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Abstract
Motivated by genetic expression data, we introduce plaid models.
These are a form of two-sided cluster analysis that allows clusters to
overlap. Using these models we find interpretable structure in some
yeast DNA data, as well as in some nutrition data and some foreign
exchange data.
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1 Introduction

This article introduces the plaid model, a tool for exploratory analysis of
multivariate data. The motivating application is the search for interpretable
biological structure in gene expression microarray data. FEisen, Spellman,
Brown & Botstein (1998) is an early and influential paper advocating the use
of cluster methods to identify groups of co-regulated genes from microarray
data. We present the model and illustrate it on gene expression and other
data. The plaid model allows a gene to be in more than one cluster, or in
none at all. It also allows a cluster of genes to be defined with respect to
only a subset of samples, not necessarily with respect to all of them. Thus
for example some yeast genes may belong together in a cluster according to
the way they are expressed when the yeast is forming spores while clustering
with other genes under other conditions.

Section 2 introduces the plaid model as a sum of terms called layers, using
microarray data as motivation. Section 3 describes our approach to fitting
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this model to data. Section 4 is devoted to the problem of deciding how many
layers to include in a model. Sections 5, 6 and 7 present examples using data
on food composition, foreign exchange rates, and yeast DNA respectively.
Our main interest is in the DNA application, but the other examples give
us insight into how the model works. Section 8 compares the plaid model to
others in the literature. Section 9 presents our conclusions.

2 Plaid model

DNA microarrays allow the measurement of expression levels for a large num-
ber of genes, perhaps all genes of an organism, within a number of different
experimental samples. The samples may correspond to different toxins or
time points. In other cases, the samples may have come from different or-
gans, from tumors or healthy tissue, or from different individuals. The data
take the form of a large matrix Yj;, 1 = 1,...,n, j = 1,...,p, where 7 in-
dexes n genes and j indexes p samples. The value Y;; measures the strength
with which gene ¢ is expressed in sample j. The number np of data values
can be very large, over 500,000 with present technology, and continues to
increase with time. Simply visualizing such a volume of data is challenging,
and extracting biologically relevant knowledge is harder still.

A natural starting point is to form a color image of the data on an n by p
grid, with each cell colored according to the value of Y;;. Figure 1 shows one
such image described in Section 7. The ordering of the rows and sometimes
the columns in such an image can be arbitrary. It is natural then to consider
ways of reordering the rows and columns in order to group together similar
rows and similar columns, thus forming an image with blocks of similar color.
Bertin (1983) uses the term “reorderable matrix” for data of this type and
gives examples of reordering. That text contains a photograph of an old
manual device for reordering matrices. The larger Y;; values are represented
by dark beads, and the user can lift and permute rows or columns of beads
until a nearly block diagonal pattern emerges. The rows in Figure 1 were
ordered after running a hierarchical clustering on the genes.

An ideal reordering of the array would produce an image with some num-
ber K of rectangular blocks on the diagonal. Each block would be nearly
uniformly colored, and the part of the image outside of these diagonal blocks
would be of a neutral background color. This ideal corresponds to the exis-
tence of K mutually exclusive and exhaustive clusters of genes, and a cor-



responding K-way partition of the samples. Every gene in gene-block £ is
expressed within, and only within, those samples in sample-block k. Alge-
braically, this ideal corresponds to the representation

K
Yij = o+ Y kpintije (1)
k=1

where pg is a background color, uy describes the color in block k, py is 1 if
gene 7 is in the k'th gene-block (zero otherwise), and kj; is 1 if sample j is
in the k'th sample-block (zero otherwise). The conditions that every gene
and every sample be in exactly one cluster are then ), pi; = 1 for all 4, and
> i kjk = 1 for all j respectively.

It has long been recognized (see Needham (1965)) that such an ideal
reordering will seldom exist in real data. It is more likely that the blocks
will overlap in some places. That is, we may need to allow ), p; > 2 for
some ¢, or Y, k;i > 2 for some j. Similarly there may be some genes or
samples that do not fit well into any cluster. In clustering there is often a
miscellaneous (or “ragbag”) cluster for items that do not belong to any well
defined cluster. This corresponds to ), pjx = 0 for some 4, or >, K = 0
for some j, assuming that the ragbag cluster is close to the background level.

If we remove the constraints ) _, p;x = 1 and ), K, = 1 from equation (1)
we obtain a model which represents the data as a sum of possibly overlapping
constant layers that don’t have to cover the whole array.

In model (1) a layer describes a response py, that is shared by all genes
in it for all samples in it. It would also be biologically interesting to identify
a set of genes that had an identical, though not constant, response to a set
of samples. Conversely a set of samples with a common expression pattern
for a set of genes would be interesting. The following models support one or
other or both of these notions

K

Yii = po+ Z (e + k) Pirkjn (2)
k=1
K

Yii = po+ Z (ki + Bik) piktjn (3)
k=1
K

Yij = o+ Z (1t + i, + Bjk) pikjk, (4)
k=1



where each p;; € {0, 1}, each ;;, € {0, 1}, and if o, is used, then ), pipcvip =
0 to avoid overparameterization, with a similar condition on f3;;. The name
“plaid model” describes the appearance of a color image plot of yu;, + vk + Bji.-

Each model (1) to (4) approximates the image by a sum of layers. We
use the notation 6;;, to represent either py, or up + oug, or px + Bji, or
Mi + cur + Bk, as needed. We get a little more generality by mixing layer
types, so that a;, or §;; might appear in some but not all ;.. The model
may then be written as a sum of layers,

K
Yii = Oijkpirtis, (5)
k=0

where 0;, describes the background layer. In some settings it might make
sense to have a background layer with «;o and/or §jo terms.

