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Abstract— The nearest neighbor (NN) technique is very simple, 

highly efficient and effective in the field of pattern recognition, 

text categorization, object recognition etc. Its simplicity is its 

main advantage, but the disadvantages can’t be ignored even. 

The memory requirement and computation complexity also 

matter. Many techniques are developed to overcome these 

limitations. NN techniques are broadly classified into structure 

less and structure based techniques. In this paper, we present the 

survey of such techniques. Weighted kNN, Model based kNN, 

Condensed NN, Reduced NN, Generalized NN are structure less 

techniques whereas k-d tree, ball tree, Principal Axis Tree, 

Nearest Feature Line, Tunable NN, Orthogonal Search Tree are 

structure based algorithms developed on the basis of kNN. The 

structure less method overcome memory limitation and structure 

based techniques reduce the computational complexity. 

Keywords- Nearest neighbor (NN), kNN, Model based kNN, 

Weighted kNN, Condensed NN, Reduced NN. 

I. INTRODUCTION 

The nearest neighbor (NN) rule identifies the category of 

unknown data point on the basis of its nearest neighbor whose 

class is already known. This rule is widely used in pattern 

recognition [13, 14], text categorization [15-17], ranking 

models [18], object recognition [20] and event recognition [19] 

applications. 
T. M. Cover and P. E. Hart purpose k-nearest neighbor 

(kNN) in which nearest neighbor is calculated on the basis of 
value of k, that specifies how many nearest neighbors are to be 
considered to define class of a sample data point [1]. T. Bailey 
and A. K. Jain improve kNN which is based on weights [2]. 
The training points are assigned weights according to their 
distances from sample data point. But still, the computational 
complexity and memory requirements remain the main concern 
always. To overcome memory limitation, size of data set is 
reduced. For this, the repeated patterns, which do not add extra 
information, are eliminated from training samples [3-5]. To 
further improve, the data points which do not affect the result 
are also eliminated from training data set [6]. Besides the time 
and memory limitation, another point which should be taken 
care of, is the value of k, on the basis of which category of the 
unknown sample is determined. Gongde Guo selects the value 
of k using model based approach [7]. The model proposed 
automatically selects the value of k. Similarly, many 
improvements are proposed to improve speed of classical kNN 
using concept of ranking [8], false neighbor information [9], 
clustering [10]. The NN training data set can be structured 
using various techniques to improve over memory limitation of 

kNN. The kNN implementation can be done using ball tree [21, 
22], k-d tree [23], nearest feature line (NFL) [24], tunable 
metric [26], principal axis search tree [28] and orthogonal 
search tree [29]. The tree structured training data is divided into 
nodes, whereas techniques like NFL and tunable metric divide 
the training data set according to planes. These algorithms 
increase the speed of basic kNN algorithm. 

II. NEAREST NEIGHBOR TECHNIQUES

Nearest neighbor techniques are divided into two categories: 1) 

Structure less and 2) Structure Based. 

A. Structure less NN techniques 

The k-nearest neighbor lies in first category in which whole 

data is classified into training data and sample data point. 

Distance is evaluated from all training points to sample point 

and the point with lowest distance is called nearest neighbor. 
This technique is very easy to implement but value of k 

affects the result in some cases. Bailey uses weights with 
classical kNN and gives algorithm named weighted kNN 
(WkNN) [2]. WkNN evaluates the distances as per value of k 
and weights are assigned to each calculated value, and then 
nearest neighbor is decided and class is assigned to sample data 
point. The Condensed Nearest Neighbor (CNN) algorithm 
stores the patterns one by one and eliminates the duplicate 
ones. Hence, CNN removes the data points which do not add 
more information and show similarity with other training data 
set. The Reduced Nearest Neighbor (RNN) is improvement 
over CNN; it includes one more step that is elimination of the 
patterns which are not affecting the training data set result. The 
another technique called Model Based kNN selects similarity 
measures and create a ‘similarity matrix’ from given training 
set. Then, in the same category, largest local neighbor is found 
that covers large number of neighbors and a data tuple is 
located with largest global neighborhood. These steps are 
repeated until all data tuples are grouped. Once data is formed 
using model, kNN is executed to specify category of unknown 
sample. Subash C. Bagui and Sikha Bagui [8] improve the 
kNN by introducing the concept of ranks. The method pools all 
the observations belonging to different categories and assigns 
rank to each category data in ascending order. Then 
observations are counted and on the basis of ranks class is 
assigned to unknown sample. It is very much useful in case of 
multi-variants data. In Modified kNN, which is modification of 
WkNN validity of all data samples in the training data set is 
computed, accordingly weights are assigned and then validity 
and weight both together set basis for classifying the class of 
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the sample data point. Yong zeng, Yupu Zeng and Liang Zhou 
define the new concept to classify sample data point. The 
method introduces the pseudo neighbor, which is not the actual 
nearest neighbor; but a new nearest neighbor is selected on the 
basis of value of weighted sum of distances of kNN of 
unclassified patterns in each class. Then Euclidean distance is 
evaluated and pseudo neighbor with greater weight is found 
and classified for unknown sample. In the technique purposed 
by Zhou Yong [11], Clustering is used to calculate nearest 
neighbor. The steps include, first of all removing the samples 
which are lying near to the border, from training set. Cluster 
each training set by k value clustering and all cluster centers 
form new training set. Assign weight to each cluster according 
to number of training samples each cluster have. 

