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Abstract

Discretization can turn numeric attributes into dis-
crete ones. Feature selection can eliminate some ir-
relevant attributes. This paper describes Chi2, a sim-
ple and general algorithm that uses the x? statistic to
discretize numeric attributes repeatedly until some in-
consistencies are found in the data, and achieves fea-
ture selection via discretization. The empirical results
demonstrate that Chi2 is effective in feature selection
and discretization of numeric and ordinal attributes.

1 Introduction

Feature selection is a task to select the minimum
number of attributes needed to represent the data ac-
curately. By using relevant features, classification al-
gorithms can in general improve their predictive ac-
curacy, shorten the learning period, and result in the
simpler concepts. There are abundant feature selec-
tion algorithms [5]. Our work adopts an approach
that selects a subset of the original attributes since it
not only has the above virtues, but also serves as an
indicator on what kind of data (along those selected
features) should be collected. The feature selection
algorithms can be further divided based on the data
types they operate on. The basic two types of data are
pominal (e.g., attribute color may have values of red,
green, yellow) and ordinal {e.g., attribute winning po-
gition can have values of 1, 2, and 3, or attribute salary
can have 22345.00, 46543.89, etc. as its values). Many
feature selection algorithms [1, 3, 5] are shown to work
effectively on discrete data or even more strictly, on bi-
nary data (and/or binary class value). In order to deal
with numeric attributes, a common practice for those
algorithms is to discretize the data before conduct-
ing feature selection. This paper provides a way to
select features directly from numeric attributes while
discretizing them. Numeric data are very common in
real world problems. However, many classification al-
gorithms require that the training data contain only
discrete attributes, and some would work better on
discretized or binarized data [2, 4]. If those numeric
data can be automatically transformed into discrete
ones, these classification algorithms would be readily
at our disposal. ChiZ2 is our effort towards this goal:
discretize the numeric attributes as well as select fea-
tures among them.

The problem this work tackles is as follows: there
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are data sets with numeric attributes, some are irrel-
evant and the range of each numeric attribute could
be very wide; find an algorithm that can automati-
cally discretize the numeric attributes as well as re-
move those irrelevant ones.

This work stems from Kerber’s ChiMerge [4] which
is designed to discretize numeric attributes based on
the x? statistic. ChiMerge consists of an initialization
step and a bottom-up mergingprocess, where intervals
are continuously merged until a termination condition,
which is determined by a significance level o (set man-
ually), is met. It is an improvement from the most
obvious simple methods such as equal-width-intervals
or equal-frequency-intervals. Instead of defining a
width or frequency threshold (which is not easy un-
til scrutinizing each attribute and knowing what it is),
ChiMerge requires « to be specified. Nevertheless, too
big or too small an a will over- or under-discretize an
attribute. An extreme example of under-discretization
is the continuous attribute itself. Over-discretization
will introduce many inconsistencies! nonexistent be-
fore, thus change the characteristics of the data. In
short, it is not easy to find a proper a for ChiMerge.
It is thereby ideal to let the data determine what value
« should take. This leads to Phase 1 of Chi2. Natu-
rally, if the discretization continues without generat-
ing more inconsistencies than in the original data, it is
possible that some attributes will be discretized into

-one interval only. Hence, they can be removed.
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2 Chi2 Algorithm

The Chi2 algorithm (summarized below) is based
on the x? statistic, and consists of two phases. In
the first phase, it begins with a high significance level
(sigLevel), e.g., 0.5, for all numeric attributes for dis-
cretization. Each attribute is sorted according to its
values. Then the following is performed: 1. calcu-
late the x? value as in equation (1) for every pair of
adjacent intervals (at the beginning, each pattern is
put into its own interval that contains only oné value
of an attribute); 2. merge the pair of adjacent inter-
vals with the lowest x? value. Merging continues un-
til all pairs of intervals have x2 values exceeding the
parameter determined by sigLevel (initially, 0.5, its

1By inconsistency we mean that two patterns are the same,
but classified into different categories.