We conclude this section by describing some interpretations of the layers.
If p;, =1 for all 4, but k;; is not 1 for all j, then layer k describes a cluster
of samples. A converse description applies for a cluster of genes. If the layer
for a cluster of genes contains a term (i, then that cluster of genes is a set
of p-vectors centered near the vector (ux + Bik, ... , ik + Bpr). 1f that layer
also contains a term oy, then the genes cluster along a line segment through
this center.

Each layer may represent the presence of a particular set of biological
processes or conditions. The values of oy, and 3, provide orderings of the
effects of layer £ upon the genes and samples. Genes with larger values of
| + cug| are more greatly affected under the conditions of layer k, than
other genes within the layer. These effects are also greater for samples with
larger values of |p; + Bji|. If u, + cux is positive for one gene 7, and nega-
tive for another, then the first gene is upregulated and the second gene is
downregulated within layer k.

A layer may contain some but not all genes, and some but not all samples.
This can be interpreted as a group of genes that express themselves similarly
within the given set of samples. Such layers combine gene clustering with
variable selection on the samples. To avoid repetition, we will not describe
converses to all of the features of the plaid model.

These interpretations are most straightforward if there is only one layer,
or if multiple layers do not overlap significantly. Where layers overlap, the
interpretations for layer £ apply to the values of Yj;, after first subtracting
the other layers.



3 Estimation

Suppose that we seek a plaid model with a small value of

n p K 2
% >0 (Yij — 00— 9z’jkﬂij'£jk> : (6)
k=1

i=1 j=1

For each layer k, there are (2" — 1) (2 — 1) ways to select the participating
genes and conditions. Even for modestly large n and p, it is impossible to
investigate all possible selections, and so there is no assurance of finding the
best fitting model for a given number K of layers. Gordon (1996) notes that
many clustering problems are NP-hard, and we cannot expect the present
problem to be simpler. For an up to date survey of optimization issues in
clustering, see Hansen & Jaumard (1997) . Even though an optimal fit is
likely to be beyond our ability, we may still find that a numerical search
provides an interpretable layer.

To simplify matters, suppose that we have K — 1 layers and are seeking
the K’th layer to minimize the sum of squared errors. Let

Q= %Z Z (Zij — ein,OiK/‘éjK)Q , (7)

i=1 j=1
where
K-1
Zij = Y55 — Bijo — E Oijkpijjn
k=1

is the residual from the first K — 1 layers.

We adopt an iterative approach with each cycle updating 6 values, p
values and & values in turn. Let #¢) denote all of the 6;x values at iteration
s. Similarly let p(®) and &(*) represent all of the p;x and kjk values at iteration
s. After selecting starting values p(® and x(® as described below, we follow
S full update iterations. For s = 1,...,5, at iteration s, ) is updated from
=D and k=1, then p® is updated from 6 and x(*~1) and finally () is
updated from 6®) and p*~1. Notice that genes and conditions are treated
symmetrically in this iteration. The p and x updates would be the same if
they were done in the opposite order. The final update only changes 6(5+1),
so that the final layer values are p(%), x(5) and 9(5+1).
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It is convenient to consider p and k values in a continuous range, only
forcing them to takes values 0 or 1 in the last one or several iterations. At
intermediate stages, the values of 0;;x describe a “fuzzy analysis of variance”
in which p;x and k;x are not necessarily 0 or 1. In what follows we drop the
subscript K to simplify the presentation.

3.1 Updating 0;;

To update the 6;; values, given p; and x; we minimize

Q=520 (2~ (u+ i+ 65) oy’ ®

i=1 j=1

subject to identifying conditions

n p
0=> pla;=) KB (9)
i—1 =1

Straightforward Lagrange multiplier arguments show that

> i D PikiZij

: (10)

(i) (25%2)
- Zj(Zpia"—ezéffj)"&j’ (1)
8 = 2i(Zij — poik) pi (12)

Kj i Py
The update (10) for p above is the same whether or not the K'th layer
includes «; or f;, and updates (11) and (12) for «; and j; respectively, are
the same whether or not the other is included in the layer. If p; is near zero,
so observation i is effectively absent, then «; is taken to be zero, and similarly
when &; is close to zero, 3; is taken to be zero.

3.2 Updating p; and &;

Given values for 0;; and ;, the values for p; that minimize () are

_ 25 bik57
pl Z ] 02/{;2 )

J Y

(13)



and similarly, given 6;; and p;, the minimizing values for x; are

Zi 055 i Zij
RV )

The quantities p; and «; pertaining to gene ¢ are updated only with data
from that gene. This makes the updates particularly fast.

We do not allow the values p; and ; to move too quickly towards 0 or 1,
as this might “lock in” a suboptimal initial condition. Instead, at iteration
s, p; and k; are replaced by 0.5+ s/(25) if they are larger than 0.5 and by
0.5 — s/(2S) otherwise.

3.3 Starting values

We have considered starting values all equal to 0.5, and starting values ran-
domly generated near 0.5. The most successful starting values have been
found as follows: fix 6;;x = 1 for all 7 and j, and perform several iterations
updating p and x values only. The p and s vectors then approach multiples
of the singular vectors of Z corresponding to the largest singular value. The
starting values are obtained by replacing the singular vectors p and x by their
absolute values, scaled so that they sum to n/2 and p/2 respectively.

The search for the largest singular values itself needs starting p and &
values. The search can fail if it is started with vectors that are orthogonal
to Z. We start the iteration with p; and k; equal to 0.5 plus very small
random numbers to reduce the likelihood of such a failure.

3.4 Further issues

Given a set of K layers, it is simple to re-estimate all of the 8;;;, by cycling
through £ = 1,..., K in turn. These backfitting cycles tend to be extremely
fast, especially if the layers are small. We do not update the p and x values
in backfitting.

Deciding how large K should be is the subject of Section 4 below.

