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Abstract

The party package (Hothorn, Hornik, and Zeileis 2006) aims at providing a recur-
sive part(y)itioning laboratory assembling various high- and low-level tools for building
tree-based regression and classification models. This includes conditional inference trees
(ctree), conditional inference forests (cforest) and parametric model trees (mob). At
the core of the package is ctree, an implementation of conditional inference trees which
embed tree-structured regression models into a well defined theory of conditional infer-
ence procedures. This non-parametric class of regression trees is applicable to all kinds of
regression problems, including nominal, ordinal, numeric, censored as well as multivari-
ate response variables and arbitrary measurement scales of the covariates. This vignette
comprises a practical guide to exploiting the flexible and extensible computational tools
in party for fitting and visualizing conditional inference trees.

Keywords: conditional inference, non-parametric models, recursive partitioning.

1. Introduction

The majority of recursive partitioning algorithms are special cases of a simple two-stage
algorithm: First partition the observations by univariate splits in a recursive way and second
fit a constant model in each cell of the resulting partition. The most popular implementations
of such algorithms are ‘CART’ (Breiman, Friedman, Olshen, and Stone 1984) and ‘C4.5’
(Quinlan 1993). Not unlike AID, both perform an exhaustive search over all possible splits
maximizing an information measure of node impurity selecting the covariate showing the best
split. This approach has two fundamental problems: overfitting and a selection bias towards
covariates with many possible splits. With respect to the overfitting problem Mingers (1987)
notes that the algorithm

[. . . ] has no concept of statistical significance, and so cannot distinguish between
a significant and an insignificant improvement in the information measure.

With the party package (see Hothorn et al. 2006, for a full description of its methodological
foundations) we enter at the point where White and Liu (1994) demand for

[. . . ] a statistical approach [to recursive partitioning] which takes into account the
distributional properties of the measures.

We present a unified framework embedding recursive binary partitioning into the well defined
theory of permutation tests developed by Strasser and Weber (1999). The conditional distri-
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bution of statistics measuring the association between responses and covariates is the basis
for an unbiased selection among covariates measured at different scales. Moreover, multiple
test procedures are applied to determine whether no significant association between any of
the covariates and the response can be stated and the recursion needs to stop.

2. Recursive binary partitioning

We focus on regression models describing the conditional distribution of a response variable
Y given the status of m covariates by means of tree-structured recursive partitioning. The
response Y from some sample space Y may be multivariate as well. The m-dimensional
covariate vector X = (X1, . . . , Xm) is taken from a sample space X = X1 × · · · × Xm. Both
response variable and covariates may be measured at arbitrary scales. We assume that the
conditional distribution D(Y|X) of the response Y given the covariates X depends on a
function f of the covariates

D(Y|X) = D(Y|X1, . . . , Xm) = D(Y|f(X1, . . . , Xm)),

where we restrict ourselves to partition based regression relationships, i.e., r disjoint cells
B1, . . . , Br partitioning the covariate space X =

⋃r
k=1Bk. A model of the regression relation-

ship is to be fitted based on a learning sample Ln, i.e., a random sample of n independent
and identically distributed observations, possibly with some covariates Xji missing,

Ln = {(Yi, X1i, . . . , Xmi); i = 1, . . . , n}.

For the sake of simplicity, we use a learning sample

> ls <- data.frame(y = gl(3, 50, labels = c("A", "B", "C")), x1 = rnorm(150) + rep(c(1, 0,

+ 50)), x2 = runif(150))

in the following illustrations. A generic algorithm for recursive binary partitioning for a
given learning sample Ln can be formulated using non-negative integer valued case weights
w = (w1, . . . , wn). Each node of a tree is represented by a vector of case weights having
non-zero elements when the corresponding observations are elements of the node and are zero
otherwise. The following algorithm implements recursive binary partitioning:

1. For case weights w test the global null hypothesis of independence between any of the
m covariates and the response. Stop if this hypothesis cannot be rejected. Otherwise
select the covariate Xj∗ with strongest association to Y.

2. Choose a set A∗ ⊂ Xj∗ in order to split Xj∗ into two disjoint sets A∗ and Xj∗ \A
∗. The

case weights wleft and wright determine the two subgroups with wleft,i = wiI(Xj∗i ∈ A∗)
and wright,i = wiI(Xj∗i 6∈ A∗) for all i = 1, . . . , n (I(·) denotes the indicator function).

