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AbstractnThis paper transmits a FORTRAN-IV coding of the fuzzy c-means (FCM) clustering program. 
The FCM program is applicable to a wide variety of geostatistical data analysis problems. This program 
generates fuzzy partitions and prototypes for any set of numerical data. These partitions are useful for 
corroborating known substructures or suggesting substructure in unexplored data. The clustering criterion 
used to aggregate subsets is a generalized least-squares objective function. Features of this program include 
a choice of three norms (Euclidean, Diagonal, or Mahalonobis), an adjustable weighting factor that 
essentially controls sensitivity to noise, acceptance of variable numbers of clusters, and outputs that 
include several measures of cluster validity. 
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INTRODUCTION 
In general, cluster analysis refers to a broad spectrum 
of  methods which try to subdivide a data set X into 
c subsets (clusters) which are pairwise disjoint, all 
nonempty, and reproduce X. via union. The clusters 
then are termed a hard (i.e., nonfuzzy) c-partition of 
X. Many algorithms, each with its own mathematical 
clustering criterion for identifying "optimal" clusters, 
are discussed in the excellent monograph of Duda 
and Hart (1973). A significant fact about this type of  
algorithm is the defect in the underlying axiomatic 
model that each point in X is unequivocally grouped 
with other members of  "its" cluster, and thus bears 
no apparent similarity to other members of  X. One 
such manner to characterize an individual point 's 
similarity to all the clusters was introduced in 1965 
by Zadeh (1965). The key to Zadeh's idea is to 
represent the similarity a point shares with each 
cluster with a function (termed the membership 
function) whose values (called memberships) are be- 
tween zero and one. Each sample will have a mem- 
bership in every cluster, memberships close to unity 
signify a high degree of similarity between the sample 
and a cluster while memberships close to zero imply 
little similarity between the sample and that cluster. 
The history, philosophy, and derivation of such 
mathematical systems are documented in Bezdek 
(1981). The net effect of such a function for clustering 
is to produce fuzzy c-partitions of a given data set. A 
fuzzy c-partition of X is one which characterizes the 
membership of each sample point in all the clusters 
by a membership function which ranges between 

zero and one. Additionally, the sum of the member- 
ships for each sample point must be unity. 

Let Y = {Yl, Y2 . . . . .  y~} be a sample of N 
observations in R n (n-dimensional Euclidean space); 
Yk is the k-th feature vector; Ykj the j-th feature of Yk. 
If C is an integer, 2 ~< c < n, a conventional (or 
"hard") c-partition of Y is a c-tuple (YI, Y2 . . . . .  Yc) 
of subsets of Y that satisfies three conditions: 

Y~=~ '  1 < i ~ < c ;  ( la)  

Y~A Yj= (a; i ~ j ( lb) 

c 

U Y, : Y (lc) 
i=l 

In these equations, ~ stands for the empty set, and 
(n, u)  are respectively, intersection, and union. 

In the context discussed later, the sets { YI} are 
termed "clusters in Y. Clusters analysis (or simply 
clustering) in Y refers to the identification of a 
distinguished c-partition {Y~} of  Y whose subsets 
contain points which have high intracluster resem- 
blance; and, simultaneously, low intercluster similar- 
ity. The mathematical criterion of  resemblance used 
to define an "optimal" c-partion is termed a cluster 
criterion. One hopes that the substructure of Y rep- 
resented by { I~} suggests a useful division or rela- 
tionship between the population variables of  the real 
physical process from whence Y was drawn. One of 
the first questions one might ask is whether Y was 
drawn. One of the first questions one might ask is 
whether Y contains any clusters at all. In many 

191 



192 JAMES C. BEZDEK, ROBERT 

geological analyses, a value for c is known a priori 
on physical grounds. If c is unknown, then determi- 
nation of an optimal c becomes an important issue. 
This question is sometimes termed the "cluster valid- 
ity" problem. Our discussion, in addition to the 
clustering a posteriori measures of duster  validity (or 
"goodness of fit"). 

Algorithms for clustering and cluster validity have 
proliferated due to their promise for sorting out 
complex interactions between variables in high di- 
mensional data. Excellent surveys of many popular 
methods for conventional clustering using determin- 
istic and statistical clustering criteria are available; 
for example, consult the books by Duda and Hart 
(1973), Tou and Gonzalez (1974), or Hartigan (1975). 
The conventional methodologies discussed in these 
references include factor analytic techniques, which 
occupy an important place in the analysis of geo- 
scientific data. The principal algorithms in this last 
category are embodied in the works of Klovan and 
Imbrie (1971), Klovan and Miesch (1976), and Miesch 
(1976a, 1976b). These algorithms for the factor ana- 
lytical analysis of geoscientific data are known as the 
QMODEL algorithms (Miesch, 1976a). 

In several recent studies, the inadequacy of the 
QMODEL algorithms for linear unmixing when con- 
fronted with certain geometrical configurations in 
grain shape data has been established numerically 
(Full, Ehrlich, and Klovan, 198 l; Full, Ehrlich, and 
Bezdek, 1982; Bezdek, and others, 1982. The problem 
is caused by the presence of outliers. Aberrant points 
may be real outliers, noise, or simply due to mea- 
surement errors; however, peculiarities of this type 
can cause difficulties for QMODEL that cannot be 
resolved by standard approaches. The existence of 
this dilemma led the authors to consider fuzzy clus- 
tering methods as an adjunct procedure which might 
circumvent the problems caused by data of this type. 
Because fuzzy clustering is most readily understood 
in terms of the axioms underlying its rationale, we 
next give a brief description of the basic ideas involved 
in this model. 

FUZZY CLUSTERING 

The FCM algorithms are best described by recasting 
conditions (equation 1) in matrix-theoretic terms. 
Towards this end, let U be a real c × N matrix, U 
= [u~k]. U is the matrix representation of the partition 
{ Y~} in equation (1) in the situation 

1; yk E Y~ l 
Ui(Yk)-~ Rik = O; o t h e r w i s e )  

N 

U~k>O for a l l i ;  
i=1 

N 

U~k = 1 for all k. 
i=1 
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In equation (2), u~ is a function; u~: Y--~ {0, 1}. In 
conventional models, u~ is the characteristic function 
of Y~: in fact, u~ and Y~ determine one another, so 
there is no harm in labelling u; the ith hard subset of 
the partition (it is unusual, of course, but is important 
in terms of understanding the term "fuzzy set"). 
Conditions of equations ( l)  and (2) are equivalent, 
so U is termed a hard c-partition of Y. Generalizing 
this idea, we refer to U as a fuzzy c-partition of Y 
when the elements of U are numbers in the unit 
interval [0, 1] that continue to satisfy both equations 
(2b) and (2c). The basis for this definition are c 
functions u~: Y-- '  [0, 1] whose values Ui(Yk) ~ [0, 1] 
are interpreted as the grades of membership of the 
yks in the "fuzzy subsets" u~ of Y. This notion is due 
to Zadeh (1965), who conceived the idea of the fuzzy 
set as a means for modelling physical systems that 
exhibit nonstatistical uncertainties. Detailed discus- 
sions for the rationale and philosophy of fuzzy sets 
are available in many recent papers and books (e.g., 
consult Bezdek (198 l)). 

