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Efficient Implementation of the Fuzzy c-Means

Clusteng Algornthms
ROBERT L. CANNON, JITENDRA V. DAVE, AND JAMES C. BEZDEK

Abstract-This paper reports the results of a numerical comparison
of two versions of the fuzzy c-means (FCM) clustering algorithms. In
particular, we propose and exemplify an approximate fuzzy c-means
(AFCM) implementation based upon replacing the necessary "exact"
variates in the FCM equation with integer-valued or real-valued esti-
mates. This approximation enables AFCM to exploit a lookup table
approach for computing Euclidean distances and for exponentiation.
The net effect of the proposed implementation is that CPU time during
each iteration is reduced to approximately one sixth of the time re-
quired for a literal implementation of the algorithm, while apparently
preserving the overall quality of terminal clusters produced. The two
implementations are tested numerically on a nine-band digital image,
and a pseudocode subroutine is given for the convenience of applica-
tions-oriented readers. Our results suggest that AFCM may be used to
accelerate FCM processing whenever the feature space is comprised of
tuples having a finite number of integer-valued coordinates.

Index Terms-Approximate FCM, cluster analysis, efficient imple-
mentation, fuzzy c-means, image processing, pattern recognition.

I. INTRODUCTION
CLUSTERING algorithms can be loosely categorized
\_by principle (objective function, graph-theoretical,

hierarchical) or by model type (deterministic, statistical,
fuzzy). This paper concerns itself with an infinite family
of fuzzy objective function clustering algorithms which
are usually called the fuzzy c-means algorithms. For brev-
ity, in the sequel we abbreviate fuzzy c-means as FCM.
A special case of the FCM algorithm was first reported
by Dunn [11] in 1972. Dunn's algorithm was subse-
quently generalized by Bezdek [3], Gustafson and Kessel
[14], and Bezdek et at. [6]. Related algorithms and indi-
rect generalizations of various kinds have been reported
by, among others, Granath [13], Full et al. [12], and An-
derson and Bezdek [1]. Applications of FCM to problems
in clustering, feature selection, and classifier design have
been reported in geological shape analysis [9], medical
diagnosis [2], image analysis [10], irrigation design [8],
and automatic target recognition [5]. These references
manifest a nice progression of both theory and application
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of FCM over the last decade. Successes notwithstanding,
many unanswered questions concerning these algorithms
remain. Among these, one of the most frequent opera-
tional complaints about FCM is that it may consume-for
large data sets-high amounts of CPU time (this holds,
e.g., in spite ofthe fact that FCM is, for certain problems,
itself several orders of magnitude faster than, say, maxi-
mum likelihood iteration [7]). With this as background,
the scope of the present paper is stated simply: What
means of accelerating computation time in the FCM loop
can be tried? And how effective are these revised imple-
mentations?

Section II contains a brief description of the basic FCM
algorithm. Section III presents a table lookup implemen-
tation of the basic FCM algorithm, called AFCM, and
discusses the two approximations and six lookup tables
that comprise AFCM. Experimental numerical results
comparing a literal implementation, LFCM, to AFCM are
given in Section IV. Section V contains a discussion of
our conclusions.

II. THE FCM ALGORITHM

Let R be the set of reals, RP the set ofp tuples of reals,
R+ the set of nonnegative reals, and Wcn the set of real c
x n matrices. RP will be called feature space, and ele-
ments x E RP feature vectors; feature vector x = (xI, x2,

* , xp) is composed of p real numbers.
Definition: Let X be a subset of RP. Every function u: X
[0, 1] is said to assign to each x E X its grade of mem-

bership in the fuzzy set u. The function u is called afuzzy
subset of X.
Note that there are infinitely many fuzzy sets associated

with the set X. It is desired to "partition" X by means of
fuzzy sets. This is accomplished by defining several fuzzy
sets on X such that for each x E X, the sum of the fuzzy
memberships of x in the fuzzy subsets is one.

Definition: Given a finite set X C RP, X = {xI, x2,
**,x} and an integer c, 2 < c < n, afuzzy cpartition

ofX can be represented by a matrix U E Wcn whose entries
satisfy the following conditions.

1) Row i of U, say Ui = (u 1, u2,2 , uin) exhibits
the ith membership function (or ith fuzzy subset) of X.

2) Column j of U, say Uj = (ulj, u2j, u* j* u,) ex-
hibits the values of the c membership functions of the]th
datum in X.