3. Recursively repeat steps 1 and 2 with modified case weightswleft andwright, respectively.

The separation of variable selection and splitting procedure into steps 1 and 2 of the algorithm
is the key for the construction of interpretable tree structures not suffering a systematic
tendency towards covariates with many possible splits or many missing values. In addition,
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a statistically motivated and intuitive stopping criterion can be implemented: We stop when
the global null hypothesis of independence between the response and any of the m covariates
cannot be rejected at a pre-specified nominal level α. The algorithm induces a partition
{B1, . . . , Br} of the covariate space X , where each cell B ∈ {B1, . . . , Br} is associated with a
vector of case weights.

In package party, the dependency structure and the variables may be specified in a traditional
formula based way

> library("party")

> ctree(y ~ x1 + x2, data = ls)

Case counts w may be specified using the weights argument.

3. Recursive partitioning by conditional inference

In the main part of this section we focus on step 1 of the generic algorithm. Unified tests for
independence are constructed by means of the conditional distribution of linear statistics in the
permutation test framework developed by Strasser and Weber (1999). The determination of
the best binary split in one selected covariate and the handling of missing values is performed
based on standardized linear statistics within the same framework as well.

3.1. Variable selection and stopping criteria

At step 1 of the generic algorithm given in Section 2 we face an independence problem. We
need to decide whether there is any information about the response variable covered by any
of the m covariates. In each node identified by case weights w, the global hypothesis of
independence is formulated in terms of the m partial hypotheses H

j
0 : D(Y|Xj) = D(Y)

with global null hypothesis H0 =
⋂m

j=1H
j
0 . When we are not able to reject H0 at a pre-

specified level α, we stop the recursion. If the global hypothesis can be rejected, we measure
the association between Y and each of the covariates Xj , j = 1, . . . ,m, by test statistics or

P -values indicating the deviation from the partial hypotheses Hj
0 .

For notational convenience and without loss of generality we assume that the case weights wi

are either zero or one. The symmetric group of all permutations of the elements of (1, . . . , n)
with corresponding case weights wi = 1 is denoted by S(Ln,w). A more general notation
is given in the Appendix. We measure the association between Y and Xj , j = 1, . . . ,m, by
linear statistics of the form

Tj(Ln,w) = vec

(

n
∑

i=1

wigj(Xji)h(Yi, (Y1, . . . ,Yn))
⊤

)

∈ R
pjq (1)

where gj : Xj → R
pj is a non-random transformation of the covariate Xj . The transformation

may be specified using the xtrafo argument. If, for example, a ranking both x1 and x2 is
required,

> ctree(y ~ x1 + x2, data = ls, xtrafo = function(data) trafo(data,

+ numeric_trafo = rank))
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can be used. The influence function h : Y×Yn → R
q depends on the responses (Y1, . . . ,Yn) in

a permutation symmetric way. Section 4 explains how to choose gj and h in different practical
settings. A pj × q matrix is converted into a pjq column vector by column-wise combination
using the ‘vec’ operator. The influence function can be specified using the ytrafo argument.

The distribution of Tj(Ln,w) under Hj
0 depends on the joint distribution of Y and Xj , which

is unknown under almost all practical circumstances. At least under the null hypothesis
one can dispose of this dependency by fixing the covariates and conditioning on all possible
permutations of the responses. This principle leads to test procedures known as permutation

tests. The conditional expectation µj ∈ R
pjq and covariance Σj ∈ R

pjq×pjq of Tj(Ln,w)
under H0 given all permutations σ ∈ S(Ln,w) of the responses are derived by Strasser and
Weber (1999):

µj = E(Tj(Ln,w)|S(Ln,w)) = vec

((

n
∑

i=1

wigj(Xji)

)

E(h|S(Ln,w))⊤

)

,

Σj = V(Tj(Ln,w)|S(Ln,w))

=
w·

w· − 1
V(h|S(Ln,w))⊗

(

∑

i

wigj(Xji)⊗ wigj(Xji)
⊤

)

(2)

−
1

w· − 1
V(h|S(Ln,w))⊗

(

∑

i

wigj(Xji)

)

⊗

(

∑

i

wigj(Xji)

)⊤

where w· =
∑n

i=1wi denotes the sum of the case weights, ⊗ is the Kronecker product and
the conditional expectation of the influence function is

E(h|S(Ln,w)) = w
−1
·

∑

i

wih(Yi, (Y1, . . . ,Yn)) ∈ R
q

with corresponding q × q covariance matrix

V(h|S(Ln,w)) = w
−1
·

∑

i

wi (h(Yi, (Y1, . . . ,Yn))− E(h|S(Ln,w)))

(h(Yi, (Y1, . . . ,Yn))− E(h|S(Ln,w)))⊤ .