A variant on the algorithm updates p; and x; by 0.5 = A, where A, =
min(s/(2(S — T)),0.5) for some nonnegative integer T < S. The effect is
that of S steps the final T' of them pick p; and «; values in {0,1}. We use
6 iterations to find the starting values, then 10 iterations increasing A, to
0.5 and finally 3 iterations where p; and r; are placed in the set {0,1}. The
algorithm does not appear to be very sensitive to these choices.
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A layer can be easier to interpret if every u + o; and every p + [3; has
the same sign (that of ). The algorithm has a “unisign” option that builds
in a preference of this kind. Under this option, each time p; is updated the
algorithm checks whether p+ «o; and p are of the same sign. If not, the value
of p; is reduced.

In the basic algorithm p; tends to approach 1 instead of 0 if including that
gene in the layer reduces the total sum of squared errors. This can happen
because the gene fits the layer well, or because the gene has a very large
residual a small proportion of which is explained by the layer. The algorithm
has an option to trim away such genes. Under this option, any gene whose
sum of squared residuals is not reduced by a user specified proportion is
released from the layer (p; set to 0), possibly to be included in some later
layer.

4 Regularization

A greedy algorithm that adds one layer at a time requires a stopping rule.
We suppose that as each layer is removed from the data, the residual becomes
more and more like unstructured noise. We propose a simple rule that will
give only a small number of extra layers once the data have been reduced to
noise.

First we measure the size or importance of layer £ by a sum of squares

nop
2 _ 2
Ok = E : E :pikmjkeijk'

i=1 j=1

We would like to accept a layer if it is significantly larger than what we
would find in noise. The distribution of 7 on noise is not known. Instead
of using that distribution, we expand on a permutation technique (called
random 3) in Eisen et al. (1998) . Let Z;; be the residual matrix in which
we search for layer k. Foreachr =1,... R, let ZZ-(;) be a matrix obtained by
randomly permuting every row of Z;; and then randomly permuting every
column of the result. All (n + p)R permutations are independent and all
are uniformly distributed. This means that when permuting column entries
each of n! possible permutations is equally probable, and similarly for the p!
possible row permutations. Let 6,3” denote the size of the layer found by the

algorithm in the randomized data ZZ-(; ),
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The stopping rule is: if 0,3 > maxi<,<Rr 6>" and k < K., add the new
layer k£ to the model, otherwise stop. Here K., is a prespecified limit on
the number of layers in the model.

One way to characterize noise, is to say that the data values are inde-
pendent of row and column labels. The chance of accepting a layer in such
noise is 1/(R + 1). It is reasonable to suppose that the probability of ac-
cepting m or more layers from noise is approximately (R + 1)~™, and that
the expected number of layers accepted after the residual has become noise is
approximately 1/R. These approximations would be the exact, if subtracting
a layer from noise left a residual that was noise.

One might choose R = 99 (or 19) to give only a 1% (respectively 5%)
chance of accepting a layer in noise. We prefer to work with R = 4 on small
data sets and R = 3 on larger ones. Computational costs are proportional
to R+ 1, so this represents a worthwhile speedup, at the expense of slightly
raising the expected number of noise layers.

In practice we have seen that this stopping rule sometimes gives a large
number of layers. When this happens the real layer is always somewhat big-
ger than the ones fitted to permuted data, but as k increases both o2 and
&2”" usually decrease. One interpretation is that such layers are statistically
significant even though they may not be practically significant. The data an-
alyst could reasonably delete them from the model or not bother to interpret
them. In other examples, the stopping rule gives a small number of layers.

There is a small risk that this rule will stop too soon because an unusually
highly structured random permutation might was generated. This risk can
be reduced by accepting a layer if at most a of R randomized layers are larger
than it. The probability of accepting a layer fit to noise is (a + 1)/R and the
expected number of layers found in noise is then close to (a+1)/(R—a). We
have found the original ¢ = 0 stopping rule to be acceptable.

5 Food example

The first example uses nutritional data from 961 different foods. This data
was found at http://www.ntwrks.com/~mikev/chartl.html. For each food,
the following were recorded: grams of fat, calories of food energy, grams of
carbohydrate, grams of protein, milligrams of cholesterol, grams of saturated
fat, and the weight of the food item in grams. Some foods appear in different
serving sizes, as for example a piece of cherry pie, or an entire pie. To mea-



sure food composition, each of the first 6 variable values was divided by the
weight of the food item, yielding the value X;; for food ¢ and composition
variable j. The calorie values have a variance that is over 850 times as large
as the saturated fat values. To equalize the variance, the data were centered
and scaled, leading to

Yy =

where XJ = (l/n) Z?:l X’LJ and sz = (1/7?,) Zznzl(X’tJ — X])Z

By taking out the mean of each column, the background layer corre-
sponds to foods and food measures near the column averages. Some foods
are unusually rich by some measures. For example, egg yolks are about 18
standard deviations above the mean. A few foods (like salt) have low values
in all measures. If we had not subtracted out the columns means, such foods
would have been at the background level.

Our algorithm was as follows: we searched for up to 10 layers containing
both o; and B; components. We used 4 shuffles in the stopping rule, opted
to prefer a common sign for 1 + o; and for p + B; within each layer, and
released any row (or column) from a layer if joining the layer did not reduce
its sum of squares by at least 51 %. All 10 layers were larger than noise. We
decided to drop the last 5 layers because they were small. The layer sizes
during and after search are shown in Table 1.

Layer 1 contains 180 foods and the variables fat proportion, saturated fat
proportion and calories per gram, as shown in Table 2. Because p; = 1.54
these foods are about 1.54 standard deviations above the mean. The values of
B1; range from 0.14 standard deviations for fat proportion to —0.09 standard
deviations for calories per gram. These are high calorie fatty foods. The 20
foods with the highest «; are listed in Table 2. This layer also contains more
oils, margarines, nuts and some dairy products.

Layer 2 is described in Table 3. This layer contains foods that are high
in cholesterol and especially high in protein. For protein the value of p+ [ is
2.08 standard deviations, and for cholesterol it is 0.53 standard deviations.
This layer also contains some more meats, seafoods, nuts and cheeses.