3) uik shall be interpreted as Ui(Xk), the value of the
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membership function of the ith fuzzy subset for the kth
datum.

4) The sum of the membership values for each Xk is one
(column sum i Uik = 1 V k).

5) No fuzzy subset is empty (row sum Sk Uik > 0 V i).
6) No fuzzy subset is all of X (row sum Ek Uik < n v

i).
Mf, will denote the set of fuzzy c partitions of X. The

special subset Mc c Mfc of fuzzy c partitions ofX wherein
every Uik is 0 or 1 is the discrete set of "hard," i.e., non-
fuzzy c partitions of X. M, is the solution space for con-
ventional clustering algorithms.
The fuzzy c-means algorithm uses iterative optimiza-

tion to approximate minima of an objective function which
is a member of a family of fuzzy c-means functionals
using a particular inner product norm metric as a similar-
ity measure on RP X RP. The distinction between family
members is the result of the application of a weighting
exponent m to the membership values used in the defini-
tion of the functional.

Definition: Let U E Mfc be a fuzzy c partition of X, and
let v be the c tuple (vl, v2, * , vc), vi e RP. The fuzzy
c-means functional Jm: MfC x RP -> R+ is defined as

n c

Jm(U, v) = EZ (Uik)m (dik)2

where

U E Mfc
is a fuzzy c partition of X;

V = (V1, V2, ,c))E RcP

with vi E RP the cluster center or prototype of class i, 1
< i < c, and

ik = IlXk - Vi
'

any inner product norm metric, and m E [1, oo).
Note the several parameters in the definition of the fuzzy

c-means functional. The squared distance is weighted by
the mth power of the membership of datum x in cluster i.
Thus, Jm is a squared error criterion, and its minimization
produces fuzzy clusters (matrix U) that are optimal in a
generalized least squared errors sense.
The FCM algorithm, via iterative optimization of Jm,

produces a fuzzy c partition of the data set X = {x,,

xn}. The basic steps of the algorithm are given as follows
(cf. [4] for the derivation).

1) Fix the number of clusters c, 2 c c < n where n =
number of data items. Fix m, 1 < m < oo. Choose any
inner product induced norm metric 1 11 e.g.,

liX - VI 12 = (X - V)T A(x - v),
A E Wpp positive definite.

2) initialize the fuzzy c partition U(°),
3) at step b, b = 0, 1, 2, * ,

4) calculate the c cluster centers {v(b)} with U(b) and
the formula for the ith cluster center:

ZJ (Uik)m Xkl
vk=l

Z (Uik)m
k-=1

(1)

5) Update U(b): calculate the memberships in U(b I 1) as
follows. For k = 1 to n,

a) calculate Ik and ik:
Ik = {11 < i < c, dik = I lXk - Vi = °}

Ik = I 1, 2, - * * , c}I Ik;

b) for data item k, compute new membership values:
i) if Ik =

1
Uik - (d1:)21(m 1)

j VdkJ
(2)

ii) else Uik = 0 for all i E Ik and EieIk Uik = 1;
next k.

6) Compare Mb) and U(b + 1) in a convenient matrix
norm; if IIU(b) - U(b + l)j < , stop; otherwise, setb =
b + 1, and go to step 4).
Use of the FCM algorithm requires determination of

several parameters, i.e., c, , m, the inner product norm
* 1, and a matrix norm. In addition, the set U(°) of initial

cluster centers must be defined. Although no theoretical
basis for choosing a good value of m is available, 1.1 <
m c 5 is typically reported as the most useful range of
values. Further details of computing protocols, empirical
examples, and computational subtleties are summarized
elsewhere, cf. [4]. The point of attack below is to reduce
the computational burden imposed by iterative looping
between (1) and (2) when c, p, and n are large. It is this
task to which we now turn.

III. THE AFCM IMPLEMENTATION
In this section, we develop AFCM as a subroutine to

implement an approximation of the FCM algorithm. Six
internal tables and approximations of several variables in
the FCM algorithm are required. Section III-A describes
the environment in which we use AFCM and the assump-
tions we have made about the tables passed to it. Section
III-B describes the internal tables used. AFCM is pre-
sented as a subroutine in Section Ill-C.