For the present discussion, it suffices to note that 
hard partitions of Y are a special type of fuzzy ones, 
wherein each data point is grouped unequivocally 
with its intraduster neighbors. This requirement is a 
particularly harsh one for physical systems that contain 
mixtures, or hybrids, along with pure or antecedent 
strains. Outliers (noise or otherwise) generally fall 
into the category one should like to reserve for 
"unclassifiable" points. Most conventional models 
have no natural mechanism for absorbing the effects 
of undistinctive or aberrant data, this is a direct 
consequence of equation (la). Accordingly, the fuzzy 
set, and, in turn, fuzzy partition, were introduced as 
a means for altering the basic axioms underlying 
clustering and classification models with the aim of 
accomodating this need. By this device, a point Yk 
may belong entirely to a single cluster, but in general, 
is able to enjoy partial membership in several fuzzy 
clusters (e.g., precisely the situation anticipated for 
hybrids), We denote the sets of all hard and fuzzy c- 
partitions of Y by: 

M¢ = { Uc×NlU~J, ~ [0, 11; 

Mfc = { UcxN[Uik E [0, ll; 

equations (2b), (2c)}; 

(3a) 

equations (2b), (2c)]. 

(3b) 

Note that Mc is imbedded in Mfo This means that 
fuzzy clustering algorithms can obtain hard c-parti- 
tions. On the other hand, hard clustering algorithms 
cannot determine fuzzy c-partitions of Y. In other 

(2a) words, the fuzzy imbedment enriches (not replaces!) 
the conventional partitioning model. Given that fuzzy 
c-partitions have at least intuitive appeal, how does 

(2b) one use the data to determine them? This is the next 
question we address. 

Several clustering criteria have been proposed for 
(2c) identifying optimal fuzzy c-partitions in Y. Of these, 

the most popular and well studied method to date is 
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associated with the generalized least-squared errors 
functional 

/V ¢ 

Jm(U, V) = E ~ (U,'k)mllyk - -  V~II~ 
k = l  i = l  

Equation (4) contains a number  of variables: these 
are 

Y = {Y~, Y2 . . . . .  YN} C R" = the data, 

c = number  of clusters in Y; 2 ~< c < n, 

m = weighting exponent; 1 ~< m < 0% 

U = fuzzy c-partition of Y; U E Mfc 

v = (v~, v2 . . . . .  Vc) = vectors of centers, 

v~ = (va, vj2, . .  •, v,-,) = center of cluster i, 

II L = induced A-norm on R" 

A = positive-definite (n × n) weight matrix. 
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(blur, defocus) membership towards the fuzziest state. 
Each choice for m defines, all other parameters being 
fixed, one FCM algorithm. No theoretical or corn- 

(4) putational evidence distinguishes an optimal m. The 
range of useful values seems to be [ 1, 30] or so. If  a 
test set is available for the process under  investigation, 
the best strategy for selecting m at present seems to 
be experimental. For most data, 1.5 ~< m ~< 3.0 gives 
good results. 

(5a) The other parameter of arm that deserves special 
ment ion is weight matrix A. This matrix controls the 

(5b) shape that optimal clusters assume in R ~. Because 
(5c) every norm on R ~ is inner  product induced via the 

formula 
(5d) (x, Y~A = x r A r ,  (8) 

(5e) 
there are infinitely many A-norms available for use 

(5f) in equation (4). In practice, however, only a few of  
these norms enjoy widespread use. The FCM listing 

(5g) below allows a choice of three norms, each induced 
(5h) by a specific weight matrix. Let 

The squared distance between Yk and v~ shown in 
equation (4) is computed in the A-norm as 

d2k = IlYk -- o, ll~ = (yk - v O r h ( Y k  - v~). (6) 

The weight attached to each squared error is ( u a ) " ,  

the  mth power of ykS membership in cluster i. The 
vectors {v~} in equation (5f) are viewed as "cluster 
centers" or centers of mass of  the parti t ioning subsets. 
If m = 1, it can be shown that Jm minimizes only at 
hard U's E M~, and corresponding v~s are just  the 
geometric centroids of the Iris. With these observa- 
tions, we can decompose J~ into its basic elements 
to see what property of the points {Yk} it measures: 

d~= 

m 2 - -  (ua)  d i k -  

c 

m 2  (Uik) dik 
i=1  

squared A-distance from point  Yk 
to center of  mass v~. (7a) 

squared A-error incurred by repre- 
senting Yk by vi weighted by (a 
power of) the membership of Yk in 
cluster i. (7b) 

= sum of squared A-errors due to yks 
partial replacement by all c of the 
centers {vi}. (7c) 

= overall weighted sum of generalized 
A-errors due to replacing Y by v. 

(7d) 

c 

,~2  (ua)  dik 
k = l  i=1  

The role played by most of the variables exhibited 
in equation (5) is clear. Two of the parameters Of Jm, 
however warrant further discussion, namely, m and 
A. Weighting exponent m controls the relative weights 
placed on each of the squared errors d2k. As m --~ 1 
from earlier discussion partitions that minimize  Jm 

become increasingly hard (and, as ment ioned before, 
at m = l, are necessarily hard). Conversely, each 
entry of optimal Us for J,~ approaches (1/c) as m ---, 
oo. Consequently, increasing m tends to degrade 

N 

cy = Z ykIN; (9a) 
k = l  

N 

Cr = ~ (Yk -- Cy)(Yk -- Cr) t, (9b) 
k~ 1 

be the sample mean and sample covariance matrix 
of data set Y; and let {a~} denote the eigenvalues of  
Cy; let Dy be the diagonal matrix with diagonal 
elements (dy)ii = ai; and finally, let I be the identity 
matrix. The norms of greatest interest for use with 
equation (4) correspond to 

A = I ~ -Euclidean Norm, (10a) 

A = D;1 ~ Diagonal Norm, (10b) 

A = C ;  ~ ~ Mahalonobis Norm. (10c) 

A detailed discussion of the geometric and statistical 
implications of these choices can be seen in Bezdek 
(1981). When A = /, arm identifies hyperspherical 
clusters; for any other A, the clusters are essentially 
hyperellipsodial, with axes proportional to the eigen- 
values of A. When the diagonal norm is used, each 
dimension is effectively scaled via the eigenvalues. 
The Euclidean norm is the only choice for which 
extensive experience with geological data is available. 

Optimal fuzzy clusterings of  Y are defined as pairs 
(C r, ~) that locally minimize Jm. The necessary con- 
ditions for m = 1 are well known (but hard to use, 
because Mc is discrete, but  large). For m > 1, if Yk 
=/: ~ for all j and k, (U, ~) may be locally optimal for 
arm only if 

l)i = ~ (Uik)myk / ~ (~lik)m; l < ~ i < ~  c; (1 la) 
k = l  k = l  

'. 
Uik = "= ~-'~jk] ] , l < k < N; l < i < c 

(lib) 
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where a ~  = IlYk - fi, ll~. Conditions expressed in 
equations (11) are necessary, but not sufficient; they 
provide means for optimizing Jm via simple Picard 
iteration, by looping back and forth from equation 
( l la )  to ( l ib )  until the iterate sequence shows but 
small changes in successive entries of 0 or ft. We 
formalize the general procedure as follows: 

F u z z y  c-Means (FCM) Algori thms 

(A1) Fix c, m, A, IIkL. Choose an initial matrix 
U (°) E Mfc. Then at step k, k, = 0, 1, . . . ,  
LMAX. 