Layer 3, shown in Table 4 contains foods that are low in all of the variables
except possibly cholesterol. Most are also low in cholesterol, as indeed are
most of the foods not in this layer.

Layer 4 is presented in Table 5. It contains foods that are on average
1.42 standard deviations above the mean in proportion of carbohydrate. The
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Original Randomized After backfitting
2 I 7, 82, &, &, K=10 K=s
1] 1799.02 | 459.85 809.05 987.79 1057.44 | 2634.25 1799.02
2| 944.44 0.00 356.79 370.94 0.00 | 1325.25 759.94
3| 811.28 | 417.89 355.38 377.96 393.91 | 788.88 831.14
4 | 667.91 | 256.21 192.84 24449  369.22 | 420.74 669.50
5| 413.23 | 198.28 184.64 9532  225.06 | 932.80 775.76
6 | 152.05 | 10449 67.86 101.17 75.61 | 400.03

7 120.72 | 50.02 75.30  59.99 79.29 | 201.04

8 83.35 | 57.07 34.07 67.08 65.04 | 331.64

9| 100.14 | 3553 46.33  30.83 28.75 | 168.63
10 61.47 | 23.13 2314 44.73 35.49 | 120.48

Table 1: Shown are the layer sizes for the food example. o7 are the sizes found
during greedy training. 5,%# are the corresponding sizes found on randomized
data. The final two columns show o7 for K = 10 and 5 layers respectively,
after backfitting.

appearance of breakfast cereals near to pure sugar reflects that both have high
carbohydrate counts. A data set that broke carbohydrates into fiber, starch
and sugar or that included vitamin content would be likely to distinguish
these foods.

Layer 5, shown in Table 6 has foods that are on average 2.39 standard
deviations above the mean in cholesterol. The cholesterol distribution is
extremely skewed.

6 Foreign exchange example

The raw data for this example are monthly foreign exchange values For ¢+ =
0,1,...,n and currency j = 1,...,p, X;; denotes the number of units of
that currency that one US dollar purchased in that month. The values that
we study are the monthly logarithmic returns to the currencies

X, .
=1y

The raw data, obtained from Bloomberg, covers 277 months from January
1977 to January 2000 inclusive, and so there are n = 276 returns. There
are p = 18 currencies, corresponding to these countries: Belgium, Canada,
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p=1.54

Layer 1

2

Food

2.86
2.83
2.81
2.81
2.76
2.76
2.73
2.73
2.13
2.11
1.76
1.75
1.73
1.70
1.62
1.60
1.55
1.53
1.61
1.49

LARD 1 CUP

LARD 1 TBSP

BUTTER, SALTED 1/2 CUP

BUTTER, UNSALTED 1/2 CUP

BUTTER, SALTED 1 TBSP

BUTTER, UNSALTED 1 TBSP

BUTTER, SALTED 1 PAT

BUTTER, UNSALTED 1 PAT

FATS, COOKING/VEGETBL SHORTENG1 TBSP
FATS, COOKING/VEGETBL SHORTENG1 CUP
SOYBEAN-COTTONSEED OIL, HYDRGN1 TBSP
SOYBEAN-COTTONSEED OIL, HYDRGN1 CUP
PEANUT OIL 1 TBSP

PEANUT OIL 1 CUP

SOYBEAN OIL, HYDROGENATED 1 TBSP
SOYBEAN OIL, HYDROGENATED 1 CUP
OLIVE OIL 1 TBSP

OLIVE OIL 1 CUP

CORN OIL 1 TBSP

CORN OIL 1 CUP

Bj

Nutritional variable

0.13
-0.04
-0.09

Fat Proportion
Saturated Fat Proportion
Calories per Gram

Table 2: Shown are the top 20 of 180 foods in Layer 1.

Denmark, Netherlands, Finland, France, Germany, India, Japan, Malaysia,
Mexico, Norway, South Africa, Spain, Sri Lanka, Sweden, Switzerland, and
the United States.

Because all of the data are in the same units, we chose not to make the
variances equal. We also did not adjust for the mean. This way, we have

made the background layer correspond to the US dollar.

Setting row and column release criteria to 0.51 and prefering constant
sign, the algorithm terminates after finding 3 layers. Layer one describes 71
months when the US dollar strengthened against 11 other currencies. Layer
two describes 60 months when the Mexican peso weakened against the US
dollar. Layer three describes 69 months when the US dollar weakened against
the same 11 currencies from layer 1. The sizes of the layers are o2 = 1.30,
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©# =131 | Layer 2
a; | Food
2.88 | GELATIN, DRY 1 ENVELP
1.40 | BEEF HEART, BRAISED 3 OZ
1.25 | SEAWEED, SPIRULINA, DRIED 1 OZ
1.04 | PARMESAN CHEESE, GRATED 1 OZ
1.04 | PARMESAN CHEESE, GRATED 1 CUP
1.00 | LAMB,CHOPS,ARM,BRAISED,LEAN 1.7 OZ
0.96 | SHRIMP, CANNED, DRAINED 3 OZ
0.93 | PARMESAN CHEESE, GRATED 1 TBSP
0.79 | LAMB,CHOPS,ARM,BRAISED,LEAN+FT2.2 OZ
0.78 | PORK SHOULDER, BRAISD, LEAN 2.4 OZ
0.62 | PORK CHOP, LOIN, BROIL, LEAN 2.5 OZ
0.61 | BEEF, CKD,BTTM ROUND,LEAN ONLY2.8 OZ
0.61 | BEEF, CKD,CHUCK BLADE,LEANONLY2.2 OZ
0.57 | VEAL RIB, MED FAT, ROASTED 3 OZ
0.54 | CHICKEN, ROASTED, DRUMSTICK 1.6 OZ
0.53 | CHICKEN, FRIED, FLOUR, BREAST 3.5 OZ
0.53 | BUTTERMILK, DRIED 1 CUP
0.50 | YEAST, BAKERS, DRY, ACTIVE 1 PKG
0.50 | TUNA, CANND, DRND,WATR, WHITE 3 OZ
0.50 | PORK, CURED, BACON, REGUL,CKED3 SLICE
B; | Nutritional variable
0.78 | Protein Proportion
-0.78 | Cholesterol Proportion x 1000

Table 3: Shown are the top 20 of 143 foods in Layer 2.

o5 = 1.82 and o2 = 1.11. After fitting 3 layers, the residual has sum of
squares equal to 2.39. The fourth layer found in a greedy search has months
in which the currency of Sri Lanka weakened against the US dollar, but one
of three shuffled layers had a larger size.