A. The External Tables
The developmental environment for the proposed im-

plementation was that of interactive digital image pro-
cessing. For this study, our images were 256 x 256 pix-
els, thus making n = 65536. Larger values of n, say 1
Mbyte, are easily encountered in imaging applications.
Our values for p have been as large as 11, and for c as
large as 16. In this context, p is the number of (spectral)
layers in multilayered digital data.
Each pixel vector x of such data has features that lie in

the discrete set JGL = {0, 1, 2, * , nGL} where nGL is
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the number of gray levels to which the data are resolved.
For our application, nGL 255; thus, the data array X can
be represented as an array of n x p 1-byte integers.

In the discussion which follows, it is necessary to dis-
tinguish among "real" algorithmic triples (v, u, {dik}),
their approximations (V, U, and {dik}), and their realiza-
tions as array elements ([V], [U], and [DK]) in imple-
mentations of the approximation.

In order to give AFCM the ability to adjust to cluster
centers in a smooth manner and to converge to the same
approximate values as a literal implementation of the FCM
algorithm (LFCM), we have chosen to multiply them by
10 and round them to the nearest integer. Thus, the cluster
centers may be represented by an array [ V] of c x p 2
byte integers. This approximation of the real vi by ei
rounded to one decimal place is the first imiiplementational
deviation from FCM, and it demands the distinction imiade
by calling our modified irnplementation AFCM. It should
be noted that using these estimates for the vi abrogates the
necessity of (1) and (2); as we shall see, however, the
approximation to vil E R by oil does not seriously affect
the path of iterates traced through Mfj x R"P by AFCM.
The fuzzy memberships uik are in the interval [0.0, 1.0],

so the values of the Uik are real. We choose to use a three
decimal place approximation of lik and multiply that value
by 1000. so our approximations Uik of Uik are in [0, 1000].
Thus, we can represent the approximate fuzzy member-
ship matrix U by an array [U] consisting of c x n 2-byte
integers.
AFCM will be presented as a subroutine which has

passed an n x p array [X] of data, a c x p array [V] of
initial cluster centers, and a c x n array [U](°). The sub-
routine updates the array [V] with the cluster centers after
convergence and also returns the array [U] of fuzzy mem-
berships of the data with respect to the final set of cluster
centers.
To summarize, we have replaced a necessary pair (U,

v) for J,m via (1) and (2) with an approximately necessary
pair (U, e). The net savings in storage and processing time
are traded against the loss of true necessity. The loss of
necessity is traded for economies of storage and CPU
time. The numerical examples presented below imply that
AFCM terminates at roughly the same place as LFCM,
so these economies seem to be realized at no sacrifice in
the quality of LFCM estimates.

B. The Internal Tables
A literal implementation of the FCM algorithm can be

very expensive computationally. As an example, in (1),
for each value of i and 1, there are n exponentiations in
the denominator and n exponentiations and products in the
numerator. A straightforward transliteration of the algo-
rithm would require c x p x n uses of the exponentiation
operators and c x p divisions. Because the algorithm is
iterative, these vi may be calculated repeatedly.

Three equations can be identified as making significant
contributions to the overall time requirements of the al-
gorithm. The first is the calculation of d,k, the distance of

XA from vi. We have chosen as 11 the Euclidean norm
(A = I, the p x p identity matrix). Thus,

p

dik - E (Xkl Vil)2.
1=1 (3)

Secondly, the updated value of the fuzzy membership ma-
trix [Uik] is given in the general case by (2). The third is
(1), the expression for the cluster centers.
The goal of our table lookup approach is to eliminate

the use of exponentiation operators except in the initiali-
zation stage when the tables are constructed. Likewise,
the number of divisions is reduced by subtracting loga-
rithms which are obtained by referencing a table of log-
arithms followed by a reference to a table of exponentials
for the antilogarithm. Of course, great amounts of space
can be required for tables. We have made assumptions
about the nature of the data and the accuracy of interme-
diate results such that we can contain the size of tables
within reasonable limits. Of our six internal tables, two
are 2-byte integers, two are 4 byte integers, and the other
two are 4-byte reals. The use of lookup tables constitutes
another major departure from LFCM.
Because the use of such tables may enhance implemen-

tation of the FCM algorithm in other environments (and
possibly enhance other algorithms as well), we present
here a description of the tables used by AFCM.

