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Data Mining 

 

Lab 3:  Data classification  

  

______________________________________________________________________________ 

 

Outline:    

 The classification problem 

 Decision trees  

 Rule-based classifiers (OneR, JRip) 

 Instance based classifiers  (k- NearestNeighbor) 

 Naïve Bayes 

 Neural Networks - Multilayer Perceptron 

 Support Vector Machines 

 

1.  Classification 

 

Quick reminder of main concepts:  

 

 Aim of a classifier:  establish to which class the input data belongs  

 

 Constructing a classifier: extract a classification model using the data from a training set;  

the construction process is called supervised training/learning 

 

 Performance evaluation:  confusion matrix, accuracy, sensitivity, specificity, recall, 

precision, F-measure, Kappa statistics, ROC curve, AUC – area under ROC curve 

 

Confusion matrix (in the context of binary classification: positive vs. negative class): 

TP = True Positive = number of data correctly classified in the positive class 

TN = True Negative = number of data correctly classified in the negative class 

FP = False Positive = number of data incorrectly classified in the positive class 

FN = False Negative = number of data incorrectly classified in the negative class 

 

Accuracy = (TP+TN)/(TP+TN+FP+FN) = nr of correctly classified data/total nr of data 

 

Sensitivity = TP/(TP+FN)     (TP rate or recall) 

 

Specificity= TN/ (TN+FP)   (TN rate),   1-specificity=FP/(TN+FP) = FP rate 

 

Precision = TP/(TP+FP)   (nr of true positive cases/ nr of cases classified as positives) 

 

F-measure = 2*precision*recall/(precision+recall) 

 

Kappa = (Accuracy – ExpectedAcc)/(1-ExpectedAcc)  - adjustment of the accuracy measure 

which takes into account the rate of generated right outputs by chance – appropriate especially in 

the case of unbalanced datasets. 

 

ExpectedAcc= rate(positive observed and true)+rate(negative observed and true) = 

(TP+FP)(TP+FN)/N
2 
+ (TN+FN)(TN+FP)/N

2               
(N=total nr of data)   
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ROC (Receiver Operating Characteristic) Curve:  graphical representation of TP rate (sensitivity) 

vs. FP rate (1-specificity). It is constructed by computing pairs like  (FP rate, TP rate) for each 

fold of the data set (in the context of cross-validation) and the points (0,0), P1, …, Pn, (1,1)  

(where Pi is the point corresponding to the  i-th value in increasing ordet  of the FP rate). Ideally 

would that all points have the coordinates (0,1), and the area under the curve equals the area of 

the square defined by (0,0) and (1,1), i.e. 1.  

 

For the unbalanced datasets (the number of examples in one class is significantly smaller than the 

number corresponding to other classes) one use the Matthew correlation coefficient (MCC): 

 

MCC=(TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 

 

Exercise 1.  Get familiar with “caret” package – Classification And Regression Training  (it 

offers an unified interface to a large number of classification and regression algorithms – around 

200 algorithms - implemented in various R packages). Main facilities: 

 partitioning of datasets in training and testing subsets s.t. the class distribution from the 

original dataset is preserved (function createDataPartition) 

 training a model (function train) and defining a procedure controlling the training process 

(function trainControl); it allows to specify the strategy of controlling and tuning the 

hyper-parameters (parameters of the classification models): bootstrapping (default), 

cross-validation etc.   

 possibility to include a pre-processing step in the training phase (e.g. function preProcess 

or parameter preProc the of train function); types of pre-processing options/methods: 

centering (“center”), scaling (“scale”), PCA transformation (“pca”), imputation 

(“knnImpute”), identification of correlated attributes (“findCorrelation”) 

  

(Starting point:  templateUsingCaret.r) 

https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf  ) 

 

Decision (classification) trees 

 

A decision tree contains: 

 Internal nodes: each internal node has an attribute associated and some splitting 

conditions  (each splitting condition corresponds to a branch in the tree)  

 Leaf nodes:  each leaf node has a class associated 

 

Top-down construction (recursive partitioning):  

 For the root node one identifies the splitting attribute and the splitting conditions which 

leads to the highest informational gain (or another criterion, e.g. Gini index) based on the 

available dataset 

 For each branch, recursively apply the same procedure until a stopping condition is 

identified, e.g. the dataset corresponding to the current node is pure (all data belong to 

the same class) or it is too small (it contains less than the minimal number of instances 

corresponding to a splitting node). 