The 11 currencies in layers 1 and 3 were those of Belgium, Denmark,
Finland, France, Germany, Japan, Netherlands, Norway, Spain, Sweden, and
Switzerland. When the dollar was weakening, © took the value 0.0349, and
B was in a tight range from —0.0076 (Spain) to 0.0079 (Switzerland). The
worst month for the dollar was October 1978 with @ = 0.0409. When the
dollar was strengthening, u took the value —0.0365. Japan lost the least
ground in those months (8 = 0.0124) while the other currencies ranged from
—.0054 (Switzerland) to 0.0041 (Finland).

Canada does not appear in these layers. The Canadian currency is closely
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p=—0.60 | Layer 3

a; | Food
-0.21 | COLA, DIET, ASPARTAME ONLY 12 FL OZ
-0.21 | PARSLEY, FREEZE-DRIED 1 TBSP
-0.21 | COLA, DIET, ASPRTAME + SACCHRN12 FL OZ
-0.21 | COFFEE, BREWED 6 FL OZ
-0.21 | SALT 1 TSP
-0.21 | TEA, BREWED 8 FL OZ
-0.21 | CLUB SODA 12 FL OZ
-0.21 | COLA, DIET, SACCHARIN ONLY 12 FL OZ
-0.21 | LETTUCE, BUTTERHEAD, RAW,LEAVE1 LEAF
-0.21 | TEA, INSTANT,PREPRD,UNSWEETENDS FL OZ
-0.21 | COFFEE, INSTANT, PREPARED 6 FL OZ
-0.19 | PICKLES, CUCUMBER, DILL 1 PICKLE
-0.18 | CELERY, PASCAL TYPE, RAW,STALK1 STALK
-0.17 | BEEF BROTH, BOULLN, CONSM,CNND1 CUP
-0.17 | ONION SOUP, DEHYDRATD, PREPRED1 PKT
-0.17 | BEER, LIGHT 12 FL OZ
-0.16 | CUCUMBER, W/ PEEL 6 SLICES
-0.16 | LETTUCE, CRISPHEAD, RAW,WEDGE 1 WEDGE
-0.16 | LETTUCE, CRISPHEAD, RAW, HEAD 1 HEAD
-0.16 | VINEGAR, CIDER 1 TBSP

B; | Nutritional variable
-0.24 | Calories per Gram
0.02 | Protein Proportion
0.04 | Carbohydrate Proportion
0.07 | Fat Proportion
0.11 | Saturated Fat Proportion

Table 4: Shown are the top 20 of 429 foods in Layer 3.

tied to the US currency, which represents the background.

Layer 2, has p = —0.1073, corresponding to a more than 10% decline in
the Mexican currency in one month. The distribution of the o values for this
layer is very skewed. The extreme months are December 1982 (o = —0.55),
June 1977 (o = —0.50) and February 1982 (o = —0.40). There are 5 other
months between —0.05 and —0.35.
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p =142 | Layer 4
a; | Food
1.63 | SUGAR, POWDERED, SIFTED 1 CUP
1.63 | SUGAR, WHITE, GRANULATED 1 PKT
1.63 | SUGAR, WHITE, GRANULATED 1 TBSP
1.61 | SUGAR, WHITE, GRANULATED 1 CUP
1.58 | HARD CANDY 1 OZ
1.48 | SUGAR, BROWN, PRESSED DOWN 1 CUP
1.44 | ONION POWDER 1 TSP
1.44 | FONDANT, UNCOATED 1 OZ
1.30 | SUGAR FROSTED FLAKES, KELLOGG 1 OZ
1.30 | JELLY BEANS 1 OZ
1.30 | SUPER SUGAR CRISP CEREAL 1 OZ
1.25 | COCA PWDR W/O NONFAT DRY MILK 3/4 OZ
1.23 | CAROB FLOUR 1 CUP
1.16 | FROOT LOOPS CEREAL 1 OZ
1.16 | RICE KRISPIES CEREAL 1 OZ
1.16 | GUM DROPS 1 OZ
1.16 | SUGAR SMACKS CEREAL 1 OZ
1.16 | TRIX CEREAL 1 OZ
1.11 | CINNAMON 1 TSP
1.06 | POPCORN, SUGAR SYRUP COATED 1 CUP
B; | Nutritional variable
0.00 | Carbohydrate Proportion

Table 5: Shown are the top 20 of 270 foods in Layer 4.

7 (Gene expression data

Figure 1 shows yeast gene expression data used by Eisen et al. (1998). The
data are available at http://rana.stanford.edu/clustering. The columns rep-
resent timepoints within each of ten experimental series. These experiments
are reported in DeRisi, Iyer & Brown (1997), Spellman, Sherlock, Zhang,
Iyer, Anders, Eisen, Brown, Botstein & Futcher (1998), and Chu, DeRisi,
Eisen, Mulholland, Botstein, Brown & Herskowitz (1998).

