence matrix. The column names are used as item labels and the row names
are stores as transaction IDs.

transactions-class 91

coerce signature(from = "transactions", to = "matrix"); coerces the transactions data
set into a binary incidence matrix.

coerce signature(from = "list", to = "transactions"); produces a transactions data set
from a list. The names of the items in the list are used as item labels.

coerce signature(from = "transactions", to = "list"); coerces the transactions data
set into a list of transactions. Each transaction is a vector of character strings (names of the
contained items).

coerce signature(from = "data.frame", to = "transactions"); recodes the data frame
containing only categorical variables (factors) or logicals all into a binary transaction data
set. For binary variables only TRUE values are converted into items and the item label is the
variable name. For factors, a dummy item for each level is automatically generated. Item
labels are generated by concatenating variable names and levels with ‘"="’. The original
variable names and levels are stored in the itemInfo data frame as the components variables
and levels. Note that NAs are ignored (i.e., do not generate an item).

coerce signature(from = "transactions", to = "data.frame"); represents the set of trans-
actions in a printable form as a data.frame. Note that this does not reverse coercion from
data.frame to transactions.

coerce signature(from = "ngCMatrix", to = "transactions"); Note that the data is stored
transposed in the ngCMatrix. Items are stored as rows and transactions are columns!

dimnames, rownames, colnames signature(x = "transactions"); returns row (transactionID)
and column (item) names.

items signature(x = "transactions"); returns the items in the transactions as an itemMatrix.

labels signature(x = "transactions"); returns the labels for the itemsets in each transaction
(see itemMatrix).

transactionInfo<- signature(x = "transactions"); replaces the transaction information with
a new data.frame.

transactionInfo signature(x = "transactions"); returns the transaction information as a
data.frame.

show signature(object = "transactions")

summary signature(object = "transactions")

Author(s)

Michael Hahsler

See Also

[-methods, discretize, LIST, write, c, image, inspect, itemCoding, read.transactions,
random.transactions, sets, itemMatrix-class

Examples

example 1: creating transactions form a list
a_list <- list(

c("a","b","c"),
c("a","b"),

92 transactions-class

c("a","b","d"),
c("c","e"),
c("a","b","d","e")
)

set transaction names
names(a_list) <- paste("Tr",c(1:5), sep = "")
a_list

coerce into transactions
trans1 <- as(a_list, "transactions")

analyze transactions
summary(trans1)
image(trans1)

example 2: creating transactions from a matrix
a_matrix <- matrix(c(

1,1,1,0,0,
1,1,0,0,0,
1,1,0,1,0,
0,0,1,0,1,
1,1,0,1,1

), ncol = 5)

set dim names
dimnames(a_matrix) <- list(c("a","b","c","d","e"),
paste("Tr",c(1:5), sep = ""))

a_matrix

coerce
trans2 <- as(a_matrix, "transactions")
trans2
inspect(trans2)

example 3: creating transactions from data.frame
a_df <- data.frame(
age = as.factor(c(6, 8, NA, 9, 16)),
grade = as.factor(c("A", "C", "F", NA, "C")),

pass = c(TRUE, TRUE, FALSE, TRUE, TRUE))
note: factors are translated differently to logicals and NAs are ignored
a_df

coerce
trans3 <- as(a_df, "transactions")
inspect(trans3)
as(trans3, "data.frame")

example 4: creating transactions from a data.frame with
transaction IDs and items (by converting it into a list of transactions first)
a_df3 <- data.frame(

TID = c(1,1,2,2,2,3),

unique 93

item=c("a","b","a","b","c", "b")
)

a_df3
trans4 <- as(split(a_df3[,"item"], a_df3[,"TID"]), "transactions")
trans4
inspect(trans4)
Note: This is very slow for large datasets. It is much faster to
read transactions in this format from disk using read.transactions()
with format = "single".

example 5: create transactions from a dataset with numeric variables
using discretization.
data(iris)

irisDisc <- discretizeDF(iris)
head(irisDisc)
trans5 <- as(irisDisc, "transactions")
trans5
inspect(head(trans5))

unique Remove Duplicated Elements from a Collection

Description

Provides the generic function unique and the S4 methods for itemMatrix. unique uses duplicated
to return an itemMatrix with the duplicate elements removed.