(A) Compute means 6 (k), i = 1, 2, . . . ,  c with 
equation ( 11)a. 

(A3) Compute an updated membership matrix 
0 (k+t) = [t~ k+n] with equation (1 lb). 

(A4) Compare 0 k+~ to 0 tk) in any convenient matrix 
norm. If [10 (k+n - ~/(k)[[ < ~, stop. Otherwise, 
set 0 (k) = 0 k+~ and return to (A2). 

Finally, we observe that generalizations of J~ which 
can accommodate a much wider variety of data 
shapes than FCM are now well known (see Bezdek 
(1981) for a detailed account). Nonetheless, the basic 
FCM algorithm remains one of the most useful 
general purpose fuzzy clustering routines, and is the 
one utilized in the FUZZY QMODEL algorithms 
discussed by Full, Ehrlich, and Bezdek (1982). Having 
given a brief account of the generalities, we now turn 
to computing protocols for the FCM listing accom- 
panying this paper. 

ALGORITHMIC PROTOCOLS 

The listing of FCM appended below has some 
features not detailed in (AI)-(A4). Our description 
of the listing corresponds to the blocks as documented. 

Input Variables. FCM arrays are listing docu- 
mented. Symbolic dimensions are 

(A1)-(A4) is the basic algorithmic strategy for the 
FCM algorithms. 

Individual control parameters, tie-breaking rules, 
and computing protocols are discussed in conjunction 
with the appended FORTRAN listing in Appen- 
dix 1. 

Theoretical convergence of the sequence { 0 (k), ~(k), 
k = 0, l , . . .  } generated by (A1)-(A4) has been 
studied (by Bezdek, 1981). Practically speaking, no 
difficulties have ever been encountered, and numerical 
convergence is usually achieved in 10-25 iterations. 
Whether local minima of Jm are good clusterings of 
Y is another matter, for it is easy to obtain data sets 
upon which Jm minimizes globally with visually 
unappealing substructure. To mitigate this difficulty, 
several types of cluster validity functionals are usually 
calculated on each 0 produced by FCM. Among the 
most popular are the partition coefficient and entropy 
of 0 E  Mfc: 

N c 

Fc((/) = ~ ~ (~ik)2/N; (12a) 
k = l  iffil 

N c 

H~(O) = - ~ ~ (t~ik Ioga(a~k))/N. (12b) 
kffil iffil 

In equation (12b), logarithmic base a E (1, oo). 
Properties of Fc and Hc utilized for validity checks 
are: 

Fc = 1 ,:* Hc = 0 ~=* 0 ~ Mc is hard; (13a) 

Fc = l/c ~=* Hc = log~(c) ~=* 0 = [l/c]; (13b) 

1 
- ~ Fc <~ 1; 0 <~ Hc <~ log~(c). (13c)  
¢ 

Entropy H is a bit more sensitive than F to local 
changes in partition quality. The FCM program listed 
below calculates F, H, and (1 - F), the latter quantity 
owing to the inequality (1 - F) < H for 0 ~ Mc 
(whena = e =  2 . 7 1 . - . ) .  

NS = number of vectors in Y = N. 

ND = number of features in Yk = n. 

Present dimensions will accomodate up to c = 20 
clusters, N = 500 data points, and n = 20 features. 
Input variables ICON specifies the weight matrix A 
as in equation (10): 

I C O N =  I ~ A  = I  

I C O N = 2 ~ A = D ;  I. 

ICON = 3 ~ A = C~ -I . 

Other parameters read are: 

QQ = Weighting exponent m: 1 < QQ. 

KBEGIN = Initial number of clusters: 

2 ~< KBEGIN ~< DCEASE. 

KCEASE = Final number of clusters: 

KCEASE < NS. 

At any step NCLUS = C is the operating number 
of clusters. FCM iterates over NCLUS from KBEGIN 
to KCEASE, generating an optimal pair (O, ~)NCLUS 
for each number of clusters desired. Changes in m 
and A must be made between runs (although they 
could easily be made iterate parameters). 

Control Parameters 

EPS = Termination criterion E in (A4). 

LMAX = Maximum number iterations at each c in 

(A1). 

Current values of EPS and LMAX are 0.01 and 50. 
Lowering EPS almost always results in more iterations 
to termination. 
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Input Y 
Compute Feature Means. Vector FM(ND) is the 

mean vector cy of equation (9a). 
Compute Scaling Matrix. Matrix CC(ND, ND) is 

matrix A of equation (10), depending upon the choice 
made for ICON. The inverse is constructed in the 
main to avoid dependence upon peripheral subs. 
Matrix CM --- A*A -I calculated as a check on the 
computed inverse, but no residual is calculated; nor 
does the FCM routine contain a flag if CM is not 
"close" to L The construction of weight matrices 
other than the three choices allowed depends on user 
definition. 

Loop Control. NCLUS = c is the current number 
of clusters: QQ is the weighting exponent m. 

Initial Guess. A pseudo-random initial guess for 
U0 is generated in this block at each access. 

Cluster Centers. Calculation of current centers 
V(NC, ND) via equation (1 la). 

Update Memberships. Calculations with equation 
(1 lb); W(NC, ND) is the updated membership matrix. 
The special situation m = 1 is not accounted for 
here. Many programs are available for this situation 
for example see Ball (1965). The authors will furnish 
a listing for hard c-means upon request. Note that 
this block does not have a transfer in situation Yk 
= ~ for some k and i. This eventuality to our 
knowledge, has never occurred in nearly 10 years of 
computing experience. If a check and assignment are 
desired, the method for assigning t~/s in any column 
k where such a singularity occurs is arbitrary, as long 
as constraints in equation (2) are satisfied. For ex- 
ample, one may, in this instance, place equal weights 
(that sum to one) on every row where Yk = V~, and 
zero weights otherwise. This will continue the algo- 
rithm, and roundoff error alone should carry the 
sequence away from such points. 

Error Criteria and Cutoffs. The criterion used to 
terminate iteration at fixed NC is 

Cluster Validity Indicants. Values of Jm, Fc, He, 
and 1 - Fc are computed, and stored, respectively, 
in the vectors VJM, F, H, and DIF. 

Output Block. For the current value of NCLUS, 
current terminal values of F~, 1 - F~, H~, Jm, {vi}, 
and 0 are printed. 

Output Summary. The final block of FCM outputs 
statistics for the entire run. 

The listing provided is a very basic version of 
FCM: many embellishments are discussed in Bezdek 
(1981). As an aid for debugging a coded copy of the 
listing, we present a short example that furnishes a 
means for checking numerical outputs. This example 
highlights several of the important features of fuzzy 
z-partitions in general, and those generated by FCM 
in particular. Examples of the use of FCM in the 
context of geological data analysis are presented in 
Bezdek, and other (1982), and Full, Ehrlich, and 
Bezdek (1982). 