Having the conditional expectation and covariance at hand we are able to standardize a
linear statistic T ∈ R

pq of the form (1) for some p ∈ {p1, . . . , pm}. Univariate test statistics c
mapping an observed multivariate linear statistic t ∈ R

pq into the real line can be of arbitrary
form. An obvious choice is the maximum of the absolute values of the standardized linear
statistic

cmax(t, µ,Σ) = max
k=1,...,pq

∣

∣

∣

∣

∣

(t− µ)k
√

(Σ)kk

∣

∣

∣

∣

∣

utilizing the conditional expectation µ and covariance matrix Σ. The application of a qua-
dratic form cquad(t, µ,Σ) = (t − µ)Σ+(t − µ)⊤ is one alternative, although computationally
more expensive because the Moore-Penrose inverse Σ+ of Σ is involved.

The type of test statistic to be used can be specified by means of the ctree_control function,
for example
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R> ctree(y ~ x1 + x2, data = ls,

control = ctree_control(teststat = "max"))

uses cmax and

R> ctree(y ~ x1 + x2, data = ls,

control = ctree_control(teststat = "quad"))

takes cquad (the default).

It is important to note that the test statistics c(tj , µj ,Σj), j = 1, . . . ,m, cannot be directly
compared in an unbiased way unless all of the covariates are measured at the same scale,
i.e., p1 = pj , j = 2, . . . ,m. In order to allow for an unbiased variable selection we need to
switch to the P -value scale because P -values for the conditional distribution of test statistics
c(Tj(Ln,w), µj ,Σj) can be directly compared among covariates measured at different scales.
In step 1 of the generic algorithm we select the covariate with minimum P -value, i.e., the
covariate Xj∗ with j∗ = argminj=1,...,m Pj , where

Pj = P
H

j
0

(c(Tj(Ln,w), µj ,Σj) ≥ c(tj , µj ,Σj)|S(Ln,w))

denotes the P -value of the conditional test for H
j
0 . So far, we have only addressed testing

each partial hypothesis H
j
0 , which is sufficient for an unbiased variable selection. A global

test for H0 required in step 1 can be constructed via an aggregation of the transformations
gj , j = 1, . . . ,m, i.e., using a linear statistic of the form

T(Ln,w) = vec

(

n
∑

i=1

wi

(

g1(X1i)
⊤, . . . , gm(Xmi)

⊤

)⊤

h(Yi, (Y1, . . . ,Yn))
⊤

)

.

However, this approach is less attractive for learning samples with missing values. Universally
applicable approaches are multiple test procedures based on P1, . . . , Pm. Simple Bonferroni-
adjusted P -values (mPj prior to version 0.8-4, now 1− (1− Pj)

m is used), available via

> ctree_control(testtype = "Bonferroni")

or a min-P -value resampling approach

> ctree_control(testtype = "MonteCarlo")

are just examples and we refer to the multiple testing literature (e.g., Westfall and Young
1993) for more advanced methods. We reject H0 when the minimum of the adjusted P -values
is less than a pre-specified nominal level α and otherwise stop the algorithm. In this sense, α
may be seen as a unique parameter determining the size of the resulting trees.