corresponding x? value is 0.455 if the degree of free-
dom is 1, more below). The above process is repeated
with a decreased sigLevel until an inconsistency rate,
é is exceeded in the discretized data. Phase 1 is, as
a matter of fact, a generalized version of ChiMerge of
Kerber [4]. Instead of specifying a x? threshold, Chi2
wraps up ChiMerge with a loop that automatically in-
crements the x? threshold (decrementing sigLevel). A
consistency checking is also introduced as a stoppin

criterion in order to guarantee that the discretize

data set accurately represents the original one. With
these two new features, Chi2 automatically determines
a proper x? threshold that keeps the fidelity of the
original data. :

Phase 2 is a finer process of Phase 1. Starting with
sigLevel0 determined in Phase 1, each attribute ¢ is
associated with a sigLevel[é], and takes turns for merg-
ing. Consistency checking 1s conducted after each at-
tribute’s merging. If the inconsistency rate is not ex-
ceeded, sigLevel[¢] is decremented for attribute #’s next
round of merging; otherwise attribute ¢ will not be in-
volved in further merging. This process is continued
until no attribute’s values can be merged. At the end
of Phase 2, if an attribute is merged to only one value,
it simply means that this attribute is not relevant in
representing the original data set. As a result, when
discretization ends, feature selection is accomplished.

Chi2 Algorithm:

Phase 1:
set siglevel = .5;
do while (InConsistency(data) < §) {
for each numeric attribute {
Sort(attribute, data);
chiisq-initialization(attribute, data);
do
chi-sq-calculation(attribute,data)

} while (Merge(data))

siglevelO = sigLevel;
siglevel = decreSiglLevel(siglLevel);

Phase 2:

set all siglLvl[i] = siglevel0 for attribute i;

do until no-attribute-can-be-merged {
for each attribute i that can be merged {

Sort(attribute, data);

chiisq—initialization(attribute, data);

do
chi-sq-calculation(attribute,data)

} while (Merge(data))

if (InConsistency(data) < §)
sigLvl[i] = decreSigLevel(sigLvi[il);

else
attribute i cannot be merged;
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The formula for computing the x? value is:

i=1 j=1

(A".i ;‘jE"j)z (1)

where:
k = number of (no.) classes,
A;; = no. patterns in the ith interval, jth class,

R; = no. patterns in the ith interval = E;__:l A;j,
C; = no. patterns in the jth class = Y7, Ajj,

N = total no. patterns = Y -, Ri,

E;; = expected frequency of A;; = R; xC;/N.

If either R; or C; is 0, E;; is set to 0.1. The degree

of freedom of the x? statistic is one less the number of
classes.

3 Experiments

Two sets of experiments are conducted. In the first
set of experiments, we want to establish that 1. Chi2
helps improve predictive accuracy; and 2. Chi2 prop-
erly and effectively discretizes data as well as elimi-
nates some irrelevant attributes. C4.5 [8] (an exten-
sion of ID3 [7]) is used to verify the effectiveness of
Chi2. The reasons for our choice are 1. C4.5 (or ID3)
works well for many problems and is well known, thus
requiring no further description; and 2. C4.5 selects
relevant features by itself in tree branching so it can be
used as a benchmark, as in [5, 9, 1], to verify the effects
of Chi2. In the second set of experiments, we have a
closer examination of Chi2’s ability of discretization
and feature selection by introducing a synthetic data
set and adding noise attributes to the existing data
set. Through these more controlled data sets, we can
better understand how effective Chi2 is.

3.1 Real data

Three data sets used in experiments are Iris, Wis-
consin Breast Cancer and Heart Disease?. They have
different types of attributes. The Iris data are of con-
tinuous attributes, the breast cancer data are of or-
dinal discrete ones, and the heart disease data have
mixed attributes (numeric and discrete).

3.2 Controlled data

Two extra data sets are designed to test if noise
attributes can be removed. One is synthetic, the other
is the Iris data added with noise attributes.