Storage Requirements. The program listed in the 
appendix can handle 500 data samples with up to 50 
variables. It will handle up to 20 clusters. The pro- 
gram, as written, used under 256 K of computer 
storage. If larger data sets are used, the program is 
dearly documented as to which parameters to change. 

A NUMERICAL EXAMPLE 

Figure 1 displays a set Y of 16 points in R 2. This 
artificial data set was originally published in Sneath 

f vV ~ / . - , ,  ,/,." ,, 
L o C k e  1 

ERRMAX = max{l~ k+l) - a~fl} < EPS. (14) 
i,k 

Threshold EPS thus controls the accuracy of terminal 
output. An alternative method to terminate iteration 
would be to compare components of each ~k+~) to 
~k). There may be differences in terminal pairs (U, 
~) obtained using a fixed EPS. Furthermore, there is 
a tradeoff in CPU time, equation (14) requires (cN) 
comparisons and max{l~$~+,) _ vtO),r'(k)n~Y requires (cn) 

ij 
comparisons. Thus, if N is much larger than n, (N 
>> n), termination based on the quality of successive 
cluster centers computed via equation (1 la) becomes 
more attractive. By the same token, this can reduce 
storage space (for updated centers instead of an 
updated membership matrix) significantly if n <~ N. 
If equation (14) is never satisfied, iteration at current 
NC will stop when k = LMAX: a convergence flag 
is issued, and NC advance to NC + 1. More than 25 
iterations are rarely needed for EPS in the 0.001 
range. 

No. 

9 
I0 
II 
12 
13 
14 
15 
16 

Coordi nates 

Ykl Yk2 

0 4 
0 3 
1 5 
2 4 
3 3 
2 2 
2 1 
1 0 

5 5 
6 5 
7 6 
5 3 
7 3 
6 2 
6 l 
8 ] 

rn= Terennal cluster centers from Table 2, col. 3 

/ - Terminal maximum membership "boundaries". 

Fig. 1. An example: Artificial touching clusters. 
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and Sokal (1973) in connection with the illustration 
of a hard clustering algorithm called the unpaired 
group mean average (UPGMA) method. This data 
was subsequently studied in Bezdek (1974), where a 
comparison between the UPGMA and FCM methods 
was effected. The coordinates of Yk E Y are listed as 
columns two and three of the tabular display of Fig. 
1. This is a good data set for our purposes because it 
is easily handled for validation, and further, has some 
of the geometric properties that necessitate the intro- 
duction of fuzzy models. Data of this type might be 
drawn from a mixture of two bivariate normal dis- 
tributions. The region of  overlap contains several 
points which might be considered "noise", viz. Ys 
and Y~2. Parameters for the outputs to be discussed 
were as follows: 

Table ICON=A NCLUS=c Q Q = r n  E P S = E  

1 1, 2, 3 2 2 0.01 
2 2 2 1.25, 2.00 0.01 
3 t 2-6 1.25-2.00 0.01 

In other words, we illustrate in Tables 1 and 2, 
respectively, the effects of  variation in the norm 
inducing matrix A, and weighting exponent on (t), 
3) with all other parameters being fixed; while Table 
3 exhibits variations in F,  and H,  due to changes in 
m and c. 

Initial guesses for Uo were not chosen randomly 
here, so that users may validate their programs against 

EHRLICH, and WILLIAM FULL 

these tables. Rather, the initial matrix used for all of 
the outputs discussed later had the following elements: 

(Uo)ii -- ( c  + B); i = 1,2 . . . . .  c 

(Uo)u = ( c  +/~);  j = c + l  . . . . .  n 

(Uo)0 = ( c  +/3) ;  otherwise 

a = 1 - (q~/2); 

/3 --- q~12. 

The starting value for Fc using this Uo is always the 
midpoint of [l/c, 1), the range of Fc, that is f~(Uo) 
= ((1/c) + 1)/2. In real applications it is, of course, 
important to run FCM for several different Uos, as 
the iteration method used, like all descent methods, 
is susceptible to local stagnations. If different Uos 
result in different (0,  fi)s, one thing is certain: further 
analysis should be made before one places much 
confidence in any algorithmicaUy suggested substruc- 
ture in Y. 

Table l shows that maximizing Fc is equivalent to 
minimizing/arc but this behavior is not equivalent to 
minimizing Jm- Several examples of the general di- 
lemma are documented in Bezdek (1981). Observe 
that all three partitions of Y are (qualitatively) more 
or less equivalent. Lower membership generally cor- 

Table 1. Variation in ((7, b) due to changes in Norm. There are only two clusters, hence 02k = (1 -- O,k) 
as the sum of the tick equals one. Terminal membership U~k 

Data 
Point 

9 
I0 
II  
12 
13 
14 
15 
16 

'~'11 
912 

~22 

F 
c 

H 
c 

J 
m 

Iter. 

ICON = I ICON = 2 ICON = 3 

A = I  A= Dy I A= Cy l 

0.92 0.88 0.89 
0.95 0.93 0.92 
0.86 O. 78 0.82 
0.91 0.88 0.93 
0.80 0.84 0.84 
0.95 0,88 0.82 
0.86 0.72 0.~5 
0.82 0,67 0.62 

0.22 0,35 0.43 
0.12 0,26 0.33 
0.18 0,32 0.37 
O.lO 0,08 0.09 
0.02 0,03 0.04 
0.06 0,09 0.06 
0.16 0,24 0.19 
0.15 0.21 0.19 

6.18 5,99 5.96 

3.15 2,95 2.75 

I'.44 1,67 1,73 

2.83 3,01 3,19 

0.80 0.71 0.71 

0.35 0.45 0.45 

51.65 13.69 13.69 

6 6 ]2 
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Table 2. Variation in (t~, ~) due to changes in m (two cluster example). Terminal membership Uik: U2k 
= ( 1  - ~,k) 

Data 
Point 

9 
lO 
II 
12 
13 
14 
15 
16 

ql l 
~12 

"~21 

~22 

F 
c 

H c 
Jm 

Iter. 

QQ = m = 1.25 QQ = m = 2.00 

1.00 0.92 
1.00 0.95 
l .  O0 O. 86 
1.00 0.9l 
l .  O0 O. 80 
l.O0 0.95 
1.00 0.86 
1.00 0.82 

0.00 0.22 
0.00 O. 12 
0.00 0.18 
O. O0 O. lO 
0.00 0.02 
0.00 0.06 
0.00 0.16 
0.00 0.15 

6.25 6.18 

3.25 3.15 

1.37 1.44 

2.75 2.83 

l.O0 0.80 

0.00 0.35 

60.35 51.65 

4 6 

Table 3. Variation in F and H due to changes in m and c. 