 

Remark:  one of the most important aspects when constructing decision trees is the complexity 

level of the inferred tree. Simpler trees (i.e. fewer nodes) are always preferred. The simplification 

of the tree (pruning) can be done at different stages: 

 During the tree construction (e.g. the branching process is stopped when the number of 

instances in the current dataset is smaller than a given threshold)  

https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
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 After the tree construction some subtrees can be replaced with leaf nodes (as long as the 

classifier performance is not significantly decreased) 

 

Decision tree usage:  for a given instance identify the tree branch which matches the 

corresponding attribute values; the label of the leaf node in that branch will be the predicted class.  

 

R packages:  rpart, party 

 

Weka implementation: ID3, J48 

 

Exercise 2/ R: Construct, visualize and evaluate the performance of classification trees for: (a) 

iris dataset; (b) Titanic dataset; (c) Breast Cancer dataset.  Usage of:  party, rpart and caret 

packages 

 

Starting point: DecisionTrees_PartyRpart.R,   DecisionTrees_caret.R 

 

Exercise 2/ Weka:  Comparing algorithms for decision trees construction  

a) Open in Weka the file “weather_nominal.arff”. Using Weka Explorer compare the 

performance of the following classifiers:  Id3, J48 (in this cased both the “pruned” and  

“unpruned” variants are analyzed – this option is set in the list of parameters of J48) 

b) Open in Weka the file “weather_numeric.arff” and try to apply the same processing steps 

as at (a).   

c) Open in Weka the file “glass.arff” and analyze the impact on the J48 performance of the 

minimal number of objects which correspond to a leaf node  (the value of the parameter 

minNumObj) 

 

 

2. Rule based classifiers 

 

 

The classification rules have the following structure: IF <antecedent> THEN <class label>, where 

the antecedent part contains conditions concerning the attribute values (the individual conditions 

are combined using conjunction and/or disjunction operators)  

 

Construction of the classification rules set. There are two main variants: 

 

 Starting from a decision tree: from each branch one construct a classification rule (the 

conditions in the antecedent are obtained by using the conjunction operator) 

 Directly from the data: by using the so-called covering algorithms (e.g. RIPPER 

algorithm) 

 

R packages: caret includes some rule based classifiers through RWeka (JRip and OneR) 

 

Weka implementation:  

 Starting from decision trees: M5rules, PART 

 Covering algorithms: OneR, JRip   

 

Exercise 3/ R:  Construct, visualize and evaluate the performance of rule-based classifiers for: (a) 

iris dataset; (b) Breast Cancer dataset (c) Titanic dataset.  Usage of:  caret and RWeka packages 
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Starting point: ClassificationRules.R 

 

 

Exercise 3/ Weka:  Analysis of algorithms for extracting classification rules  

 

a) Open the file “weather.nominal.arff” and apply successively (using Weka Explorer) the 

following algorithms: OneR, JRip, M5Rules, PART 

b) Identify the best rule based classifier for the dataset  “weather.nominal.arff” 

 

 

3. Instance Based Learning Classifiers 

 

The simplest instance based classifier is the kNN (k nearest neighbours). 