1) dik: In (3), the expression for dik, for each iteration
there are c x n computations of the square root of a num-
ber obtained by p differences, p squares, and p - 1 ad-
ditions. Two tables are used here. In defining the tables,
we use a pseudolanguage in which we will present the
algorithm.
Given that V[i, 1] is ten times the lth dimension (band)

of the ith cluster center, define TABLEA as

TABLEA[i, 1, y] = 0.01 x (10 x y - V[i, 1])2,
1 . i < C 1 < .p,0 cy . 255. Thus, foreachof
the possible values of a datum y, TABLEA contains the
square of the difference between that value y, which is
an integer, and the coordinates of the cluster centers,
which are reals. These values may be as large as 2552, So
TABLEA consists of 4-byte reals. Also, as the cluster
centers are updated on each iteration of AFCM, TABLEA
must be recomputed on each iteration.
The reader has perhaps noted from (2) and (3) that (2)

can be slightly modified to avoid repeated computation of
the square root of real numbers. This strategy, although
meaningful in a literal implementation of FCM, results in
a very large increase in the size of the subsequent tables
(from 255.0 to p x 255.02 in our case). To reduce stor-
age, therefore, it is advisable to obtain square roots and
to work with the normalized form dik,
The second table is useful for computing the square root

of the sum over I of values from TABLEA. One decimal
place accuracy will be achieved by multiplying square
roots by 10 and storing them as integers. TABLEB is
given as

250)

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on February 21,2010 at 19:28:32 EST from IEEE Xplore.  Restrictions apply. 



CANNON et al.: EFFICIENT IMPLEMENTATION OF FUZZY c-MEANS CLUSTERING ALGORITHMS

TABLEB[y] = round(10j),

0 . y . 10 000. If y is in [0, 10 000], then 10of is in
[0, 1000], and can be represented by a 2 byte integer. The
upper bound of 10 000 is determined somewhat arbitrarily
because it is not advisable to keep a table of square roots
for all integer values up to 2552 as this may lead to ex-
cessive paging in a virtual memory environment. For val-
ues larger than 10 000, square roots will be computed by
a library subroutine; our assumption is that most distances
will be less than 100.

In AFCM, we compute for each k, I < k c n the dis-
tance of the kth datum from each of the i cluster centers
and place it into the array DK, so we define

_p_
E TABLEA[i, 1, X[k, l]]

DK[i] = TABLEB p 1

p

10 Z (X[k, 1] - V[i, 1])2
\11

i= 1, 2, . . . , c.

Thus, for a given value of k, say k = q, DK[i]
lOdiqlN/. Because distances need to be calculated for only
one datum at a time and dik is in [0.0, 255.0v'p], DK[i]
is in [0, 2550], and can be a (one-dimensional) array of c
2-byte integers.

2) Uik: Two tables are used in the calculation of Uik,
given in the general case by (2). The first is given as

TABLEC[y] = round((20 000/(m - 1))

x log (0.1 x y))

0 c y < 2550. Values from TABLEC give logarithms
which can be subtracted in order to perform the division
of dik by djk. Then we can define

TABLED[y] = 10(0.owl xy)

The bounds for y will be discussed after further motiva-
tion. Thus,

U[i, k]

1000
c

E TABLED[TABLEC[DK[i]] - TABLEC[DK[ j]ll
j=l

1000
-c

E 1x0.0001(log((O. xDK[Ui 0.1 xDK[jj)200001m -))
j =I

1000 c 1 21(mz 1).
E (0.1 x DK[i]
j=i10.1 x DK],

Thus, U[i, k] = 1000 x aik, 1 < i < c, 1 < k c n.

If we assume m > 1.01, then TABLEC will contain a
minimum value of -2 000 000 and a maximum value of
4 813 030. Thus, TABLEC must be composed of 4-byte
integers. The aforementioned range of TABLEC suggests
an extremely large (= 106) range for the argument of
TABLED. However, our ultimate goal in these compu-
tations is the evaluation of the sum in the denominator of
(2). If the argument of TABLED is very small, i.e., a
very large negative number, that particular term contrib-
utes very little to the sum. Assuming that a contribution
of less than 0.001 is too small to deserve any further con-
sideration, the lowest limit for TABLED is set at 10-3,
i.e., the lowest permissible value of y is taken as -30
000. If the argument of TABLED is very large, the sum
of all the terms of the series will also be large, leading to
a very small (<0.001) value of aik. Thus, if a condition
arises where the argument of TABLED is greater than 30
000, the corresponding value of aik can be set to zero with-
out any further calculation. Based upon these arguments,
we restrict y to the range -30 000 < y c 30 000 or
-10 000 log (1000) c y c 10 000 log (1000). Further-
more, TABLED values should be stored as reals, as they
are to be used for the generation of a floating-point sum.
Although not shown in Fig. 1, adequate safeguards must
be taken such that references to TABLED are within the
proper array bounds, as assumed earlier.