Weighting 

Exponent 

(m) 

1.25 

]. 50 

1.75 

2.00 

Number of  Partit ion Lower Normalized 

Clusters Coefficient Bound Entropy 

(c) (F c) (1-r c) (Hc) 

2 0.998 0.002 0.007 
3 0.983 0.017 0.037 
4 0.979 0.021 0.044 
5 0.996 0.004 0.013 

2 0.955 0.Q45 0,I03 
3 0.903 0.097 0.202 
4 0.901 0.099 0.201 
5 0.917 0.083 0.197 

2 0.873 0.127 0.239 
3 0.791 0.209 0.404 
4 0.804 0.196 0.401 
5 0.776 0.224 0.468 

2 O. 794 O. 206 O. 352 
3 0.686 0.314 0.575 
4 O. 700 O. 300 O. 600 
5 O. 662 O. 338 O. 701 

responds to points distant from the "core" (i.e. ~j) of 
cluster i. Thus, point 8 is clearly signaled an outlier, 
for example in all three partitions. Notice, however, 
that the Mahalanobis norm emphasizes this much 
more heavily than, for example the Euclidean norm. 
This is because level sets in the former norm are 
elliptical, and in the latter circular. Thus, the variance 
of Y8 in the vertical direction weights its influence 

differently. In all situations, points near cluster centers 
in the A-norm have higher memberships. Note that 
~ is more stable to changes in A than v2: this 
indicates that points with a high affinity for member- 
ship in t~2 have somewhat more variability than those 
seeking to associate with t2t. Table 1 also demonstrates 
another general fact; the number of iterates needed 
using the Mahalonobis norm is usually higher than 
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the number  required by other norms. See Bezdek 
(1981) for more discussion concerning characteristic 
cluster shapes associated with changes in A. 

Table 2 illustrates the usual effect of  increasing m 
lower m's yield harder partitions and higher ones, 
fuzzier memberships. For  m = 1.25, U is hard (to 2 
decimal places). Observe that Fc and Hc mirror this 
fact, but  again, Jm does not, having a higher value at 
the lower m. Further observe that the cluster centers 
are rather stable to changes in m. This is not  always 
the situation, and it is an unproven conjecture that 
the stability of the bi's in the face of severe changes 
in m is in some sense an  indication of  cluster validity. 
Figure 1 exhibits vt and v2 for m = 2 = c, A = I ;  
their geometric positions are at least (visually) ap- 
pealing. 

Table 3 depicts the utility of Fc and  Hc for the 
cluster validity question. For every m, F,  maximizes 
(and H,  minimizes) at c = 2. From this we can infer 
that the "hardest" substructure detectable in Y occurs 
are c = 2. These values do not, however, have any 
direct tie to Y. Being computed on algorithmic 
outputs based on Y rather than any concrete assump- 
tions regarding the distribution of  Y somewhat weak- 
ens the theoretical plausibility of  using Fc and H~ for 
cluster validity. Nevertheless, they have been demon- 
strably reliable in many  experimental studies, and 
are, at present, the most reliable indicants of  validity 
for the FCM algorithms. 
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FILE':  KMEANS FORTRAN 

APPENDIX 

Listing of fuzzy C-means 

A 0 3 / 1 8 1 8 3  1 1 : 0 5  VMISP CONVERSATIONAL MOI~ITOR SYSTEM 

oooclooo 
00002000 

THIS IS THE FCM (FUZZY C-MEANS} ROUTINE. THIS LISTING IS FOR A 000C3000 
IBM TYPE COMPUTER WITH A FORTRAN IV COMPILER. IT ADAPTS FOR AI~Y 00004000 
FORTRAN COMPILER WITH MODIFICATIONS SET AT THE USER SITE. 00005000 

0 0 0 0 6 0 0 0  
REFERENCE: "PATTERN RECOGNITION WITH FUZZY OBJECTIVE FUNCTIONSt i' 00007000 

JAMES BEZDEK~ PLENUM, NEW YORK, 1981. 00008000 
00009000 
OOO 10000 

DESCRIPTION OF OPERATING VARIABLES: 00011000 
I .  INPUT VARIABLES |FROM FILE 51 00012000 

CARD I: 00013000 
TITLE{20] . . . . . . . .  80 CHARACTER HEADING 00014000 

CARD 2: 00015000 
FMT(20) . . . . . . . . . .  FORTRAN FORMAT {CONTAINED IN PARENTHESIS) 00016000 

DESCRIBING THE INPUT FCRMAT FOR THE RAW DATAOO01?O00 
UP TC 80 CHARACTERS MAY BE USED 00018000 

CARD 3: 00019000 
COL I :  ICON . . . . . .  DISTANCE MEASURE TO ,BE USED. IF :  ~ 00020000 

ICON=I USE EUCLIDEAN NORM 00021000 
ICON=2 USE DIAGONAL NORM 00022000 
ICON=3 USE MAHALANOBIS "NORM 00023000 

COLS 2-7 :  QO . . . . .  WEIGHTING EXPONENT FOR FCM 00024000 
COLS B-g: ND . . . . .  NUMBER OF FEATURES PER INPUT VECTOR 00025000 
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C COLS IO-II:KBEGIN.STARIING NUMBER OF CLUSTERS 00026000 
C COLS I2-13:KCEASE.FINISHING NUMBER OF CLUSTERS (NOTE: KBEGIN 00027000 
C MUST BE LESS THAN OR EQUAL TO KCEASE)  00028000 
C CARL 4 ON: 00029000 
C Y(NS,ND) . . . . . . . . .  FEATLRE VECTORS, INPUT ROW-WISE 00030000 
C IT.  INTERNAL VARIABLES 00031000 
C NS . . . . . . . . . . . . . . .  NUMBER OF DATA VECTORS 00032000 
C EPS . . . . . . . . . . . . . .  MAXIMUM MEMBERRSHIP ERROR AT CONVERGENCE 00033000 
C NC . . . . . . . . . . . . . . .  CURRENT NUMBER OF CLUSTERS 00034000 
C LMAX ............. MAXIMUM NUMBER OF ITERATIONS WITHOUT 00335000 
C CONVERGENCE 00036000 
C FM(ND) . . . . . . . . . . .  SAMPLE MEAN VECTOR 00037000 
C FVAR(ND) . . . . . . . . .  VECTCR OF MARGINAL VARIANCES 00038000 
C CC(ND,ND) . . . . . . . .  SCALING MATRIX 00339000 
C AA(ND,ND) . . . . . . . .  SAMPLE COVARIANCE MATRIX 00040000 
C AI(ND,ND) . . . . . . . .  INVERSE OF SAMPLE COVARIANCE MATRIX 00041300 
C BB(ND) . . . .  , . . . . . .  DUMMY FOLDING MATRIX 00042000 
C CCC(ND) . . . . . . . . . .  DUMMY HOLDING MATRIX 00043000 
C ST(ND,ND) . . . . . .  ..DUMMY PCLDING MATRIX FOR AA 00044000 
C CM(ND,ND) . . . . . . . .  CM=AA*(AA INVERSE) 00045000 
C U(NC,NS) . . . . . . . . .  MEMBERSHIP MATRIX 00046000 
C W(NC,NS) . . . . . .  ...U~DATED MEMBERSHIP MATRIX 00047000 
C V(NC,ND) . . . . . . . . .  CLUSTER CENTERS 00048000 
C ITT(NC) . . . . . . . . . .  DUMMY POLDING MATRIX 00049000 
C H(NC) . . . . . . . . . . . .  ENTROPY MATRIX 00050000 
C VJM(NC) . . . . . . . . . .  PAYOFF MATRIX 00051000 
C F(NC) . . . . . . . . . . . .  MATRIX OF PARTITION COEFFICIENIS 00052000 
C DIF(NC) . . . . . . . . . .  MATRIX OF ENTROPY BOUNDS 00053000 
C 000 540 O0 
C 00055000 