3.2. Splitting criteria

Once we have selected a covariate in step 1 of the algorithm, the split itself can be established
by any split criterion, including those established by Breiman et al. (1984) or Shih (1999).
Instead of simple binary splits, multiway splits can be implemented as well, for example
utilizing the work of O’Brien (2004). However, most splitting criteria are not applicable to
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response variables measured at arbitrary scales and we therefore utilize the permutation test
framework described above to find the optimal binary split in one selected covariate Xj∗ in
step 2 of the generic algorithm. The goodness of a split is evaluated by two-sample linear
statistics which are special cases of the linear statistic (1). For all possible subsets A of the
sample space Xj∗ the linear statistic

T
A
j∗(Ln,w) = vec

(

n
∑

i=1

wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . ,Yn))
⊤

)

∈ R
q

induces a two-sample statistic measuring the discrepancy between the samples {Yi|wi >

0 and Xji ∈ A; i = 1, . . . , n} and {Yi|wi > 0 and Xji 6∈ A; i = 1, . . . , n}. The conditional
expectation µA

j∗ and covariance ΣA
j∗ can be computed by (2). The split A∗ with a test statistic

maximized over all possible subsets A is established:

A∗ = argmax
A

c(tAj∗ , µ
A
j∗ ,Σ

A
j∗). (3)

The statistics c(tAj∗ , µ
A
j∗ ,Σ

A
j∗) are available for each node with

> ctree_control(savesplitstats = TRUE)

and can be used to depict a scatter plot of the covariate Xj∗ against the statistics.

Note that we do not need to compute the distribution of c(tAj∗ , µ
A
j∗ ,Σ

A
j∗) in step 2. In order

to anticipate pathological splits one can restrict the number of possible subsets that are
evaluated, for example by introducing restrictions on the sample size or the sum of the case
weights in each of the two groups of observations induced by a possible split. For example,

> ctree_control(minsplit = 20)

requires the sum of the weights in both the left and right daughter node to exceed the value
of 20.

3.3. Missing values and surrogate splits

If an observation Xji in covariate Xj is missing, we set the corresponding case weight wi to
zero for the computation of Tj(Ln,w) and, if we would like to split in Xj , in T

A
j (Ln,w) as

well. Once a split A∗ in Xj has been implemented, surrogate splits can be established by
searching for a split leading to roughly the same division of the observations as the original
split. One simply replaces the original response variable by a binary variable I(Xji ∈ A∗)
coding the split and proceeds as described in the previous part. The number of surrogate
splits can be controlled using

> ctree_control(maxsurrogate = 3)

3.4. Inspecting a tree

Once we have fitted a conditional tree via

> ct <- ctree(y ~ x1 + x2, data = ls)
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we can inspect the results via a print method

> ct

Conditional inference tree with 2 terminal nodes

Response: y

Inputs: x1, x2

Number of observations: 150

1) x1 <= 0.8255248; criterion = 1, statistic = 22.991

2)* weights = 96

1) x1 > 0.8255248

3)* weights = 54

or by looking at a graphical representation as in Figure 1.

> plot(ct)

x1

p < 0.001

1

≤ 0.826 > 0.826

Node 2 (n = 96)

A B C

0

0.2

0.4

0.6

0.8

1

Node 3 (n = 54)

A B C

0

0.2

0.4

0.6

0.8

1

Figure 1: A graphical representation of a classification tree.

Each node can be extracted by its node number, i.e., the root node is

> nodes(ct, 1)
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[[1]]

1) x1 <= 0.8255248; criterion = 1, statistic = 22.991

2)* weights = 96

1) x1 > 0.8255248

3)* weights = 54

This object is a conventional list with elements

> names(nodes(ct, 1)[[1]])

[1] "nodeID" "weights" "criterion" "terminal" "psplit"

[6] "ssplits" "prediction" "left" "right" NA

and we refer to the manual pages for a description of those elements. The Predict function
aims at computing predictions in the space of the response variable, in our case a factor

> Predict(ct, newdata = ls)

[1] A A A A C A C A C C A A C A A A A C A C A A A C A A A C C A A C

[33] A A C A A C C C A A C C C C A A A A A A C C C C A C C A C C C C

[65] C C A A A A A C C A C A C C C C C C C C C C C C A C A C A C C C

[97] C C C C C A C C C A C C A C C C C C C C A C C C C C C C C C C C

[129] C C C C C C C C C A C C C C A C C A C A C A

Levels: A B C

When we are interested in properties of the conditional distribution of the response given the
covariates, we use

> treeresponse(ct, newdata = ls[c(1, 51, 101),])

[[1]]

[1] 0.5740741 0.2592593 0.1666667

[[2]]

[1] 0.5740741 0.2592593 0.1666667

[[3]]