3) vi: TABLEE and TABLEF are used for calculation
of vi, as given by (1). (Aik)r is represented by a logarithm
in TABLEE and Xkl by a logarithm in TABLEF.
TABLEE is defined as

TABLEE[y] = round((10 000 x m) x log (0.001 x y)),

1 . y c 1000. TABLEF is defined by

TABLEF[y] = round(10 000) x log (y)),

1 . y < 255. In the program, we compute

V[i, 1]

n

10 Z TABLED[TABLEE[U[i, k]] + TABLEF[X[k, 1]]]
k = I=
I

n

E TABLED[TABLEE[U[i, k]]]
k =I

n

10 Z 100o.0 (log((O.OO x i,kj)1000tl)+Iog(X[k,11100))
_ k=l

n

Z 10000(log((O.00l x U[i, k]) 10000m))
k -I

n

10 E (0.001 x U[i, k])m X[k, 1]
n

E (0.001 x U[i, k])7
k=I

But, as U[i, k] = 1000 x aik, then
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Fig. 1. The AFCM implementation.

V[i, 1] =

Ii

I10 E i Xk
k =i

E (Cik)'T
k =I

10 x oil.
The values of TABLEE are integers in [-30 000m,

0]. The values of TABLEF are integers in [0, 24 065].
TABLEE must be represented by 4-byte integers, while
TABLEF can be represented by 2-byte integers.

C. The Subroutine

Fig. I presents AFCM in pseudocode. Translation to
languages such as Fortran and C should not be difficult.
It is assumed that the user has determined some initial set
of cluster centers and has initialized the cluster center ar-

ray before invoking the subroutine.
Since the matrix norm for convergence testing must be

specified, we have chosen to use the sup norm on Wcn,
viz.

I(Cj(b) - 0(b+l)ll max II u ( ) - u (b + l) II.
ilk

The value of e such that

G(b) J(b +I)I < (4)

is supplied by the user as a parameter to the subroutine.
We note that a substantial savings in both storage and

computation time can be effected by comparing cluster
centers instead of partitions. Thus,

Ieb) e(b+1) max Iv(l)
I

i(b + 1)l} <

reduces the overall calculations and storage needed in (4)
from c x n to c x p. This is an effective reduction of
roughly n:p 64 000: 16 = 4000: 1 for data on the or-

der of one 16-band 256 x 256 image. This economy,
however, may lead to termination at different fixed points
than does (4). Since the relative accuracy of these termi-
nation criteria has not been reported, we leave this point
to a future investigation.

IV. EXPERIMENTAL RESULTS
Two versions of the fuzzy c-means algorithm were

coded and tested with test data in order to determine speed
of execution, number of iterations to convergence, and
accuracy of results. One implementation, LFCM, was a
literal transliteration of the algorithm. The other, AFCM,
was the table lookup approach described in Section III.

Both programs were written in Fortran and were identical
except in their implementation of the FCM equations as

delineated above.
The three-screen experimental image processing envi-

ronment of DIMAPSAR [16] allowed interactive display
of the original image and the results of each iteration
(cluster centers, fuzzy-membership-matrix histogram and
image for every cluster, segmented image, etc.). The host
processor was an IBM 3081 with 16 Mbytes of memory.
Virtual machines of 5 and 7 Mbytes were required for
execution of AFCM and LFCM, respectively.

A. Test Data

The test data sets were nine-band aircraft flight data
showing a region of Oklahoma. A 256 x 256 pixel region
was selected as the subject. AFCM was used to segment
the region into ten clusters, using the brightness values as
feature vectors. Each pixel was assigned to the "class"

associated with the cluster in which its fuzzy membership
was maximal. Thus, ten spectral classes were defined. The
mean Ail and standard deviation ail of the brightness val-
ues for each classi 1 < i < 10 and band 1, I c I c 9
were determined from observations of the data. A
'ground truth" data set with each pixel in class i and
band I was assigned a brightness value from a Gaussian
distribution [15] with mean ,iti and standard deviation
0.25ail. The smaller standard deviation was used for two
reasons. 1) Based upon actual observations, the noise is
not all Gaussian; thus, because of natural variability, oU