FILE: 
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KMEANS FCRTRAN A 03/18183 11:05 VM/SP CONVERSATIONAL MONITOR SYSTEM 

1458 

12321 
C 

DIMENSIGN FM(5OI,FVAR(50),F(20) 
DIMENSION BB(50) ,CCC(50) ,H(20) ,D IF (20) , ITT(20)  
DIMENSION Y(500,2) ,U(20,5001,W(20,500)  
DIMENSICN A A ( 5 0 , 5 0 ) , A I ( 5 0 , 5 0 )  
DIMENSION CC(50,50) ,CM(50,50) ,ST(50,50}  
DIMENSION V(20,50) ,VJM(20)  
DIMENSION FMT(20),TITLE(20} 
READ(5,1458) ( T I T L E ( 1 ) , I = I , 2 0 )  
FORMAT(2OA4) 
READ(5,12321) ( F M T ( 1 ) , I = I , 2 0 )  
FORMAT(2OA4) 

00057000 
00058000 
00059000 
00060000 
00061000 
0 0 0 6 2 0 0 0  
0 0 0 6 3 0 0 0  
0 0 0 6 4 0 0 0  
00065000 
00066000  
0 0 0 6 7 0 0 0  
0 0 0 6 8 3 0 0  

C CONTROL 
C . . . . . . . . . . .  

EP S = . O l 
NS=I 
LMAX=50 

C 

PARAMETERS. 00069000 
00070000 
00071000 
00072000 
00073000 
0 0 0 7 4 0 0 0  

C READ FEATURE VECTORS ( Y ( I , J ) ) .  
C- 

0 0 0 7 5 0 0 0  
0 0 0 7 6 0 0 0  

2021 

410 

1459 
I 
399 

12738 

lllll 

C 

REAO{5,202I) ICON,QQ,ND,KBEGIN,KCEASE 
FORMAT(I1,F6.3,312) 
WRITE(6,410) 
FORMAT(///IH , ' * * *  * * *  BEGIN FUZZY C-MEANS OUTPUT * * *  * * * ' )  
WRITE(6,1459) ( T I T L E ( I I I ) , I I I = I , 2 0 )  
FORMAT(IOX,2OA4///) 
READ(5,399,END=3)IY(NS,J),J=I,ND) 
FORMAT (2F1.0) 
WRITE(6 , I2738I (Y(NS,J ) ,J= I ,ND)  
FORMAT(2( IOX,IO(F7.2,1X)/ ) )  
NS=NS+I 
GO TO 1 
NS=NS-I 
NDIM=ND 
NSAMP=NS 
WRITE(6,I[III) NSAMP 
FORMAT(10X,'NUMBER OF SAMPLES = ',I5) 
ANSAMP=NSAMP 

00077000 
000?8000 
O0079000 
00080000 
00081000 
00082000 
00083000 
00084000 
0 0 0 8 5 0 0 0  
0008600O 
00087000 
00088000 
00089000 
00090000 
00091000 
00092000 
00093000 
00094000 
00095000 

C SCALED NORM REQUIRED IN STATEMENTS 31 AND 33. 
C CALCULATIGN OF SCALING MATRIX FOLLOWS." 
C FEATURE MEANS. 

000$60C0 
00097000 
00098000 
00099000 
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O0 350 I=I,NOIM OOIO0000 
FM(I)=O. 001CI000 
DO 35t J=I,NSAMP OOIG2000 

3 5 I  F M ( I I = F M ( I I + Y I J , I I  O O t C 3 0 0 0  
350 FMII)=FM(II/ANSAMP 0 0 1 0 4 0 0 0  
C . . . . .  0 0 1 0 5 0 0 0  
C FEATURE V A R I A N C E S .  0 0 1 0 6 0 G 0  
C . . . . . .  0 0 1 0 7 0 0 0  

O0 352 I=[,NOIM 001C8000 
FVAR(II=O. 00109000 
00 353 J=I,NSAMP 00110000 

F I L E :  KMEANS FORTRAN A 0 3 / 1 8 / 8 3  11:05 VMISP CONVERSATIONAL MONITOR SYSIEPa 

353 FVAR{ I I=FVAR{ I f ' + ( (Y (J , I ) -FM( I I ) * *2 )  O01ltDOO 
352 FVARII)=FVAR(II/ANSAMP 00112000 

I F ( I C O N - I ) 3 8 0 , 3 8 C , 3 8 2  00113000 
380 DO 381 I = I t N O I M  001140C0 

DO 3 8 1 J = I , N D I M  00115000 
381 CC(I,J):O. 00116300 

00 370 I=I,NDIM 00117000 
370 C C ( I , I } = I .  00118000 

GO TO 390 00119000 
382 I F ( I C O N - 2 | 3 8 4 , 3 8 4 , 3 8 6  00120300 
384 DO 385 I:I,NDIM 00121000 

00 385 J=I,NDIM 00122000 
385 C C ( I , J ) = O .  00123000 

00 371 I=I,NOIM 00124000 
371 CC(I,I)=I./FM(1) 00125000 

GO TO BgO 00126000 
386 00 360 I=I,NDIM 00127000 

DO 360 J=I,NDIM 00128000 
AA{ I , J I=O.  00129000 
DO 361 K=I,NSAMP 00130000 

361 A A I I , J ) = A A ( I , J I + ( ( Y ( K , I | - F M ( 1 ) ) ~ ( Y ( K ,  J I -FM(J ) } }  00131000 
360 AA(I,J)=AA(I,JI/ANSAMP 00132000 

DO 550 [=I,NDIM 001330C0 
DO 550 J=I,NOIM 00134000 

550 ST(I,J)=AA(I,J) 00135000 
C 00136000 
C INVERSION OF COVARIANCE MATPIX AA TO AI 00137000 
C . . . . . . . . . . . . . . . .  00138000 

NN=NDIM-I  00139000 
A A ( I , I I = I . / A A ( t , t l  00140000 
DO 500 M=I,NN 00141000 
K=M+I 00142000 
00 501 I=I,M 00143000 
BBII)=O. 00144000 
DO 501 J=t,M 00145000 

501 B B ( I I = 8 B ( I ) * A A ( I , J I ~ A A ( J , K )  00146000 
0=0.  00147000 
DO 502 I = I , M  00148000 

502 D=D+AA(K, I  ) ~ B B ( I )  00149000 
O=-D+AA(K,K) 00150000 
A A ( K , K ) = I . / D  00151000 
DO 503 I=t ,M 001520C0 

503 A A ( I , K ) : - B B ( I I * A A ( K , K )  00153000 
00 504 J = t , M  00154060 
CCC(J)=O. 00155000 
DO 504 I=t ,M 00156000 

506 CCC(JI=CCC(JI÷AA(K, I | *AA(I ,J I  00157000 
00 505 J = I , M  00158000 

5 0 5  A A ( K , J I = - C C C ( J ) ~ A A ( K , K )  00159000 
00 500 I= I ,M 00160000 
00 500 J=I,M 00161000 

500 A A ( I , J I : A A ( I , J I - B B ( I I ~ A A ( K , J ) "  00162000 
00 520 I=t,NOIM 00163000 
00 520 J=I,NOIM 00164000 