Note that unique can also be used on collections of associations.

Usage

unique(x, incomparables = FALSE, ...)

Arguments

x an object of class itemMatrix or associations.

... further arguments (currently unused).

incomparables currently unused.

Value

An object of the same class as x with duplicated elements removed.

Author(s)

Michael Hahsler

94 weclat

See Also

duplicated, associations-class, itemMatrix-class

Examples

data("Adult")

r1 <- apriori(Adult[1:1000], parameter = list(support = 0.5))
r2 <- apriori(Adult[1001:2000], parameter = list(support = 0.5))

Note that this produces a collection of rules from two sets
r_comb <- c(r1, r2)
r_comb <- unique(r_comb)
r_comb

weclat Mining Associations from Weighted Transaction Data with Eclat
(WARM)

Description

Find frequent itemsets with the Eclat algorithm. This implementation uses optimized tidlist joins
and transaction weights to implement weighted association rule mining (WARM).

Usage

weclat(data, parameter = NULL, control = NULL)

Arguments

data an object that can be coerced into an object of class transactions.

parameter an object of class ASparameter (default values: support = 0.1, minlen = 1L,
and maxlen = 5L) or a named list with corresponding components.

control an object of class AScontrol (default values: verbose = TRUE) or a named list
with corresponding components.

Details

Transaction weights are stored in the transaction as a column called weight in transactionInfo.

The weighted support of an itemset is the sum of the weights of the transactions that contain the
itemset. An itemset is frequent if its weighted support is equal or greater than the threshold specified
by support (assuming that the weights sum to one).

Note that ECLAT only mines (weighted) frequent itemsets. Weighted association rules can be
created using ruleInduction.

write 95

Value

Returns an object of class itemsets. Note that weighted support is returned in quality as column
support.

Note

The C code can be interrupted by CTRL-C. This is convenient but comes at the price that the code
cannot clean up its internal memory.

Author(s)

Christian Buchta

References

G.D. Ramkumar, S. Ranka, and S. Tsur (1998). Weighted Association Rules: Model and Algorithm,
Proceedings of ACM SIGKDD

See Also

Class transactions, function ruleInduction, eclat

Examples

data(SunBai)
SunBai

weights are stored in transactionInfo
transactionInfo(SunBai)

mine weighted support itemsets using transaction support in SunBai
s <- weclat(SunBai, parameter = list(support = 0.3),

control = list(verbose = TRUE))
inspect(sort(s))

create rules using weighted support (satisfying a minimum
weighted confidence of 90%).
r <- ruleInduction(s, confidence = .9)
inspect(r)

write Write Transactions or Associations to a File

Description

Provides the generic function write and the S4 methods to write transactions or associations (item-
sets, rules) to a file.

96 write

Usage

write(x, file = "",...)
S4 method for signature 'transactions'
write(x, file="", format = c("basket", "single"),

sep=" ", quote=TRUE, ...)
S4 method for signature 'associations'
write(x, file="", sep=" ", quote=TRUE, ...)

Arguments

x the transactions or associations (rules, itemsets, etc.) object.

file either a character string naming a file or a connection open for writing. ’""’
indicates output to the console.

format format to write transactions.

sep the field separator string. Values within each row of x are separated by this
string. Use quote=TRUE and sep="," for saving data as in csv format.

quote a logical value. Quote fields?

... further arguments passed on to write.table or write. Use fileEncoding to
set the encoding used for writing the file.

Details

For associations (rules and itemsets) write first uses coercion to data.frame to obtain a printable
form of x and then uses write.table to write the data to disk.

Transactions can be saved in basket (one line per transaction) or in single (one line per item) format.

Note: To save and load associations in compact form, use save and load from the base package.
Alternatively, association can be written to disk in PMML (Predictive Model Markup Language)
via write.PMML. This requiresvpackages pmml.