procedure afcm(X: array of data; var V: array of cluster centers;
var U: array of fuzzy memberships; m: real; n, p, c, maxiter,

epsilon: integer)

begin
initialize tables B, C, D, E, F;
unorm := 1000;
iter:= 1;
repeat

{update the U matrix}
initialize TABLEA for current set of cluster centers;
for k := I to n do begin

numik: = 0; {number of elements in Ik}
for i I to c do begin

DKfi]. TABLEB[round(sum(TABLEA[i, l, X[k, 1]],
1< I-/p) / pfl;

if DK[i] = 0 then numik: numik + I
end;

if numik # 0 then for i : I to c do begin
if DK[i] = 0 then Uli,k] :-round(1000/numik);
else U[i,k] =0;
update unorm
end

else for i: 1 to c do begin
Uli,k]

round( 1000/sum(TABLED[TABLEC[DK[i]
-TABLEC[DKU]]], 1 <j<c));

update unorm
end

end;

{compute cluster centers on all but first iteration}
if iter > I then begin

for i := I to c do begin
sumu: TABLED[sum(TABLEELUIi, k]], 1 ikcn)];
for1 : 1 to p do begin

sumux:= TABLED[sum(TABLEE[Uli, k]]
+ TABLEF[X[k, 1]], 1< k< n)];

Vii,I] := round(l0.0*summux)/sumu);
end

end;

iter iter+1
until (unorm < epsilon) or (iter > maxiter)

end;
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is expected to be much greater than would result if all
noise were Gaussian. 2) Random noise was to be added
for our experiments. This data set will be called oklaO.
Two "noisy" data sets, oklaS and okla 0, were created

by the addition of Gaussian noise to data in oklaO. Let
gauss(,t, a) be a function which returns values having a
Gaussian distribution with mean ft and standard deviation
a. For eachk 1 < k < 65536, let Yk = gauss(O, a). For
each /, 1 < / < 9, let z1 = gauss(O, 0.25or). Then let x kl
= Xkl + round(yk) + round(zl) where Xkl is the original
datum from the simulated noise-free image oklaQ. In gen-
erating oklaS, we let a = 5, and in generating ok/alO, a
= 10. Thus, each of oklaS and okla10 has Gaussian noise
which varies from datum to datum in a given band, with
band-to-band correlation of Gaussian noise for a given da-
tum. (For a = 10, it was no longer possible to distinguish
between any class in any band for, in effect, the histo-
grams had merged. A higher value of a was investigated
but discarded after comparing the resulting histograms to
those for the natural scene.)

B.
Using the interactive capabilities of DIMAPSAR [16],

three bands of the nine-band oklaO image were displayed
on a color monitor. Ten spatial positions in the image were
selected on the basis of their visual characteristics to be
initial cluster centers and were identified to the system by
a cursor. For each of the ten positions thus identified as a
cluster center, the brightness value for each band of the
cluster center was the average of the brightness values in
a 5 x 5 spatial neighborhood of the datum in that band.
The set of cluster centers defined by the aforementioned

procedure was used as a benchmark for all of our exper-
iments to enable comparisons of all aspects of the perfor-
mance of LFCM and AFCM. Values of m = 1.5 and e =
0.001 were fixed in all the experiments.

C. Discussion
The tables which follow show the results of applying

the two implementations of the fuzzy c-means algorithm
to the okla data. LFCM used all real numbers and per-
formed all divisions and exponentiations as required in a
literal coding of the algorithm. AFCM used the approach
presented in Section III.

Table I shows the number of iterations required by
AFCM and LFCM to converge when using each of oklaO,
oklaS, and oklalO as data. As the amount of noise in the
data increases, LFCM requires slightly more iterations
than AFCM to converge. As mentioned earlier, in our im-
plementation, we have used V[i, /] to an accuracy of one
decimal place. LFCM requires a few more iterations to
converge because of the more precise representation of
the cluster centers.