520 A I ( I , J I = A A ( I , J I  00165030 

FILE: KMEANS FORTRAN A 03118183 11:05 VM/SP CONVERSATIONAL MO~ITO~ SYSTEM 

00 387 I=I,NOIM 00166000 
DO 387 J=I,NDIM 00167000 
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387 C C ( I , J | = A I ( I , J I  OOt 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  001 
C CHECK INVERSE AA*AI=I 001 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  001 

DO 530 I=I,NDIM 001 
DO 530 J=I,NDIM 001 
CM(I,J|=O. 001 
DO 530 K:I,NDIM OOI 

530 CM( I ,J )=CM( I ,J )÷ST( I ,KJ~AI (~ ,J )  001 
W R I T E ( 6 , 5 3 1 )  001 

531 FORMAT(' ' , / / , '  CHECK MATRIX AI~AA=I, THE IDENTITY'/ /)  OOt 
DO 532 I=I,NDIM 001 

532 WRITE (6,533) (CM( I , J } , J= I , hD IM |  OOI 

68000 
69000 
70002 
71000 
72000 
73003 
74000 
75000 
7c000 
77000 
78000 
79000 
80000 

533 FORMAT(IOX,2OF6.2) 
390 WRITE(6,14601 ( T I T L E ( } } } } , I l l = I , 2 0 )  
1460 FORMAT( ' I ' , IOX,2OA4/ / / }  

WRITEI6,420| 
420 FORMAT(' ' , / / / , 15X , 'SCAL ING MATRIX C C ' , / / / )  

00 421 I:I,NOIM 
421 WRITE(6,422| (CC( I , J I , J= I , hD IM)  
422 FORMAT(5X,IO(FIO.I,IX|/5X,1C(FIO.I,IX)/| 

WRITE{6,425) 
425 FORMAT(/ / / / / }  
C . . . .  

00181000  
00182000  
00183300  
00184000  
00185000  
001860C0 
0 0 1 8 7 0 0 0  
00188000  
00189000 
00190000  
00191300  

C QQ IS THE BASIC EXPONENT FOR FUZZY ISODATA. 
C 

0 0 1 9 2 0 0 0  
001£3000  

P P = ( t . / ( Q Q - I . ) )  
DO 55555 NCLUS=KBEGIN,KCEASE 
WRITE(6,1460} ( T I T L E ( } } } | , I l l = t , 2 0 }  
WRITE(6,499) NCLUS,ICON,QQ 

499 FORMAT(' ' , '  NUMBER OF CLUSTERS = ' , 1 3 , 5 X , '  
C'EXPONENT = ' , F 4 . 2 , / / |  

IT=I  
C 

ICON = ',13,5X, 

00194000 
00155000 
0 0 1 9 6 0 0 0  
00157000 
00198000 
00199000  
00200000  
0 0 2 0 1 0 0 0  

C RANDOM INITIAL GUESS FOR U ( I , J |  00202000 
C THE RANDOM GENERATOR SUBROUTINE RANDU FROM THE IBM SCIENTIFIC 00203000 
C SUBROUTINE PACKAGE (SSP} IS USED AND IS CALLEO FROM AN EXTERNal 00204000 
C LIBRARY. OTHER GENERATORS TFAT PRODUCE VALUES ON THE INTERVAL 00205000 
C ZERO TO ONE CAN BE USED. 00206000 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . .  00257000 

RANOOM=.?7BI 00208000 
IX= I 00209003 
NCLUSI=NCLUS-I 002 10000 
D0 II00 K=I,NSAMP 00211000 
S= 1.0 002 12000 
DO 1101 I=I,NCLUSI 00213000 

C CALL RANDUIIX,IY,RANDOM} 00214000 
RANDOM=RANDOM/2. 00215000 
I X : I Y  00216000 
ANC=NCLUS-I 00217000 
U(I,KI=S~(I.O-RANDOM~(I.O/~NC|) 00218000 

l l O I  S=S-U(I,K) 00219000 
1100 U(NCLUS,K)=S 00220000  

FILE: KMEANS FORTRAN A 03118/83 11:05 VM/SP CONVERSATIONAL MOhITOR SYSTEM 

C 00221000 
C CALCULATION OF CLUSTER CENTERS V(1) .  00222000 
C 00223000 
7000 

21 
20 
C 

DO 20 I=I,NCLUS 00224000 
DO 20 J=I,NDIM 00225000 
V( I , J }=O.  00226000 
D=O. 00227000 
00 21 L=I,NSAMP 00228000 
V( I , J I = V ( I , J I * I ( U ( I , L } ~ Q Q ) ~ Y ( L , J ) |  00229000 
D=D+(U(I,L}~QQ} 00230000 
V ( I , J | = V ( I , J ) / D  0 0 2 3 1 0 0 0  

0 0 2 3 2 0 0 0  
C UPCATE MEMBERSHIP FUNCTIONS. 
C . . . . .  

0 0 2 3 3 0 0 0  
0 0 2 3 4 0 0 0  

611I DO 38 I=I,NCLUS 00235000 
DO 38 J=I,NSAMP 00236000 
WI I,J}=O. 00237000 
A=O. 00238000 
DO 3 1 L = I , N O I M  0 0 2 3 9 0 0 0  
DO 3I M=I,NDIM 00240000 
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31 

33 

32 

38 
C 
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A=A+( (Y (J ,L ) -V ( I , L ) ) *CC(L ,M) t iY (J ,M) -V i I ,M) ) )  00241000 
A=I./(Am~PP) 00242000 
SUM=O. 0 0 2 4 3 0 0 0  
DO 32 N : I , N C L U S  0 0 2 4 4 0 0 0  
C=O. 00245000 
00 33 L=I,NDIM 00246000 
00 33 M=I,NOIM 0 0 2 4 7 0 0 0  
C=C÷((YiJ,LI-ViN,L)I~CCIL,M)~(Y(J,M)-V(N,M))) 00248000 
C=I./(C~*PP) 00249000 
SUM=SUM+C 00250000 
W( I,Ji=A/SUM 00251000 
CONTINUE 00252000 

0 0 2 5 3 0 0 0  
C ERROR CRITERIA AND CUTOFFS. 00254000 
C 00255000 
9000 ERRMAX=O. 00256000 

DO 40 I=I,NCLUS 00257000 
DO 40 J=I,NSAMP 00258000 
ERR:ABS(UiI ,J)-WiI ,J)}  00259000 
IF(ERR.GT.ERRMAX) ERRMAX=ERR 00260000 

40 CONTINUE 00261000 
WRITE(6,400) IT,ERRMAX,NCLES 00282000 

400 FORMAT(IH ,'ITERATION = ',I4,5X,'MAXIMUM ERROR = ' ,FIO.4, 00263000 
IIOX,'NUVBER OF CLUSTERS = ' ,14 |  00264000 
DO 42 I=I,NCLUS 00265000 
DO 42 J=I,NSAMP 00266000 

42 Ui I , J I=W( I , J )  00267000 
IF(ERRMAX.LE.EPS) GO TO 600C 00268000 

43 IT=IT+I 00269000 
IF(IT-LMAX) 7C00,7000,6000 00270000 

C 00271000 
C CALCULATION OF CLUSTER VALIDITY STATISTICS F, H, I-E 
C . . . . .  