Author(s)

Michael Hahsler

See Also

read.transactions for reading transactions from a file, read.PMML and write.PMML for read-
ing/writing associations in PMML format, write.table (in base), transactions-class, associations-class

Examples

data("Epub")

write the formated transactions to screen (basket format)
write(head(Epub))

write the formated transactions to screen (single format)
write(head(Epub), format="single")

[-methods 97

write the formated result to file in CSV format
write(Epub, file = "data.csv", format="single", sep = ",")

write rules in CSV format
rules <- apriori(Epub, parameter=list(support=0.0005, conf=0.8))
write(rules, file = "data.csv", sep = ",")

unlink("data.csv") # tidy up

[-methods Methods for "[": Extraction or Subsetting in Package ’arules’

Description

Methods for "[", i.e., extraction or subsetting in package arules. Subsetting can be done by integers
containing column/row numbers, vectors of logicals or strings containing parts of item labels.

Methods

[signature(x = "itemMatrix", i = "ANY", j = "ANY", drop= "ANY"); extracts parts
of an itemMatrix. The first argument selects rows (e.g., transactions or rules) and the sec-
ond argument selects columns (items). Either argument can be omitted to select all rows or
columns.

[signature(x = "itemsets", i = "ANY", j = "ANY", drop= "ANY"); extracts a subset of
itemsets and the associated quality measures. j has to be missing.

[signature(x = "rules", i = "ANY", j = "ANY", drop= "ANY"); extracts a subset of rules
and the associated quality measures. j has to be missing.

[signature(x = "transactions", i = "ANY", j = "ANY", drop= "ANY"); extracts a subset
of transactions/items from a transactions object (a binary incidence matrix). i and j can be
numeric where i selects transactions and j selects items.

[signature(x = "tidLists", i = "ANY", j = "ANY", drop= "ANY"); extracts parts (trans-
action ID vectors) from tidLists. i selects the items or itemsets and j selects transactions in
the lists.

Author(s)

Michael Hahsler

See Also

itemMatrix-class, itemsets-class, rules-class, transactions-class, tidLists-class

98 [-methods

Examples

data(Adult)
Adult

select first 10 transactions
Adult[1:10]

select first 10 items for first 100 transactions
Adult[1:100, 1:10]

select the first 100 transactions for the items containing
"income" or "age=Young" in their labels
Adult[1:100, c("income=small", "income=large" ,"age=Young")]

Index

∗Topic arith
sort, 81

∗Topic array
[-methods, 97

∗Topic attribute
length, 61
size, 80

∗Topic classes
APappearance-class, 8
AScontrol-classes, 12
ASparameter-classes, 13
associations-class, 15
itemMatrix-class, 56
itemsets-class, 60
proximity-classes, 68
rules-class, 76
tidLists-class, 87
transactions-class, 89

∗Topic cluster
affinity, 7
dissimilarity, 24
predict, 67

∗Topic datagen
random.transactions, 69

∗Topic datasets
Adult, 5
Epub, 29
Groceries, 30
Income, 36
Mushroom, 66
SunBai, 84

∗Topic file
read.transactions, 72
write, 95

∗Topic hplot
image, 35
itemFrequencyPlot, 54

∗Topic interface
read.PMML, 71

∗Topic manip
abbreviate, 3
addComplement, 4
combine, 16
DATAFRAME, 20
discretize, 21
duplicated, 27
hierarchy, 31
is.redundant, 48
is.significant, 49
is.superset, 50
itemCoding, 51
itemSetOperations, 59
LIST, 62
match, 64
merge, 65
sample, 78
setOperations, 79
sort, 81
subset, 82
unique, 93

∗Topic models
affinity, 7
apriori, 10
coverage, 18
crossTable, 19
dissimilarity, 24
eclat, 28
hits, 33
interestMeasure, 38
is.closed, 46
is.maximal, 47
itemFrequency, 53
predict, 67
ruleInduction, 74
support, 84
supportingTransactions, 86
weclat, 94

∗Topic print

99

100 INDEX

inspect, 38
[,Matrix,ANY,ANY,ANY-method

([-methods), 97
[,Matrix,lMatrix,missing,ANY-method

([-methods), 97
[,Matrix,logical,missing,ANY-method

([-methods), 97
[,itemMatrix,ANY,ANY,ANY-method

([-methods), 97
[,itemMatrix-method ([-methods), 97
[,itemsets,ANY,ANY,ANY-method

([-methods), 97
[,itemsets-method ([-methods), 97
[,rules,ANY,ANY,ANY-method ([-methods),