[1] 0.1979167 0.3750000 0.4270833

which, in our case, is a list with conditional class probabilities. We can determine the node
numbers of nodes some new observations are falling into by

> where(ct, newdata = ls[c(1,51,101),])

[1] 3 3 2
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4. Examples

4.1. Univariate continuous or discrete regression

For a univariate numeric response Y ∈ R, the most natural influence function is the identity
h(Yi, (Y1, . . . ,Yn)) = Yi. In case some observations with extremely large or small values
have been observed, a ranking of the observations may be appropriate: h(Yi, (Y1, . . . ,Yn)) =
∑n

k=1wkI(Yk ≤ Yi) for i = 1, . . . , n. Numeric covariates can be handled by the identity
transformation gji(x) = x (ranks are possible, too). Nominal covariates at levels 1, . . . ,K are
represented by gji(k) = eK(k), the unit vector of lengthK with kth element being equal to one.
Due to this flexibility, special test procedures like the Spearman test, the Wilcoxon-Mann-
Whitney test or the Kruskal-Wallis test and permutation tests based on ANOVA statistics or
correlation coefficients are covered by this framework. Splits obtained from (3) maximize the
absolute value of the standardized difference between two means of the values of the influence
functions. For prediction, one is usually interested in an estimate of the expectation of the
response E(Y|X = x) in each cell, an estimate can be obtained by

Ê(Y|X = x) =

(

n
∑

i=1

wi(x)

)−1 n
∑

i=1

wi(x)Yi.

4.2. Censored regression

The influence function h may be chosen as Logrank or Savage scores taking censoring into
account and one can proceed as for univariate continuous regression. This is essentially the
approach first published by Segal (1988). An alternative is the weighting scheme suggested
by Molinaro, Dudoit, and van der Laan (2004). A weighted Kaplan-Meier curve for the case
weights w(x) can serve as prediction.

4.3. J-class classification

The nominal response variable at levels 1, . . . , J is handled by influence functions
h(Yi, (Y1, . . . ,Yn)) = eJ(Yi). Note that for a nominal covariate Xj at levels 1, . . . ,K with
gji(k) = eK(k) the corresponding linear statistic Tj is a vectorized contingency table. The
conditional class probabilities can be estimated via

P̂(Y = y|X = x) =

(

n
∑

i=1

wi(x)

)−1 n
∑

i=1

wi(x)I(Yi = y), y = 1, . . . , J.

4.4. Ordinal regression

Ordinal response variables measured at J levels, and ordinal covariates measured at K levels,
are associated with score vectors ξ ∈ R

J and γ ∈ R
K , respectively. Those scores reflect

the ‘distances’ between the levels: If the variable is derived from an underlying continuous
variable, the scores can be chosen as the midpoints of the intervals defining the levels. The
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linear statistic is now a linear combination of the linear statistic Tj of the form

MTj(Ln,w) = vec

(

n
∑

i=1

wiγ
⊤gj(Xji)

(

ξ⊤h(Yi, (Y1, . . . ,Yn)
)⊤

)

with gj(x) = eK(x) and h(Yi, (Y1, . . . ,Yn)) = eJ(Yi). If both response and covariate are
ordinal, the matrix of coefficients is given by the Kronecker product of both score vectors
M = ξ ⊗ γ ∈ R

1,KJ . In case the response is ordinal only, the matrix of coefficients M is a
block matrix

M =







ξ1 0
. . .

0 ξ1

∣

∣

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

∣

∣

ξq 0
. . .

0 ξq






or M = diag(γ)

when one covariate is ordered but the response is not. For both Y and Xj being ordinal, the
corresponding test is known as linear-by-linear association test (Agresti 2002). Scores can be
supplied to ctree using the scores argument, see Section 5 for an example.

4.5. Multivariate regression

For multivariate responses, the influence function is a combination of influence functions ap-
propriate for any of the univariate response variables discussed in the previous paragraphs,
e.g., indicators for multiple binary responses (Zhang 1998; Noh, Song, and Park 2004), Lo-
grank or Savage scores for multiple failure times and the original observations or a rank
transformation for multivariate regression (De’ath 2002).