Table II shows the time required to compute new clus-
ter centers and to update the fuzzy membership matrix.
The time required by AFCM to compute the cluster cen-
ters is taken as unity. All other timings are measured in
this unit. There was no essential difference between cor-

TABLE I
NUMBER OF IL ERATIONS FOR
CONVERGENCE OF AFCM
AND LFCM FOR THE THREE

TEST DATA SETS

oklaO oklaS oklaO0
AFCM 5 18 75
LFCM 4 19 81

TABLE II
NORMALIZED AVERAGE TIME FOR
COMPUTATION OF NEW CLUSTER
CENTERS AND UPDATED FUZZY

MEMBERSHIP MATRIX

{vi} {ulJ}

AFCM 1.00 3.23
LFCM 11.07 13.72

TABLE III
MAXIMUM OF THE ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN BAND
COORDINATES FOR LFCM AND AFCM FOR EACH OF THE TEN CLUSTERS

OF THE TEST DATA SETS

Cluster oklaO okla5 okla IO
1 0.1 0.1 0.9

0.1 0.1 0.3
3 0.1 0.1 1.7
4 0.2 0.1 0.3
5 0.1 0.1 0.2
6 0.1 0.1 0.3
7 0.1 0.1 1.7
8 0.1 0.1 1.5
9 0.2 0.1 0.8
10 0.3 0.1 0.5

responding times for the different data sets. From the re-
sults presented in Table II, it appears that, on average,
AFCM is about six times more efficient (or faster) than
LFCM.
The results shown in Tables I and II together are very

significant for us, as we have developed AFCM for inter-
active use. The time required for each iteration of LFCM
is significantly greater than for AFCM, and the number
of iterations to convergence is slighty fewer. Analysis of
oklalO by AFCM required a session of several hours.
Analysis of the same data set by LFCM required an entire
day! We would never attempt serious interactive work on
digital images with LFCM, given our successful experi-
ence with AFCM.

Table III reports the maximum of the absolute values
of the differences between band coordinates of the ter-
minal cluster centers obtained with LFCM and AFCM for
each of the three data sets. For the data sets with either
none or moderate amounts of random noise, viz. oklaO
and oklaS, the maximum differences are negligible for all
practical purposes. For okla 1O with large amounts of ran-
dom noise, the maximum differences are on the order of
several units for three clusters. Even then, considering the
accuracy of the original data, we feel very comfortable
with the results of AFCM. In a pilot version of AFCM,
the vi were represented by integers instead of reals to the
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accuracy of one place after the decimal point, and tables
C and D were computed to three places after the decimal
point instead of four. The pilot version resulted in con-
vergence in about one fourth as many iterations of okla 1O.
However, the cluster centers were found to diverge by as
much as six units from those found by LFCM. Thus, we
conclude that more precise approximations of the inter-
mediate values result in cluster centers which are in better
agreement with the "correct" cluster centers found by
LFCM.

Lastly, we show the degree to which LFCM and AFCM
produce results which agree with the ground truth from
which all of the data sets were generated.

Definition: For X E RP and u a fuzzy set, define the a-
level set of u to be

uJ(X) - {xE Xlu(x) > a}.

Viewing the values of u as indicants of membership,
we let a be a threshold such that for a cluster membership
greater than a, we assign a hard class membership. By
this means, fuzzy partitions can be converted to hard ones.
In particular, we can, for a value of a, find the ce-level
sets of the ten clusters we have determined for oklaO,
okla5, and oklalO. Data set oklaO is the benchmark, and
so exhibits a perfect classification. Tables IV and V show
more interesting cases. For the data sets oklaS and okla 1O,
the ten clusters determined by LFCM and AFCM have
been converted into classes by applying a threshold of a
- 0.5. These classes were matched with the classes of
the original data from which the data sets were con-
structed. The fraction of data classified correctly (A),
misclassified (B), and unclassified (below the ae level for
any class) were determined. Additionally, an overall fig-
ure of merit is calculated by subtracting B from A. (the
number of data classified correctly less the number clas-
sified incorrectly). From the tables, we see that AFCM
performed essentially as well as LFCM in both cases.

Although Table V appears to make AFCM the imple-
mentation of choice, we do not believe that these exper-
iments serve to validate any claim to that effect. Rather
these results seem to corroborate the intuition that loss of
the true necessity of (1) and (2) does not, for the approx-
imation proposed, cause a significant change in iterate se-
quences generated by LFCM and AFCM. Due to the trun-
cations used in the approximate representation, we may
be, in effect, using a slightly different value of m at each
iteration. Since (U, v) are continuous functions of m, it
may be that (U(m), v(m)) - ((U(m + 6), t(m + 6)) for
some small 6 > 0. An investigation is currently underway
to substantiate this conjecture.
The results presented in this section are for a weighting

exponent of m = 1.5. For image applications, 1.1 c< m
< 2.5 has proved to be adequate for all practical purposes
[10]. Problems are eventually to be encountered, how-
ever, with higher values of m, at first with AFCM, and
for yet higher values of m with LFCM because of the lim-
itations of computer hardware. As m becomes larger, the