0 0 2 7 2 0 0 0  
0 0 2 7 3 0 0 0  

6000  ITTINCLUS)=IT 00274000 
F(NCLUS)=O.O 0 0 2 7 5 0 0 0  
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HINCLUS)=O.O 00276000 
DO TO0 I=ItNCLUS 00277000 
00 tO0 K=I,NSAMP 00278000 
AU=U(I,K) 00279000 
F(NCLUSI=F(NCLUS)÷AU**2/ANSAMP 00280000 
IF (AUI  l O O , l O 0 ,  l O l  0 0 2 8 1 0 0 0  

IOl H(NCLUS)=H(NCLUSI-AU*ALOG(~UI/ANSAMP 0 0 2 8 2 0 0 0  
IO0 CONTINUE 00283000 

DIF(NCLUSI=I.0-F(NCLUS! 00284000 
C . . . . . . . .  0 0 2 8 5 0 0 0  
C CALCULATION OF OBJECTIVE FUhCTION 0 0 2 8 6 0 0 0  
C . . . . . . . . .  0 0 2 8 7 0 0 0  

A=O. 0 0 2 8 8 0 0 0  
DO BO I = I , N C L L S  0 0 2 8 9 0 0 0  
00 80 J= I ,NSAMP 0 0 2 9 0 0 0 0  
OIST=O. 002~I000 
DO 8 1 L = £ , N D I M  00292000 
DO 8£ M=I,NDIM 002~3000 

81 O IST=OIST÷I (Y IJ tL ) -V ( I ,L I I *CC(L ,MI * (Y (J ,M| -V | I ,M) I I  0 0 2 9 4 0 0 0  
A = A + ( I U I I , J ) * * Q Q ) * D I S T )  0 0 2 9 5 0 0 0  

80 VJM(NCLUS)=A 0 0 2 9 6 0 0 0  
C . . . . . . . . .  00297000 
C OUTPUT BLOCK FOR CURRENT NCLUS 0 0 2 9 8 0 0 0  
C 0 0 2 9 9 0 0 0  

W R I T E ( 6 , 4 0 I )  
~Ol  FORNAT( '  , 1 / / .  F S T O P . , T X , e I - F S T O p o , 5 X , . E N T R O p y e t 5 X , i p A Y O F F e , S X , / )  

W R I T E ( 6 , 6 9 9 )  F ( N C L U S I t O I F ( h C L U S ) t H | N C L U S ) t V J M ( N C L U S |  
699 FORMATIIH , 2 | F 6 . 3 , 4 X I , 4 X , F E . 3 , 5 X , E 8 . 3 |  

W R I T E ( 6 t 5 9 1  
59 F O R M A T i l X t l O O ( * - e ) / / I  

W R I T E I 6 t 4 0 2 )  
402 F O R M A T ( I I / t 1 5 X , ~ C L U S T E R  CENTERS V I I , J ) * , l / l ~ .  

DO 415 I = I , N C L U S  
415 W R I T E { 6 , 4 0 4 |  ( I , J , V ( I , J ) t J = I t N O I N I  
~0~ FORMAT(* I = ' , I 3 t 3 X ~ ' J = i , 1 3 , 3 X , ' V I I , J ) = ' p J F 8 . 4 )  
405 FORMAT(IH t T ( F 6 . 4 , 3 X ) )  

WR17E{6,59) 
WRITE|6,406) 

O03000 O0 
0 0 3 0 1 0 0 0  
003G2000  
0 0 3 0 3 0 0 0  
003 G4000 
0 0 3 0 5 0 0 0  
003C6000  
0 0 3 0 7 0 0 0  
003C8000  
0 0 3 0 9 0 0 0  
0 0 3 1 0 0 0 0  
0 0 3 1 1 0 0 0  
00312000 
003 13000 
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406 FORMAT(IH ,///,25X,'MEMBERSHIP FUNCTIONS',///} 0 0 3 1 4 0 0 0  
00 407 J=I,NSAMP 00315000 

407 WRITE(6,408) J,(U(I,J),I=I,NCLUS) 00316000 
408 FORMAT(IH ,,J=',I3,5X,8(F6.4,3X|) 00317000 
54444 CONTINUE 00318000 
55555 CONTINUE 00319000 
C 00320000 
C OUTPUT SUMMARY FOR ALL VALUES OF C 00321000 
C 00322000 

WRITE(6,450) 0 0 3 2 3 0 0 0  
450 FORMAT('I',25X,'RUN SUMMARY') 0 0 3 2 4 0 0 0  

WRITE(6,460) NSAMP 00325000 
460 FORMAT(' ' / / / '  NUMBER OF SUBJECTS N = ' , 14 )  00326000 

WRITE(6,461) NDIM 0032?000 
461 FORMAT(IHO,'NUMBER OF FEATUBES NDIM = ' , I 4 I  00328000 

WRITE(6,462) EPS 00329000 
462 FORMAT(IHO,'MEMBERSHIP DEFECT BOUND EPS = ' ,F6 .4)  00330000 

FILE: KMEANS FORTRAN A 03118/8Z 11:05 VMISP CONVERSATIONAL MONITOR SYSTEM 

WRITE(6,464| ICON 
464 FORMAT{IHO,'NORM THIS RUN ICCN = ' ~ I i )  

WRITE(6,465) OQ 
465 FORMAt(I~O,'WEIGHTING EXPONENT M = . ' , F 4 . 2 I  

IF(IT.LE.49) GO TO 476 
WRITE(6,70107) 

?0107 FORMAT(' ','CONVERGENCE FLAG: UNABLE TO ACHIEVE SATISFACTORY 
IERS AFTER 50 ITERATIONS.') 

476 WRITE{6,466) 
466 FORMAT(' ' / I '  NO. OF CLUSTERS',3X,'PART. COEFF.',SX, 

C'LOWER 80UND',SX,'ENTROPY',5X,'NUMBER OF ITERATIONS') 
W R I T E ( 6 , 4 6 7 I  

467 FORMAT(IHO,6X,'C',I7X,'F',I5X,'I-F',I2X,'H',IOXw'IT') 
O0 468 J=KBEGIN,KCEASE 

468 WRITE(6,4691 J , F ( J ) , D I F ( J ) , F ( J I , I T T ( J )  
469 FORMAT(IH ,6X,I2,14X,F6.3,11X,F6.3,TX,F6.3,BX,14) 
55556 CONTINUE 
616  WRITE(6,411) 
411 FORMAT(////IH , ' * * *  * ~  NORMAL END OF JOB ~ *  ~*~') 

STOP 
END 

0 0 3 3 1 0 0 0  
0 0 3 3 2 0 0 0  
0 0 3 3 3 0 0 0  
0 0 3 3 4 0 0 0  
0 0 3 3 5 0 0 0  
0 0 3 3 6 0 0 0  

CLUSTO03 37000 
0 0 3 3 8 0 0 0  
0 0 3 3 9 0 0 0  
00340000 
00341000 
00342000 
00343000 
00344000 
00345000 
00346000 
00347000 
00348000 
00349000 
00350000 
00351000 