The columns in this data are denoted by the following prefixes: alpha
(columns 1-18), Elu (19-32), cdc (33-47), spo (48-53), spob (54-56), spo- (57-
58), heat (59-64), dtt (65-68), cold (69-72), diau (73-79). Experiments one to
three examine the mitotic cell cycle. Experiments four to six track different
strains of yeast during sporulation. Experiments seven to nine track expres-
sion following exposure to different types of shocks. Experiment ten studies
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p=2.39 | Layer 5
a; | Food

16.18 | EGGS, RAW, YOLK 1 YOLK

6.13 | CHICKEN LIVER, COOKED 1 LIVER
4.03 | EGGS, COOKED, FRIED 1 EGG

3.72 | BEEF LIVER, FRIED 3 OZ

3.54 | EGGS, COOKED, HARD-COOKED 1 EGG
3.54 | EGGS, RAW, WHOLE 1 EGG

3.51 | EGGS, COOKED, POACHED 1 EGG
2.45 | EGGS, COOKED, SCRAMBLED/OMELET1 EGG
0.51 | BUTTER, UNSALTED 1 TBSP

0.51 | BUTTER, SALTED 1 TBSP

0.50 | POUND CAKE, COMMERCIAL 1 SLICE
0.49 | BUTTER, UNSALTED 1 PAT

0.49 | BUTTER, SALTED 1 PAT

0.49 | POUND CAKE, COMMERCIAL 1 LOAF
0.47 | BUTTER, UNSALTED 1/2 CUP

0.47 | BUTTER, SALTED 1/2 CUP

0.41 | SHRIMP, FRENCH FRIED 3 OZ

0.33 | BRAUNSCHWEIGER 2 SLICES

-0.03 | CHEESECAKE 1 CAKE

-0.03 | CHEESECAKE 1 PIECE

B; | Nutritional variable
0.00 | Cholesterol Proportion x 1000

Table 6: Shown are the top 20 of 59 foods in Layer 5.

the diauxic shift. Each of the 2467 rows represents a single probe on the mi-
croarray designed to detect the expression level of a particular gene. The rows
are ordered according to the results of the hierarchical clustering algorithm
to illustrate the relationships revealed by that approach. The colors in the
image (red=high, blue=low) correspond to values of Y;; = log, X;;, where
X;; is a measurement representing the expression level of gene ¢ obtained
from a scanned image of the microarray used to assay sample j. The original
downloaded data contained values of Y;;. Values for missing data (1.9% of
the data) were imputed using the sum of the row and column means less the
overall mean. Annotation of the genes in the downloaded file was slightly
edited to save space.

We used both gene and sample effects in the background and in the
layers. This choice of background layer acknowledges that genes and samples
both have different expression levels, and focuses the search for biological
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No. of Layers | Genes | Samples | Observations
0 703 22 170703

1] 1031 5 22872

2 579 2 1307

3 142 11 11

4-18 12 39 0

Total | 2467 79 194893

Table 7: Shown are the numbers of genes, samples and observations appear-
ing in 0, 1 or more layers.

interpretation on their interactions. We searched for up to 40 layers with the
unisign option on, row and column release criteria set to 0.5 and shuffling 3
times for each layer. After the 34th layer, the algorithm was unable to find
a layer that retained any rows under the release criterion.

Overall, the 34 layers and the background contained 5568 parameters,
fewer than 3% of the number of observations. Figure 2 shows the complete
fitted model, which recovers much of the visually apparent structure in the
original data. Layers tend to decrease both in size of effect and number of
genes as the algorithm proceeds. Towards the end, the algorithm discards
large numbers of genes due to the release criterion. Not surprisingly, the
typical sample belongs to more layers than does the typical gene. The number
of columns per layer remains more or less constant throughout the analysis.
Background alone accounted for 28% of the genes and of the samples in the
data. (See Table 7.) An additional 42% of the genes were in a single layer.
Overall, 88% of the data was explained by background alone. There was
little overlap among the layers, with fewer than 1% of the data falling into
more than one layer.

The plaid model consistently puts columns from the same experimental
series together within layers. Table 8 shows the column effects in the first
6 layers. Only in layer 6 is an intermediate timepoint (column 41, cdc 170)
excluded when timepoints both before and after are included in the layer.
Similar patterns were seen in subsequent layers. The sporulation data enter
into 4 of the first 6 layers because of the greater variability in those experi-
ments.

Layers 1 and 3 contain the same 7 samples and share no genes in common.
In Figure 1, these layers correspond to the band running through columns
49-58. The timepoints are hours 2, 5, 7, 9 and 11 during sporulation in one
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Sample effects (p + ;) in first 6 layers

Sample 1 2 3 4 5 6
19 Elu 0 0.74
39 cdc 130 0.44
40 cdc 150 0.29
41 cdc 170
42 cdc 190 0.52
43 cdc 210 0.46
44 cdc 230 0.53
45 cdc 250 0.82
46 cdc 270 0.64
47 cdc 290 0.89
49 spo 2 0.72 | -1.18 | -0.81
50 spo 5 1.10 | -1.18 | -1.21
51 spo 7 1.36 | -1.32 | -1.12 0.93
52 spo 9 1.08 | -0.75 | -1.33 0.99
53 spo 11 1.06 -1.12 0.92
55 spod 7 0.94
56 spob 11 0.76

57 spo-early | 1,19 | -2.14 | -1.03
58 spo-mid | 1.41 | -2.19 | -1.43

60 heat 10 -1.19 1.57 | -1.06

61 heat 20 -1.70 1.10 | -1.15

62 heat 40 -1.23 0.61 | -1.00

63 heat 80 -0.70 0.53 | -0.55

64 heat 160 -0.80 -0.65

66 dtt 30 0.55
67 dtt 60

68 dtt 120 0.47 | -0.31

71 cold 40 -0.59

72 cold 160 -0.90

77 diau e 0.55

78 diau f -1.20 1.30 | -0.64

79 diau g -1.60 1.42 | -0.87 | 0.48

Table 8: Shown are the column effects for the first 6 layers of the yeast
expression data. Columns that do not appear in these layers are omitted,
unless they fall between two timepoints included in a single layer.

yeast strain and hours 5 and 7 in a second yeast strain. These were the only
times at which the second strain was assayed. On average, the 567 genes in
layer 1 are upregulated to 219% of their background levels, wheras the 251
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p=113 Layer 1
a; | Gene, known function

3.34 | ECM11, cell wall biogenesis

2.77 | LEU1, leucine biosynthesis, 3-isopropylmalate dehydratase
2.65 | PDS1, cell cycle, anaphase inhibitor (putative)

2.35 | CDC5, cell cycle, G2-M protein kinase

2.02 | CIK1, cytoskeleton, spindle pole body associated protein

1.77 | CLBS, cell cycle, G1-S cyclin

1.64 | PCH2 meiosis, checkpoint

1.56 | STU2 cytoskelton, spindle pole body component

1.56 | BAT1, branched chain amino acid, transaminase

1.563 | ORC3, DNA replication, origin recognition complex, ...