 

Construction:   

 The classification model consists of the training set (there is no specific training step 

– this is why these classifiers are considered lazy classifiers) 

Usage: 

 For an input data the class is predicted based on the following steps:  

o Step 1: Find the most similar k instances from the training set 

o Step 2: Identify the dominant class among the classes corresponding to the k 

instances selected at the previous step 

 

R packages: package caret/ method knn,  package class / methods knn, knn1 

 

Weka implementation:  IB1 (only 1 neighbour is used), IBk (k neighbours are used) 

 

Exercise 4/ R: Construct and evaluate the performance of a nearest neighbor classifier for: (a) 

Breast Cancer dataset; (b) Titanic dataset.   

(i) Analyze the influence of the attributes types and of pre-processing (e.g. standardization) 

on the classification performance and on the learned classifier parameter (k) 

(ii) Visualize the ROC curve and analyze the value of AUC. 

 

Starting point: kNN.R 

 

 

Exercise 4/ Weka:  Choose the “right” number of neighbors for kNN 

a) Open in Weka the file “breast-w.arff”. For IBk identify the value(s) of k  (out of 

{1,2,3,4,5,6,7,8,9,10})  which lead(s) to the best classifier performance (Hint: modify the 

value of k from IBk). 

b) Open in Weka the file “glass.arff” and apply the same processing steps. 

 

 

4. Probabilistic models 

 

They are based on the estimation of the probability that a data belongs to a class 

(P(Ck|(a1,a2,…,an)) knowing the probabilities of observing values of the attributes in different 

classes, P(ai| Ck) – these probabilities are computed during the training process based on the 

training set.  The class having the maximal probability will be considered the class to which the 

data belongs.  The probability of each class is computed using the Bayes formula: P(Ck| 

a1,a2,…,an)=P(a1,a2,…,an | Ck)P(Ck)/ P(a1,a2,…,an).  
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Examples: 

 Naïve Bayes:  it is based on the simplifying assumption that all attributes are independent 

(consequently the probability to observe a data instance is the product of the probabilities 

to observe each of the attributes, i.e. P(a1,a2,…,an)=P(a1)P(a2)…P(an)). 

 Bayesian Network (Belief network): it allows to describe the relationships between 

attributes by using a directed acyclic graph.  

  

Exercise 5/ R: Construct and evaluate the performance of a naïve Bayes classifier for: (a) Breast 

Cancer dataset; (b) Titanic dataset.   

 

Starting point: NaiveBayes.R 

 

 

Exercise 5/ Weka:  

a) Open the file “weather.nominal.arff”. Apply the classifiers  Naïve Bayes and Bayes Net 

b) Use the Bayes Network Editor (from Weka GUI Choser -> Tools) to construct a Bayesian 

network. Main steps: 

 Select the dataset: Tools->Set Data 

 Place the nodes (each attribute, including that corresponding to the class will 

have an associated node) by using Edit->Add node 

 Specify the relationships by using Edit->Add arc (for instance one can specify an 

arc from the class node to the nodes corresponding to the attributes) 

 Network training (Tools->Learn network  (this corresponds to the learning of the 

structure),  Tools->Learn CPT (this corresponds to the computation of the tables 

with probabilities)) 

 Usage of the Bayes network classifier:  select the values which correspond to the 

instance to be classified (by right clicking on each node associated to an attribute 

and by using Set evidence); the decision is based on the values of the 

probabilities associated to the class.  

Remark: details on using the Weka implementation of Bayesian networks can be find at 

http://www.cs.waikato.ac.nz/~remco/weka_bn/ 

 

5. Neural networks 

 

The main steps in designing a neural network for classification are: 

 

 The choice of the architecture. In the case of multi-layer perceptrons one have to choose: 

o The number of input units = the number of attributes 

o The number of hidden layers and units – it depends on the complexity of the 

problem (there is no unique solution/ best recommendation) – simplest approach: 

use only one hidden layer 

o Number of output units: 

 Binary classification:  one unit (the result is interpreted by using a 

threshold value, e.g. if the output value is larger than 0.5 then class 1 

otherwise class 2) or two units (the unit which produces the larger value 

will indicate the class – this variant can be easily extended to multiple 

classification) 