97
[,rules-method ([-methods), 97
[,tidLists,ANY,ANY,ANY-method

([-methods), 97
[,tidLists-method ([-methods), 97
[,transactions,ANY,ANY,ANY-method

([-methods), 97
[,transactions-method ([-methods), 97
[-methods, 97
[<-,Matrix,ANY,ANY,ANY-method

([-methods), 97
[<-,Matrix,missing,missing,ANY-method

([-methods), 97
%ain% (match), 64
%ain%,itemMatrix,character-method

(itemMatrix-class), 56
%in% (match), 64
%in%,associations,associations-method

(associations-class), 15
%in%,itemMatrix,character-method

(itemMatrix-class), 56
%in%,itemMatrix,itemMatrix-method

(itemMatrix-class), 56
%in%,itemsets,character-method (match),

64
%in%,itemsets,itemsets-method (match),

64
%oin% (match), 64
%oin%,itemMatrix,character-method

(itemMatrix-class), 56
%pin% (match), 64
%pin%,itemMatrix,character-method

(itemMatrix-class), 56
%ain%, 83

%in%, 83
%oin%, 83
%pin%, 83

abbreviate, 3, 4
abbreviate,itemMatrix-method

(abbreviate), 3
abbreviate,itemsets-method

(abbreviate), 3
abbreviate,rules-method (abbreviate), 3
abbreviate,tidLists-method

(abbreviate), 3
abbreviate,transactions-method

(abbreviate), 3
addAggregate (hierarchy), 31
addComplement, 4, 66
addComplement,transactions-method

(addComplement), 4
Adult, 5, 90
AdultUCI (Adult), 5
affinity, 7, 24, 26, 68
affinity,itemMatrix-method (affinity), 7
affinity,matrix-method (affinity), 7
aggregate (hierarchy), 31
aggregate,itemMatrix-method

(hierarchy), 31
aggregate,itemsets-method (hierarchy),

31
aggregate,rules-method (hierarchy), 31
APappearance, 10
APappearance (APappearance-class), 8
APappearance-class, 8
APcontrol, 10
APcontrol (AScontrol-classes), 12
APcontrol-class (AScontrol-classes), 12
APparameter, 10, 11
APparameter (ASparameter-classes), 13
APparameter-class

(ASparameter-classes), 13
apriori, 8, 9, 10, 12, 13, 15, 29, 60, 61, 76, 77
ar_cross_dissimilarity-class

(proximity-classes), 68
ar_similarity-class

(proximity-classes), 68
AScontrol, 94
AScontrol (AScontrol-classes), 12
AScontrol-class (AScontrol-classes), 12
AScontrol-classes, 12
ASparameter, 94

INDEX 101

ASparameter (ASparameter-classes), 13
ASparameter-class

(ASparameter-classes), 13
ASparameter-classes, 13
associations, 24, 60, 62, 76, 81
associations (associations-class), 15
associations-class, 15

barplot, 55

c, 58, 61, 77, 91
c (combine), 16
c,itemMatrix-method (combine), 16
c,itemsets-method (combine), 16
c,rules-method (combine), 16
c,tidLists-method (tidLists-class), 87
c,transactions-method (combine), 16
coerce,data.frame,transactions-method