5. Illustrations and applications

In this section, we present regression problems which illustrate the potential fields of appli-
cation of the methodology. Conditional inference trees based on cquad-type test statistics
using the identity influence function for numeric responses and asymptotic χ2 distribution
are applied. For the stopping criterion a simple Bonferroni correction is used and we follow
the usual convention by choosing the nominal level of the conditional independence tests as
α = 0.05.

5.1. Tree pipit abundance

> data("treepipit", package = "coin")

> tptree <- ctree(counts ~ ., data = treepipit)

The impact of certain environmental factors on the population density of the tree pipit Anthus
trivialis is investigated by Müller and Hothorn (2004). The occurrence of tree pipits was
recorded several times at n = 86 stands which were established on a long environmental
gradient. Among nine environmental factors, the covariate showing the largest association
to the number of tree pipits is the canopy overstorey (P =0.002). Two groups of stands
can be distinguished: Sunny stands with less than 40% canopy overstorey (n = 24) show
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> plot(tptree, terminal_panel = node_hist(tptree, breaks = 0:6-0.5, ymax = 65,

+ horizontal = FALSE, freq = TRUE))

coverstorey

p = 0.002

1

≤ 40 > 40

Node 2 (n = 24)

0 1 2 3 4 5

0

10

20

30

40

50

60

Node 3 (n = 62)

0 1 2 3 4 5

0

10

20

30

40

50

60

Figure 2: Conditional regression tree for the tree pipit data.

a significantly higher density of tree pipits compared to darker stands with more than 40%
canopy overstorey (n = 62). This result is important for management decisions in forestry
enterprises: Cutting the overstorey with release of old oaks creates a perfect habitat for this
indicator species of near natural forest environments.

5.2. Glaucoma and laser scanning images

> data("GlaucomaM", package = "TH.data")

> gtree <- ctree(Class ~ ., data = GlaucomaM)

Laser scanning images taken from the eye background are expected to serve as the basis
of an automated system for glaucoma diagnosis. Although prediction is more important in
this application (Mardin, Hothorn, Peters, Jünemann, Nguyen, and Lausen 2003), a simple
visualization of the regression relationship is useful for comparing the structures inherent in
the learning sample with subject matter knowledge. For 98 patients and 98 controls, matched
by age and gender, 62 covariates describing the eye morphology are available. The data
is part of the TH.data package, http://CRAN.R-project.org). The first split in Figure 3
separates eyes with a volume above reference less than 0.059 mm3 in the inferior part of
the optic nerve head (vari). Observations with larger volume are mostly controls, a finding

http://CRAN.R-project.org
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which corresponds to subject matter knowledge: The volume above reference measures the
thickness of the nerve layer, expected to decrease with a glaucomatous damage of the optic
nerve. Further separation is achieved by the volume above surface global (vasg) and the
volume above reference in the temporal part of the optic nerve head (vart).

The plot in Figure 3 is generated by

> plot(gtree)

and shows the distribution of the classes in the terminal nodes. This distribution can be
shown for the inner nodes as well, namely by specifying the appropriate panel generating
function (node_barplot in our case), see Figure 4.

> plot(gtree, inner_panel = node_barplot,

+ edge_panel = function(...) invisible(), tnex = 1)

As mentioned in Section 3, it might be interesting to have a look at the split statistics the split
point estimate was derived from. Those statistics can be extracted from the splitstatistic
element of a split and one can easily produce scatterplots against the selected covariate. For
all three inner nodes of gtree, we produce such a plot in Figure 5. For the root node, the
estimated split point seems very natural, since the process of split statistics seems to have
a clear maximum indicating that the simple split point model is something reasonable to
assume here. This is less obvious for nodes 2 and, especially, 3.

The class predictions of the tree for the learning sample (and for new observations as well)
can be computed using the Predict function. A comparison with the true class memberships
is done by

> table(Predict(gtree), GlaucomaM$Class)

glaucoma normal

glaucoma 74 5

normal 24 93

When we are interested in conditional class probabilities, the treeresponse method must be
used. A graphical representation is shown in Figure 6.