B. Structure based NN techniques 

The second category of nearest neighbor techniques is 
based on structures of data like Ball Tree, k-d Tree, principal 
axis Tree (PAT), orthogonal structure Tree (OST), Nearest 
feature line (NFL), Center Line (CL) etc. Ting Liu introduces 
the concept of Ball Tree. A ball tree is a binary tree and 
constructed using top down approach. This technique is 
improvement over kNN in terms of speed. The leaves of the 
tree contain relevant information and internal nodes are used to 
guide efficient search through leaves. The k-dimensional trees 
divide the training data into two parts, right node and left node. 
Left or right side of tree is searched according to query records. 
After reaching the terminal node, records in terminal node are 
examined to find the closest data node to query record. The 
concept of NFL given by Stan Z.Li and Chan K.L. [24] divide 
the training data into plane. A feature line (FL) is used to find

 nearest neighbor. For this, FL distance between query point 
and each pair of feature line is calculated for each class. The 
resultant is set of distances. The evaluated distances are sorted 
into ascending order and the NFL distance is assigned as rank 
1. An improvement made over NFL is Local Nearest Neighbor 
which evaluates the feature line and feature point in each class, 
for points only, whose corresponding prototypes are neighbors 
of query point. Yongli Zhou and Changshui Zhang introduce 
[26] new metric for evaluating distances for NFL rather than 
feature line. This new metric is termed as “Tunable Metric”. It 
follows the same procedure as NFL but at first stage it uses 
tunable metric to calculate distance and then implement steps 
of NFL. Center Based Nearest Neighbor is improvement over 
NFL and Tunable Nearest Neighbor. It uses center base line 
(CL) that connects sample point with known labeled points. 
First of all CL is calculated, which is straight line passing 
through training sample and center of class. Then distance is 
evaluated from query point to CL, and nearest neighbor is 
evaluated. PAT permits to divide the training data into efficient 
manner in term of speed for nearest neighbor evaluation. It 
consists of two phases 1) PAT Construction 2) PAT Search. 
PAT uses principal component analysis (PCA) and divides the 
data set into regions containing the same number of points. 
Once tree is formed kNN is used to search nearest neighbor in 
PAT. The regions can be determined for given point using 
binary search. The OST uses orthogonal vector. It is an 
improvement over PAT for speedup the process. It uses 
concept of “length (norm)”, which is evaluated at first stage. 
Then orthogonal search tree is formed by creating a root node 
and assigning all data points to this node. Then left and right 
nodes are formed using pop operation. 

TABLE I. COMPARISON OF NEAREST NEIGHBOR TECHNIQUES

Sr No Technique Key Idea Advantages Disadvantages Target Data 

1. k Nearest Neighbor 

(kNN) [1] 

Uses nearest 

neighbor rule 

1. training is very fast 

2. Simple and easy to learn 

3. Robust to noisy training data 

4.Effective if training data is large 

1. Biased by value of k 

2.Computation Complexity 

3.Memory limitation 

4. Being a supervised learning lazy 

algorithm i.e. runs slowly 

5. Easily fooled by irrelevant 

attributes

large data samples 

2. Weighted k nearest 

neighbor 

(WkNN) [2] 

Assign weights 

to neighbors as 

per distance 

calculated

1. Overcomes limitations of kNN of 

assigning equal weight to k neighbors 

implicitly. 

2. Use all training samples not just k. 

3. Makes the algorithm global one 

1. Computation complexity increases 

in calculating weights 

2. Algorithm runs slow 

Large sample data 

3. Condensed  nearest 

neighbor (CNN) 

[3,4,5] 

Eliminate data 

sets which show 

similarity and do 

not add extra 

information 

1. Reduce size of training data 

2. Improve query time and memory 

requirements 

3.Reduce the recognition rate 

1. CNN is order dependent; it is 

unlikely to pick up points on 

boundary. 