(transactions-class), 89
coerce,itemMatrix,list-method

(itemMatrix-class), 56
coerce,itemMatrix,matrix-method

(itemMatrix-class), 56
coerce,itemMatrix,ngCMatrix-method

(itemMatrix-class), 56
coerce,itemMatrix,tidLists-method

(tidLists-class), 87
coerce,itemsets,data.frame-method

(itemsets-class), 60
coerce,list,APappearance-method

(APappearance-class), 8
coerce,list,APcontrol-method

(AScontrol-classes), 12
coerce,list,APparameter-method

(ASparameter-classes), 13
coerce,list,ECcontrol-method

(AScontrol-classes), 12
coerce,list,ECparameter-method

(ASparameter-classes), 13
coerce,list,itemMatrix-method

(itemMatrix-class), 56
coerce,list,tidLists-method

(tidLists-class), 87
coerce,list,transactions-method

(transactions-class), 89
coerce,matrix,itemMatrix-method

(itemMatrix-class), 56
coerce,matrix,transactions-method

(transactions-class), 89

coerce,ngCMatrix,itemMatrix-method
(itemMatrix-class), 56

coerce,ngCMatrix,list-method (LIST), 62
coerce,ngCMatrix,transactions-method

(transactions-class), 89
coerce,NULL,APappearance-method

(APappearance-class), 8
coerce,NULL,APcontrol-method

(AScontrol-classes), 12
coerce,NULL,APparameter-method

(ASparameter-classes), 13
coerce,NULL,ECcontrol-method

(AScontrol-classes), 12
coerce,NULL,ECparameter-method

(ASparameter-classes), 13
coerce,rules,data.frame-method

(rules-class), 76
coerce,tidLists,itemMatrix-method

(tidLists-class), 87
coerce,tidLists,list-method

(tidLists-class), 87
coerce,tidLists,matrix-method

(tidLists-class), 87
coerce,tidLists,ngCMatrix-method

(tidLists-class), 87
coerce,tidLists,transactions-method

(tidLists-class), 87
coerce,transactions,data.frame-method

(transactions-class), 89
coerce,transactions,list-method

(transactions-class), 89
coerce,transactions,matrix-method

(transactions-class), 89
coerce,transactions,tidLists-method

(tidLists-class), 87
combine, 16
coverage, 18
coverage,rules-method (coverage), 18
crossTable, 19
crossTable,itemMatrix-method

(crossTable), 19

DATAFRAME, 20, 63
DATAFRAME,itemMatrix-method

(DATAFRAME), 20
DATAFRAME,itemsets-method (DATAFRAME),

20
DATAFRAME,rules-method (DATAFRAME), 20
decode, 63

102 INDEX

decode (itemCoding), 51
decode,list-method (itemCoding), 51
decode,numeric-method (itemCoding), 51
dim,itemMatrix-method

(itemMatrix-class), 56
dim,tidLists-method (tidLists-class), 87
dimnames,itemMatrix-method

(itemMatrix-class), 56
dimnames,tidLists-method

(tidLists-class), 87
dimnames,transactions-method

(transactions-class), 89
dimnames<-,itemMatrix,list-method

(itemMatrix-class), 56
dimnames<-,tidLists,list-method

(tidLists-class), 87
dimnames<-,transactions,list-method

(transactions-class), 89
discretize, 21, 90, 91
discretizeDF (discretize), 21
dissimilarity, 8, 24, 67, 68
dissimilarity,associations-method

(dissimilarity), 24
dissimilarity,itemMatrix-method

(dissimilarity), 24
dissimilarity,matrix-method

(dissimilarity), 24
dist, 68
dist (dissimilarity), 24
dist-class (proximity-classes), 68
duplicated, 27, 58, 61, 77, 93, 94
duplicated,itemMatrix-method

(duplicated), 27
duplicated,itemsets-method

(duplicated), 27
duplicated,rules-method (duplicated), 27

ECcontrol, 28
ECcontrol (AScontrol-classes), 12
ECcontrol-class (AScontrol-classes), 12
eclat, 12, 13, 15, 28, 60, 61, 88, 89, 95
ECparameter, 28, 88
ECparameter (ASparameter-classes), 13
ECparameter-class

(ASparameter-classes), 13
encode (itemCoding), 51
encode,character-method (itemCoding), 51
encode,list-method (itemCoding), 51
encode,numeric-method (itemCoding), 51

Epub, 29

filterAggregate (hierarchy), 31

generatingItemsets (rules-class), 76
generatingItemsets,rules-method

(rules-class), 76
Groceries, 30

head (sort), 81
head,associations-method (sort), 81
hierarchy, 31
hits, 33, 84

image, 35, 35, 58, 89, 91
image,itemMatrix-method (image), 35
image,tidLists-method (image), 35
image,transactions-method (image), 35
Income, 36, 90
IncomeESL (Income), 36
info (associations-class), 15
info,associations-method

(associations-class), 15
info<- (associations-class), 15
info<-,associations-method