TABLE IV
RESULTS FOR okla5 AND CX = 0.5 FOR COMPARISON OF CLASSIFICATIONS BY
EACH OF AFCM AND LFCM WITH GROUND TRUTH FROM WHICH oklaS

WAS CONSTRUCTED

Classified Classified
Correctly Incorrectly

(A) (B) Unclassified (A-B)
AFCM 0.890 0.093 0.017 0.797
LFCM 0.889 0.092 0.018 0.797

TABLE V
RESULTS FOR oklalO AND X = 0.5 FOR COMPARISON OF CLASSIFICATIONS

BY EACH OF AFCM AND LFCM WITH GROUND TRUTH FROM
WHICH oklalO WAS CONSTRUCTED

Classified Classified
Correctly Incorrectly

(A) (B) Unclassified (A-B)
AFCM 0.605 0.342 0.053 0.262
LFCM 0.595 0.347 0.058 0.248

Uik become smaller because the data spread their fuzzy
memberships among a greater number of clusters. Thus,
in (1), the denominator will be a sum of higher powers of
smaller numbers. Moreover, the denominator of (1) is af-
fected more severely than the numerator because the terms
in the numerator sum are multiplied by the Xkl. Thus, for
m >- 3, (1) may generate cluster centers outside [0-255],
especially if the number of clusters is greater than five. If
necessary, the current AFCM may be modified easily to
represent fik with four digits of precision, i.e., [0-10 000]
without any significant increase in the size of the associ-
ated tables.

V. SUMMARY

We have compared a literal coding of the fuzzy c-means
algorithm (LFCM) with a table-driven approach (AFCM).
Results of the performance comparison of LFCM and
AFCM using multiband test image data indicate that
AFCM requires about one sixth less computer time, while
yielding practically the same accuracy as the literal im-
plementation. Our data were limited to integers in [0,255],
and many of the proposed tables were constructed on that
basis. These approximations and the general method of
using lookup tables are seen to have far greater utility in
image analysis than the present experiments suggest. In
view of the approximate nature of the application of fuzzy
c-means, it may be that AFCM suffices-at a considerable
savings in CPU time-whenever feature space is confined
to a tuple of finite integers.
While the examples above show that AFCM does in-

deed run faster than LFCM, a number of theoretical is-
sues were put aside in our exposition of the proposed
methodology. We conclude this paper with a short list of
important questions concerning theoretical relationships
between LFCM and AFCM.

First, as previously noted in Section IV-C, there is no
guarantee that J,m descends on iterates generated by
AFCM. This probably precludes any type of convergence
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theory for AFCM, and there is no reason to assume that
AFCM will always converge. On the other hand, al-
though LFCM is known to generate sequences that always
contain a subsequence convergent to either a local mini-
mum or saddle point of Jm, there is no assurance that
LFCM attains a local minimum in practice. Indeed, iter-
ative convergence of LFCM to a local minimum of Jm is
guaranteed only by starting "close enough" to a solution;
oscillatory behavior of LFCM is not precluded by its con-
vergence theory. Against the possibility that AFCM may
not converge, we can offer only our computational expe-
rience: in all of the computations described above, as well
as several other examples detailed in [17], AFCM has al-
ways converged. Nonetheless, convergence theory for
AFCM is at this point an open question.
A second point of great interest is whether AFCM and

LFCM-when convergent-always terminate at (roughly)
the same fixed point of the FCM operator. Because AFCM
is not driven by the FCM penalty function, it is certainly
possible that iterate sequences generated by the two al-
gorithms diverge from each other. This has yet to happen
in practice, but there is no doubt that it can occur. Whether
AFCM always follows LFCM along a "parallel" path
through MfC is unknown.

Finally, we emphasize again that the weighting expo-
nent m varies from iteration to iteration-indeed, perhaps
frotn term to term-in AFCM, so it is very difficult to
envision a fixed objective function underlying AFCM. In
summary, the relationship of AFCM to LFCM is analo-
gous to, e.g., the acceleration of Newton's method by
computing the inverse of the Jacobian every kth time in-
stead of at every iteration. From a theoretical viewpoint,
both shortcuts are disturbing; from a practical view, both
are well justified. We acknowledge the importance of
these theoretical issues, and hope to make them the basis
of a future study.
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