1.56 | APC4, cell cycle, anaphase-promoting complex subunit

1.51 | MIP6, MRNA export, putative, RNA-binding proteinlization

p=—1.20 | Layer 3
a; | Gene, known function

-2.11 | TDH1, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 1
-2.02 | TKL1, pentose phosphate cycle, transketolase

-1.99 | PGK1, glycolysis, phosphoglycerate kinase

-1.97 | ENO2, glycolysis, enolase II

-1.86 | TDH2, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 2
-1.79 | YGP1, diauxic shift, response to nutrient limitation
-1.70 | TDH3, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 3
-1.68 | TPI1, glycolysis, triophosphate isomerase
-1.59 | FBAL1, glycolysis, aldolase
-1.52 | BUDY7, bud site selection
-1.49 | GPM1, glycolysis, phosphoglycerate mutase
-1.42 | ALDG, ethanol utilization, acetaldehyde dehydrogenase

Table 9: Shown are the top 12 genes of Layers 1 and 3.

genes of layer 3 are downregulated to 44% of their background level.

Figure 3 shows how the effects of layers 1 and 3 mirror each other across
the selected samples. Figure 4 shows the means of the data for the same
genes and samples. The mirroring effect is not visible in the original data,
but is visible in the plaid model after subtraction of the background and

other layers.

Table 9 shows the 12 most affected genes under layers 1 and 3. Layer 1
includes many genes involved in the cell cycle. Layer 3 includes many genes

involved in glycolysis.

Layer 2 is dominated by genes that produce ribosomal proteins involved
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Types of ribosomal proteins by layer
Layer 2 3] 5| 6|11 ] 12| 13| 1415|124 |29 |31 All
Genes | 216 | 251 | 87 | 47 | 98 | 110 | 111 | 253 | 54 | 46 | 39 | 89 | 2467
Acidic 5 0 0] 0 O 0 0 0| 0 1] 0] O )

Mito. 0 7| 3| 8] 2 0} 22| 10 1| 0] 1| O 49
Other | 109 31 9] 1] 0 6 1 14| 3| 6| 3|13 | 119
AllRPs | 114 | 10| 12| 9| 2 6 23| 24| 4| 7| 4|13 | 173

Table 10: Shown are types of ribosomal proteins within all layers containing
more than one such gene.

in protein synthesis in which MRNA is translated. The layer contains 14
samples, 216 genes and has 02 = 6437. It includes 114 of the 124 non-
mitochondrial ribosomal proteins identified in the data. Most of the riboso-
mal protein genes (107) are among the 130 most affected genes in layer 2.
Layer 2 includes all five of the acidic ribosomal proteins and none of the 49
mitochondrial ribosomal proteins. Layer 2 contains several other genes also
involved in translation and in transcription. The genes in layer 2 are down-
regulated (u = —1.29) reaching 22% to 66% of their background levels. This
downregulation occurs within 14 samples from early stage of sporulation, in
the diauxic shift and following cold and heat shock. (See Table 8)

Table 10 lists all layers containing more than one ribosomal protein. Nine
of the 10 non-mitochondrial ribosomal proteins that do not appear in layer 2
appear in layer 5. Interestingly, seven of these form a continuous set (numbers
1510-1517) in the hierarchical-clustering order, separated in that analysis
from the main group of ribosomal proteins by four other genes. Layer 5 is
less strongly downregulated (; = —0.76) than layer 2 and contains none of
the sporulation samples. (See Table 8.)

Later layers also exhibit biological patterns. For example, the 89 genes
in layer 32 include 18 of the 33 proteasome subunits. Interestingly, the most
downregulated gene in layer 32 is FET3 (p32 + @32 = —1.51) , which en-
codes a cell surface ferroxidase involved in transport. FET3 is also the most
downregulated non-ribosomal protein in layer 2 (24 ;2 = —1.86). Layers 2
and 32 share only one other gene ASN2, an asparagine synthetase involved in
asparagine biosynthesis. Neither FET3 nor ASN2 appear in any other layers.
An interpretation is that FET3 and ASN2 behave like ribosomal proteins
under the conditions represented within layer 2 and like the proteasome sub-
units under the conditions represented in layer 33. These latter conditions
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p =049 | Layer 30

i+ a; | Gene, known function
0.72 | DAK1, carbohydrate metabolism, dihydroxyacetone kinase
0.72 | AIP1, cytoskeleton, actin cortical patch component
0.53 | CAP2, cytoskeleton, F-actin capping protein subunit
0.45 | CYPS5, protein folding, peptidyl-prolyl cis-trans isomerase
0.42 | PUP1, protein degradation, 20s proteasome subunit (beta2)
0.29 | PDX1, glycolysis, pyruvate dehydrogenase
0.27 | MYQ3, cytoskeleton, myosin, class I

u+ B; | Column, sample
0.68 | 60, heat 10
0.66 | 61, heat 20
0.64 | 68, dtt 120
0.60 | 67, dtt 60
0.55 | 19, Elu 0
0.50 | 31, Elu 360
0.50 | 78, diau f
0.49 | 54, spob 2
0.48 | 45, cdc 250
0.46 | 47, cdc 290
0.43 | 30, Elu 330
0.36 | 32, Elu 390
0.36 | 65, dtt 15
0.35 | 46, cdc 270
0.23 | 57, spo- early

Table 11: Shown is layer 30 of the yeast expression data.

include the mitotic cell cycle (columns 23, 24, 33, 34, 35) and later stages of
sporulation (columns 52, 53, 55, 56).