(associations-class), 15
initialize,APparameter-method

(ASparameter-classes), 13
initialize,AScontrol-method

(AScontrol-classes), 12
initialize,ASparameter-method

(ASparameter-classes), 13
initialize,associations-method

(associations-class), 15
initialize,ECparameter-method

(ASparameter-classes), 13
initialize,itemMatrix-method

(itemMatrix-class), 56
initialize,rules-method (rules-class),

76
initialize,tidLists-method

(tidLists-class), 87
initialize,transactions-method

(transactions-class), 89
inspect, 38, 58, 61, 77, 91
inspect,itemMatrix-method (inspect), 38
inspect,itemsets-method (inspect), 38
inspect,rules-method (inspect), 38
inspect,tidLists-method

(tidLists-class), 87

INDEX 103

inspect,transactions-method (inspect),
38

interestMeasure, 18, 38, 48, 50
interestMeasure,itemsets-method

(interestMeasure), 38
interestMeasure,rules-method

(interestMeasure), 38
intersect (setOperations), 79
intersect,associations,associations-method

(setOperations), 79
intersect,itemMatrix,itemMatrix-method

(setOperations), 79
intersect-methods (setOperations), 79
is.closed, 46
is.closed,itemsets-method (is.closed),

46
is.element (setOperations), 79
is.element,associations,associations-method

(setOperations), 79
is.element,itemMatrix,itemMatrix-method

(setOperations), 79
is.element-methods (setOperations), 79
is.maximal, 47, 61
is.maximal,itemMatrix-method

(is.maximal), 47
is.maximal,itemsets-method

(is.maximal), 47
is.maximal,rules-method (is.maximal), 47
is.redundant, 48
is.redundant,rules-method

(is.redundant), 48
is.significant, 49
is.significant,rules-method

(is.significant), 49
is.subset, 16, 58
is.subset (is.superset), 50
is.subset,associations-method

(is.superset), 50
is.subset,itemMatrix-method

(is.superset), 50
is.superset, 16, 47, 50, 58
is.superset,associations-method

(is.superset), 50
is.superset,itemMatrix-method

(is.superset), 50
itemCoding, 51, 56, 58, 90, 91
itemcoding (itemCoding), 51
itemFrequency, 53, 55, 58

itemFrequency,itemMatrix-method
(itemFrequency), 53

itemFrequency,tidLists-method
(itemFrequency), 53

itemFrequencyPlot, 54, 54, 58
itemFrequencyPlot,itemMatrix-method

(itemFrequencyPlot), 54
itemInfo (itemMatrix-class), 56
itemInfo,itemMatrix-method

(itemMatrix-class), 56
itemInfo,itemsets-method

(itemsets-class), 60
itemInfo,rules-method (rules-class), 76
itemInfo,tidLists-method

(tidLists-class), 87
itemInfo<- (itemMatrix-class), 56
itemInfo<-,itemMatrix-method

(itemMatrix-class), 56
itemInfo<-,tidLists-method

(tidLists-class), 87
itemIntersect (itemSetOperations), 59
itemIntersect,itemMatrix,itemMatrix-method

(itemSetOperations), 59
itemLabels (itemMatrix-class), 56
itemLabels,itemMatrix-method

(itemMatrix-class), 56
itemLabels,itemsets-method

(itemsets-class), 60
itemLabels,rules-method (rules-class),

76
itemLabels,tidLists-method

(tidLists-class), 87
itemLabels<- (itemMatrix-class), 56
itemLabels<-,itemMatrix-method

(itemMatrix-class), 56
itemLabels<-,itemsets-method

(itemsets-class), 60
itemLabels<-,rules-method

(rules-class), 76
itemMatrix, 16, 35, 53, 54, 60, 62, 63, 76, 77,

80, 88–91
itemMatrix (itemMatrix-class), 56
itemMatrix-class, 56
items (itemsets-class), 60
items,associations-method

(associations-class), 15
items,itemsets-method (itemsets-class),

60

104 INDEX

items,rules-method (rules-class), 76
items,transactions-method

(transactions-class), 89
items<- (itemsets-class), 60
items<-,itemsets-method

(itemsets-class), 60
itemSetdiff (itemSetOperations), 59
itemSetdiff,itemMatrix,itemMatrix-method

(itemSetOperations), 59
itemsetInfo (itemMatrix-class), 56
itemsetInfo,itemMatrix-method