5.3. Node positive breast cancer

> data("GBSG2", package = "TH.data")

> stree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

Recursive partitioning for censored responses has attracted a lot of interest (e.g., Segal 1988;
LeBlanc and Crowley 1992). Survival trees using P -value adjusted Logrank statistics are used
by Schumacher, Holländer, Schwarzer, and Sauerbrei (2001) for the evaluation of prognostic
factors for the German Breast Cancer Study Group (GBSG2) data, a prospective controlled
clinical trial on the treatment of node positive breast cancer patients. Here, we use Logrank
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Figure 3: Conditional inference tree for the glaucoma data. For each inner node, the
Bonferroni-adjusted P -values are given, the fraction of glaucomatous eyes is displayed for
each terminal node. (Note: node 7 was not splitted prior to version 0.8-4 because of using
another formulation of the Bonferroni-adjustment.)
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Figure 4: Conditional inference tree for the glaucoma data with the fraction of glaucomatous
eyes displayed for both inner and terminal nodes.
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> cex <- 1.6

> inner <- nodes(gtree, c(1, 2, 5))

> layout(matrix(1:length(inner), ncol = length(inner)))

> out <- sapply(inner, function(i) {

+ splitstat <- i$psplit$splitstatistic

+ x <- GlaucomaM[[i$psplit$variableName]][splitstat > 0]

+ plot(x, splitstat[splitstat > 0], main = paste("Node", i$nodeID),

+ xlab = i$psplit$variableName, ylab = "Statistic", ylim = c(0, 10),

+ cex.axis = cex, cex.lab = cex, cex.main = cex)

+ abline(v = i$psplit$splitpoint, lty = 3)

+ })
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Figure 5: Split point estimation in each inner node. The process of the standardized two-
sample test statistics for each possible split point in the selected input variable is show. The
estimated split point is given as vertical dotted line.

scores as well. Complete data of seven prognostic factors of 686 women are used for prognostic
modeling, the dataset is available within the TH.data package. The number of positive lymph
nodes (pnodes) and the progesterone receptor (progrec) have been identified as prognostic
factors in the survival tree analysis by Schumacher et al. (2001). Here, the binary variable
coding whether a hormonal therapy was applied or not (horTh) additionally is part of the
model depicted in Figure 7.

The estimated median survival time for new patients is less informative compared to the whole
Kaplan-Meier curve estimated from the patients in the learning sample for each terminal node.
We can compute those ‘predictions’ by means of the treeresponse method

> treeresponse(stree, newdata = GBSG2[1:2,])

[[1]]

Call: survfit(formula = y ~ 1, weights = weights)

n events median 0.95LCL 0.95UCL

248 88 2093 1814 NA
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> prob <- sapply(treeresponse(gtree), function(x) x[1]) +

+ runif(nrow(GlaucomaM), min = -0.01, max = 0.01)

> splitvar <- nodes(gtree, 1)[[1]]$psplit$variableName

> plot(GlaucomaM[[splitvar]], prob,

+ pch = as.numeric(GlaucomaM$Class), ylab = "Conditional Class Prob.",

+ xlab = splitvar)

> abline(v = nodes(gtree, 1)[[1]]$psplit$splitpoint, lty = 2)

> legend(0.15, 0.7, pch = 1:2, legend = levels(GlaucomaM$Class), bty = "n")
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Figure 6: Estimated conditional class probabilities (slightly jittered) for the Glaucoma data
depending on the first split variable. The vertical line denotes the first split point.

[[2]]

Call: survfit(formula = y ~ 1, weights = weights)

n events median 0.95LCL 0.95UCL

166 77 1701 1174 2018

5.4. Mammography experience

> data("mammoexp", package = "TH.data")

> mtree <- ctree(ME ~ ., data = mammoexp)

Ordinal response variables are common in investigations where the response is a subjective
human interpretation. We use an example given by Hosmer and Lemeshow (2000), p. 264,
studying the relationship between the mammography experience (never, within a year, over
one year) and opinions about mammography expressed in questionnaires answered by n = 412
women. The resulting partition based on scores ξ = (1, 2, 3) is given in Figure 8. Women
who (strongly) agree with the question ‘You do not need a mammogram unless you develop
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> plot(stree)
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Figure 7: Tree-structured survival model for the GBSG2 data and the distribution of survival
times in the terminal nodes. The median survival time is displayed in each terminal node of
the tree.

symptoms’ seldomly have experienced a mammography. The variable benefit is a score with
low values indicating a strong agreement with the benefits of the examination. For those
women in (strong) disagreement with the first question above, low values of benefit identify
persons being more likely to have experienced such an examination at all.
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