2. Computation Complexity 

Data set where 

memory 

requirement is  

main concern 

4.  Reduced Nearest 

Neigh (RNN) [6] 

Remove patterns 

which do not 

affect the 

training data set 

results

1. Reduce size of training data and 

eliminate templates 

2. Improve query time and memory 

requirements 

3.Reduce the recognition rate 

1.Computational Complexity 

2.Cost is high 

3.Time Consuming 

Large data set 

5. Model based k nearest 

neighbor (MkNN) [7] 

Model is 

constructed from 

data and classify 

new data using 

model 

1. More classification accuracy 

2.Value of k is selected automatically 

3.High efficiency as reduce number of 

data points 

1.Do not consider marginal data 

outside the region 

Dynamic web 

mining for large 

repository  

6. Rank nearest neighbor 

(kRNN) [8] 

Assign ranks to 

training data for 

each category

1.Performs better when there are too 

much variations between features 

2.Robust as based on rank 

1.Multivariate kRNN depends on 

distribution of the data 

Class distribution of 

Gaussian nature 
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3.Less computation complexity as 

compare to kNN 

7.  Modified k nearest 

neighbor (MkNN) [10] 

Uses weights and 

validity of data 

point to classify 

nearest neighbor 

1.Partially overcome low accuracy of 

WkNN

2.Stable and robust 

1.Computation Complexity Methods facing 

outlets

8. Pseudo/Generalized 

Nearest Neighbor 

(GNN) [9] 

Utilizes

information of n-

1 neighbors also 

instead of only 

nearest neighbor 

1.uses n-1 classes which consider the 

whole training data set 

1.does not hold good for small data 

2.Computationa;l complexity 

Large data set 

9. Clustered k nearest 

neighbor [11] 

Clusters are 

formed to select 

nearest neighbor 

1.Overcome defect of uneven 

distributions of training samples 

2.Robust in nature 

1.Selection of threshold parameter is 

difficult before running algorithm 

2.Biased by value of k for clustering 

Text Classification 

10. Ball Tree k nearest 

neighbor (KNS1) 

[21,22] 

Uses ball tree 

structure to 

improve kNN 

speed

1.Tune well to structure of represented 

data

2.Deal well with high dimensional 

entities

3.Easy to implement 

1.Costly insertion 

algorithms 

2.As distance increases KNS1 

degrades 

Geometric Learning 

tasks like robotic, 

vision, speech, 

graphics 

11. k-d tree nearest 

neighbor (kdNN) [23] 

divide the 

training data 

exactly into half 

plane

1.Produce perfectly balanced tree 

2.Fast and simple 

1.More computation 

2.Require intensive search 

3.Blindly slice points into half which 

may miss data structure 

organization of 

multi dimensional 

points

12. Nearest feature Line 

Neighbor (NFL) [24] 

take advantage of 

multiple 

templates per 

class

1.Improve classification accuracy 

2.Highly effective for small size 

3.utilises information ignored in 

nearest neighbor i.e. templates per 

class

1.Fail when prototype in NFL is far 

away from query point 

2.Computations Complexity 

3.To describe features points by 

straight line is hard task

Face Recognition 

problems 

13. Local Nearest 

Neighbor [25] 

Focus on nearest 

neighbor 

prototype of 

query point 

1.Cover limitations of NFL 1.Number of Computations  Face Recognition 

14. Tunable Nearest 

Neighbor (TNN) [26] 

A tunable metric 

is used

1.Effective for small data sets 1.Large number of computations Discrimination 

problems 

15. Center based Nearest 

Neighbor (CNN) [27] 

A Center Line is 

calculated

1.Highly efficient for small data sets 1. Large number of computations Pattern Recognition 

16. Principal Axis Tree 

Nearest Neighbor 

(PAT) [28] 

Uses PAT 1.Good performance 

2.Fast Search 

1.Computation Time Pattern Recognition 

17. Orthogonal Search 

Tree Nearest Neighbor  

[29] 

Uses Orthogonal 

Trees

1.Less Computation time 

2.Effective for large data sets 

1.Query time is more Pattern Recognition 

III. CONCLUSION

We compared the nearest neighbor techniques. Some of 
them are structure less and some are structured base. Both 
kinds of techniques are improvements over basic kNN 
techniques. Improvements are proposed by researchers to gain 
speed efficiency as well as space efficiency. Every technique 
hold good in particular field under particular circumstances. 
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