(itemMatrix-class), 56
itemsetInfo<- (itemMatrix-class), 56
itemsetInfo<-,itemMatrix-method

(itemMatrix-class), 56
itemSetOperations, 59
itemsets, 11, 16, 20, 28, 54, 62, 76, 87, 88, 95
itemsets (itemsets-class), 60
itemsets-class, 60
itemUnion (itemSetOperations), 59
itemUnion,itemMatrix,itemMatrix-method

(itemSetOperations), 59

labels (itemMatrix-class), 56
labels,associations-method

(associations-class), 15
labels,itemMatrix-method

(itemMatrix-class), 56
labels,itemsets-method

(itemsets-class), 60
labels,rules-method (rules-class), 76
labels,tidLists-method

(tidLists-class), 87
labels,transactions-method

(transactions-class), 89
length, 16, 58, 61, 61, 77, 89
length,associations-method

(associations-class), 15
length,itemMatrix-method (length), 61
length,itemsets-method (length), 61
length,rules-method (length), 61
length,tidLists-method (length), 61
levelplot, 35
lhs (rules-class), 76
lhs,rules-method (rules-class), 76
lhs<- (rules-class), 76
lhs<-,rules-method (rules-class), 76
LIST, 21, 51, 52, 58, 62, 89, 91
LIST,itemMatrix-method (LIST), 62

LIST,tidLists-method (LIST), 62
LIST,transactions-method (LIST), 62

match, 57, 58, 61, 64, 77
match,itemMatrix,itemMatrix-method

(match), 64
match,itemsets,itemsets-method (match),

64
match,rules,rules-method (match), 64
merge, 4, 65
merge,itemMatrix-method (merge), 65
merge,transactions-method (merge), 65
Mushroom, 66

ngCMatrix, 57, 87–90
nitems (itemMatrix-class), 56
nitems,itemMatrix-method

(itemMatrix-class), 56
nitems,itemsets-method

(itemsets-class), 60
nitems,rules-method (rules-class), 76

p.adjust, 49, 50
plot.associations (associations-class),

15
plot.itemMatrix (itemMatrix-class), 56
pmml, 71
predict, 67
predict,itemMatrix-method (predict), 67
print,summary.itemMatrix-method

(itemMatrix-class), 56
proximity-classes, 68

quality (associations-class), 15
quality,associations-method

(associations-class), 15
quality<- (associations-class), 15
quality<-,associations-method

(associations-class), 15

random.patterns (random.transactions),
69

random.transactions, 69, 91
read.PMML, 71, 96
read.transactions, 72, 91, 96
recode (itemCoding), 51
recode,itemMatrix-method (itemCoding),

51
redundant (is.redundant), 48

INDEX 105

rhs (rules-class), 76
rhs,rules-method (rules-class), 76
rhs<- (rules-class), 76
rhs<-,rules-method (rules-class), 76
ruleInduction, 14, 15, 28, 29, 74, 94, 95
ruleInduction,itemsets-method

(ruleInduction), 74
rules, 11, 16, 20, 54, 62
rules (rules-class), 76
rules-class, 76

sample, 78
sample,associations-method (sample), 78
sample,itemMatrix-method (sample), 78
setdiff (setOperations), 79
setdiff,associations,associations-method

(setOperations), 79
setdiff,itemMatrix,itemMatrix-method

(setOperations), 79
setdiff-methods (setOperations), 79
setequal (setOperations), 79
setequal,associations,associations-method

(setOperations), 79
setequal,itemMatrix,itemMatrix-method

(setOperations), 79
setequal-methods (setOperations), 79
setOperations, 79
sets, 16, 58, 61, 77, 91
sets (setOperations), 79
show,APparameter-method