Some of the later layers are quite small. Layer 30 contains 15 samples
and only 7 genes, 3 of which are cytoskeleton genes. The complete layer is
shown in Table 11.

8 Comparisons

This section surveys literature and methods related to the plaid model.
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8.1 Singular value decomposition

The singular value decomposition (SVD) of a matrix Y is a sum

Z gy, m = min(n, p), (15)
k=1

where uy, ... ,u,, are orthogonal n vectors, v1,... , v, are mutually orthog-
onal p vectors, and Ay > 0 are the singular values. This is similar to a
plaid model with 6, = Ay and (p1k, - - - , puk) = Uk, and (Kik, . .. , Kpk) = V.
The plaid model differs in that the vectors from different layers are not con-
strained to be orthogonal. In plaid models, p;; and k;; are constrained to
take values in {0, 1}. More complicated plaid models with a;; and ;) terms
can not be written as differently constrained SVDs.

8.2 Semidiscrete decomposition

The semi-discrete decomposition (SDD) takes the form (15) except that the
elements of uy and vy, belong to the set {—1,0,1}. Kolda & O’Leary (1998)
report that the SDD provides faster and more space efficient information
retrieval than the SDD. In IR applications the row 7 represents a term (such
as a word), the column j represents a document (such as an article or web
page) and the raw data value X;; contains the number of times that term
¢ appears in document j. Typically a transformation is applied to the X;;
values before fitting an SVD or an SDD. The algorithm for estimating the
SDD alternates between updating ). values and w; and v, values. That
algorithm keeps A, € {—1,0,1} at all stages.

8.3 Non-negative matrix factorization

Lee & Seung (1999) describe a non-negative matrix factorization. It can be
written as in equation (15) with all Ay = 1, and with all elements of u; and vy
constrained to be non-negative. They illustrate the decomposition on images
and on information retrieval problems. Once again, an alternating iterative
algorithm is used. Their preferred algorithm is based on a Poisson likelihood,
though they also describe one based on sums of squares.
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8.4 Clustering

As Lee & Seung (1999) point out, k-means style clustering of data rows (or of
columns) can be cast in the form (15). To cluster the rows of Y take Ay =1
and constrain each u; to have one element equal to 1 and all the others 0.
Then v, are the cluster centers.

Additive clustering (Shepard & Arabie 1979) is a method for describing
similarities among a group of observations. Here n = p, the rows and columns
of Y describe the same set of objects, and the value Y;; is a number describing
the similarity between objects i and j. Additive clustering fits the model (15)
with the constraints u;; = v;, € {0,1}.

Additive clustering and plaid models both allow clusters to overlap. Ara-
bie & Hubert (1996) survey the literature on overlapping clusters. Chapter
14 of Hartigan (1975) presents an early examle of two-sided, non-overlapping
clustering method.

Eisen et al. (1998) cluster the genes in their data using hierarchical clus-
tering. Hastie, Tibshirani, Eisen, Brown, Ross, Scherf, Weinstein, Alizadeh,
Staudt & Botstein (2000) introduce gene shaving. In shaving a cluster is
formed around the largest principal component of the data. Structure corre-
sponding to such a cluster is then removed, and a new cluster forms around
the principal component of the remainder. In gene shaving the model takes
the form (15) with A\, = 1, uy € {—1,0,1} and the principal component
vector elements v, unconstrained.

Hofmann, Puzicha & Jordan (1999) propose a two-sided clustering model
for dyadic (co-occurence) data. This data takes the form Y;; € {0,1}, for
example a 1 representing that a person i has seen movie j. They describe
clusters through unobserved latent class variables, and employ an EM algo-
rithm to estimate their model.

9 Discussion

The plaid model is a form of overlapping two-sided clustering, with an em-
bedded anova in each layer.

In this article we have presented an algorithm for finding plaid models,
and a way of protecting against the introduction of noisy terms in a greedy
model search. This may turn out to be of use in other greedy search algo-
rithms.
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We expect that the algorithm could be improved. Our updating algo-
rithms adjust each p; and k; individually instead of jointly. This is driven by
considerations of speed; n + p ratios are much faster to compute than is an
n + p dimensional optimization. In some cases this simultaneous adjustment
gives rise to null layers with all p; = 0.

Plaid models are exploratory tools, like cluster analysis. Just as in cluster
analysis and many other multivariate methods, the results are sensitive to
scaling of the data. If the columns of the yeast expression data are scaled
to have a common variance, then the ribosomal protein layer is found first.
Similarly when the food variables are not scaled the first layer only involves
the calories per gram of food column, because that one has by far the largest
variance. If the foods are not normalized by weight, then the first layer is
dominated by the large foods, such as entire cakes, pies, loafs and half gallons
of ice cream. These other clusterings are as real as the ones we report. When
a choice is to be made among them, it must be based on a decision of what
aspect of the data is of interest.

We have also found that the results can change in response to changes
in the algorithm. The features we present are ones that have been found
more than once in repeated analyses of the data. This is consistent with
advice given by Hartigan (1975) for clustering. For the food data, the first
layer is invariably driven by lard, butter and oils, but the number of foods
in this layer can depend on options of the algorithm. For the yeast data,
the mirror imaged sporulation layers can be the first and second ones after
the background, or they can be the first and fourth, but they are a strong
feature that is invariably present.

In our examples, we have found interpretable structure in genetics data,
foreign exchange data, and nutrition data. These structures are clearly not
noise artifacts.
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