 Multiple classification:  The number of output units is equal to the 

number of classes (the unit producing the highest value indicates the 

predicted class). 
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 The choice of the activation functions. For the neural networks to be trained using the 

backpropagation algorithm the activation functions should be differentiable, thus the 

typical choices are: 

o The hidden units have sigmoidal activation functions (logistic or tanh function). 

o The output functions have sigmoidal (logistic function is the default variant) or 

linear functions or softmax (output of unit i: yi=exp(zi)/(exp(z1)+...+ exp(zK)) – in 

the case of K classes, i.e. K output units) 

        

 The choice of the training algorithm and of its parameters. In the case of the 

backpropagation algorithm the typical parameters (also used in Weka and in nnet package 

of R – included in caret) are: 

o Number of training epochs 

o Learning rate 

o Coefficient of the momentum term 

  

R implementation:  nnet package (included in caret) – one hidden -layer neural network (with 

various activation functions for the output layer – logistic (default), linear, softmax) trained using 

a Backpropagation algorithm aiming to minimize MSE (mean squared error – default) or the 

cross-entropy (when softmax activation function is used).  Included also in Rattle. 

 

Weka implementation:  MultilayerPerceptron = feedforward neural network trained using 

Backpropagation (the variant with momentum term);  the network architecture has by default one 

hidden layer but the number of layers (and of units per each layer) can be changed. 

 

Exercise 6/ R: Construct and evaluate the performance of a neural network based classifier for: 

(a) Breast Cancer dataset; (b) Titanic dataset.   

 

Starting point: NeuralNetworks.R 

 

Exercise 6/ Weka:  Analysis of the network architecture on the classification performance 

 

a) Open the file “breast-w.arff”  \ 

b) Train a neural network using the default settings (one hidden layer with K=(nr 

attributes+nr classes)/2  units) 

a) Compare the performance of the classification (accuracy values) for the following values 

of the  Hidden Layers (H) parameter: 

a. ‘a’ (K=(nr attributes+nr classes)/2) 

b. ‘i’  (K=nr attributes) 

c. ‘o’ (K=nr classes) 

d. ‘t’ (K = nr attributes+nr classes) 

e. 4,2   (two hidden layers with 4 and 2 units, respectively) 

b) Analyze the influence of the learning rate and of the coefficient of the “momentum” term.  

c) Compare the results obtained by using the  MultilayerPerceptron with that obtained by 

using a RBF network – radial basis function network (functions->RBF Network) 

 

Remark. By activating the option GUI from Multilayer Perceptron one can visualize the network 

architecture. 
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6. Classification using Support Vector Machines (SVM) 

 

The Weka implementation of SVM uses a fast algorithm for solving the optimization problem 

involved in the estimation of the weights corresponding to support vectors (Sequential Minimal 

Optimization). The standard SVM is designed for binary classification. In the case of the 

classification in M classes the classification problem is transformed in several binary 

classification problems. 

 

Exercise 7/ R: Construct and evaluate the performance of a naïve Bayes classifier for: (a) Breast 

Cancer dataset; (b) Titanic dataset.   

 

Starting point: SVM.R 

 

Exercise 7/Weka:   

a) Open in Weka the file “breast-w.arff” and use SVM (functions->SMO); analyze the 

influence of the kernel function on the classification accuracy (variants: PolyKernel, 

NormalizedPolyKernel, RBFKernel) 

b) Open in Weka the file “arrhythmia.arff”  and apply the SVM classifier;  try to solve the 

same problem using a neural network (multilayer perceptron or RBF network). 

 

 

Homework: 

 

1. Use Rattle or R (at your choice) to construct and compare the performance of  classifiers 

based on (i) decision tree; (ii) support vector machine; (iii) neural network.   

Datasets: (i) Glass (from mlbench);  (ii) LetterRecognition (from mlbench); German 

credit data [http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29] 