(ASparameter-classes), 13
show,AScontrol-method

(AScontrol-classes), 12
show,ASparameter-method

(ASparameter-classes), 13
show,associations-method

(associations-class), 15
show,itemMatrix-method

(itemMatrix-class), 56
show,summary.itemMatrix-method

(itemMatrix-class), 56
show,summary.itemsets-method

(itemsets-class), 60
show,summary.rules-method

(rules-class), 76
show,summary.tidLists-method

(tidLists-class), 87
show,summary.transactions-method

(transactions-class), 89

show,tidLists-method (tidLists-class),
87

show,transactions-method
(transactions-class), 89

size, 61, 77, 80, 89
size,itemMatrix-method (size), 80
size,itemsets-method (size), 80
size,rules-method (size), 80
size,tidLists-method (size), 80
SORT (sort), 81
sort, 16, 81
SORT,associations-method (sort), 81
sort,associations-method (sort), 81
subset, 58, 61, 64, 77, 82
subset,itemMatrix-method (subset), 82
subset,itemsets-method (subset), 82
subset,rules-method (subset), 82
summary,itemMatrix-method

(itemMatrix-class), 56
summary,itemsets-method

(itemsets-class), 60
summary,rules-method (rules-class), 76
summary,tidLists-method

(tidLists-class), 87
summary,transactions-method

(transactions-class), 89
summary.associations-class

(associations-class), 15
summary.itemMatrix-class

(itemMatrix-class), 56
summary.itemsets-class

(itemsets-class), 60
summary.rules-class (rules-class), 76
summary.tidLists-class

(tidLists-class), 87
summary.transactions-class

(transactions-class), 89
SunBai, 84
sunbai (SunBai), 84
support, 84
support,associations-method (support),

84
support,itemMatrix-method (support), 84
supportingTransactions, 28, 29, 86
supportingTransactions,associations-method

(supportingTransactions), 86

t,associations-method
(associations-class), 15

106 INDEX

t,ngCMatrix-method (itemMatrix-class),
56

t,tidLists-method (tidLists-class), 87
t,transactions-method

(transactions-class), 89
tail (sort), 81
tail,associations-method (sort), 81
template (APappearance-class), 8
tidLists, 28, 60, 62
tidLists (tidLists-class), 87
tidlists (tidLists-class), 87
tidLists,itemsets-method

(itemsets-class), 60
tidLists-class, 87
tidLists_or_NULL-class

(tidLists-class), 87
transactionInfo, 84, 94
transactionInfo (transactions-class), 89
transactionInfo,tidLists-method

(tidLists-class), 87
transactionInfo,transactions-method

(transactions-class), 89
transactionInfo<- (transactions-class),

89
transactionInfo<-,tidLists-method

(tidLists-class), 87
transactionInfo<-,transactions-method

(transactions-class), 89
transactions, 5, 7, 10, 20, 24, 28, 29, 33, 34,

36, 53, 54, 62, 69, 70, 72, 73, 80, 84,
87, 88, 94, 95

transactions (transactions-class), 89
transactions-class, 89

union, 16
union (setOperations), 79
union,associations,associations-method

(setOperations), 79
union,itemMatrix,itemMatrix-method

(setOperations), 79
union-methods (setOperations), 79
unique, 16, 27, 58, 60, 76, 93
unique,associations-method (unique), 93
unique,itemMatrix-method (unique), 93

WARM (weclat), 94
warm (weclat), 94
weclat, 15, 28, 29, 34, 94
write, 16, 91, 95, 96

write,ANY-method (write), 95
write,associations-method (write), 95
write,transactions-method (write), 95
write.csv (write), 95
write.PMML, 96
write.PMML (read.PMML), 71
write.table, 96
write.table (write), 95

	abbreviate
	addComplement
	Adult
	affinity
	APappearance-class
	apriori
	AScontrol-classes
	ASparameter-classes
	associations-class
	combine
	coverage
	crossTable
	DATAFRAME
	discretize
	dissimilarity
	duplicated
	eclat
	Epub
	Groceries
	hierarchy
	hits
	image
	Income
	inspect
	interestMeasure
	is.closed
	is.maximal
	is.redundant
	is.significant
	is.superset
	itemCoding
	itemFrequency
	itemFrequencyPlot
	itemMatrix-class
	itemSetOperations
	itemsets-class
	length
	LIST
	match
	merge
	Mushroom
	predict
	proximity-classes
	random.transactions
	read.PMML
	read.transactions
	ruleInduction
	rules-class
	sample
	setOperations
	size
	sort
	subset
	SunBai
	support
	supportingTransactions
	tidLists-class
	transactions-class
	unique
	weclat
	write
	[-methods
	Index