The synthetic data consists of 600 items and is de-
scribed by four attributes among which only one at-
tribute determines each item’s class label. The values,
vy of attribute A; are generated from a uniform dis-
tribution between the lower bound (L = 0) and the
upper bound (U = 75), each item’s class label is de-
termined as follows: vg < 256 — class 1, vp < 50 —
class 2, vg < 75 — class 3. Then we add noise at-
tributes A, A3, and As. The values of Ay are gen-
erated from a normal distribution with g = U/2 (i.e.
37.5) and ¢ = p/3. The values of A; are generated

2They are all obtained from the University of California-
Irvine machine learning repository via anonymous ftp to
ics.uct.edu.



Int | Class Freq | x? || Int | Class Freq | x?
44173 0 0 020 070 2 71T 143
46{2 0 0 ]0204461}]0 0 1 {054
4711 0 0 {020(62(0 1 2 {014
4813 0 0 [1971§63;0 2 3 |014
4911 0 1 (262640 1 2 {0.16
5013 1 o0 (0106570 1 3 |1.97
5113 1 0 [070(66[0 1 0 {250
5212 0 0 (020670 1 4 |0.73
5311 0 0 |041468[0 1 1 |0.10
5413 1 0 (132])69{0 1 1 |0.85
5511 2 0 [166({70(0 1 0 {210
56 10 4 0 | 2560 71({0 0 1 {020
5711 1 0 [128{7410 0 1 {0.20
5811 2 2 |[120(77|0 O 2
5910 1 0 | 0.54

Table 1: The initial intervals, class frequencies, and
x? values for sepal-length.

from two normal distributions with u = U/3 (i.e. 25),
#=2%xU/3 (i.e. 50) and o = p/3 respectively, 300
items each distribution. The values of A4 are gener-
ated from a uniform distribution.

The second data is a modified version of Iris data.
Four noise attributes As, Ag, A7 and Ag are added to
the Iris training data corresponding to the four origi-
nal attributes. The values of each noise attribute are
determined by a normal distribution with g = ave and
o = (maz—min)/6, where ave is the average value of,
maz and min are the maximum and minimum values
of the original attribute. The choice of ¢ 1s to ap-
proximate p/3 if the corresponding original attribute
is of uniform distribution. Now there are total eight
attributes. The number of patterns used is 75.

3.3 Example

In this section, some steps of Chi2 processing for
the Iris data are shown to demonstrate the behavior
of Chi2. Table 1 shows the intervals, class frequencies,
and x? values of sepal-length after the initialization in
Phase 1. The results for sepal-length after Phase 1 and
Phase 2 are shown in Table 2. An inconsistency rate
§ = 5% is allowed in the experiment, that means up
to 3 (75x0.05) inconsistencies are acceptable. Phase 1
stops at sigLevel = 0.2, x? = 3.22. That means the
next sigLevel (0.1) will introduce more inconsistencies.
When Phase 2 terminates, the values of both sepal-
length and sepal-width are merged into one value, so
they can be removed; and attributes petal-length and
petal-width are discretized into four discrete values
each. With the x? threshold 3.22, for example, six
discrete values are needed for attribute sepal-length:
<44—-50,<49—>1,..,<61—>4and >6.1-=5.
The last one reads if a numeric value is greater than
and equal to 6.1, it is quantized to 5.

3.4 Empirical results on real data

First we show that after discretization, the number
of attributes decreases for the three data sets (in Fig-
ure 1). For the Iris data, the number of attributes is
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Int | Class Freq P
44179 0 0] 505
491 1 0 1 8.11
50112 3 0 | 13.64
5513 12 3 | 14.23
6110 10 21
(a)
Int | Class Freq | x?
44125 256 25
(b)

Table 2: The intervals, class frequencies, and x? values
for attribute sepal-length after Phase 1 and Phase 2.
The x? thresholds are (a) 3.22 and (b) 50.6.

Number of Attributes

Data Sets

Iris

Heart Broast

Figure 1: Number of attributes: original vs. those
after Chi2 processing.

reduced from 4 to 2 (petal length and petal width),
each has four values. For the breast cancer data, 3
attributes are removed from the original 9 attributes.
The remaining 6 attributes have 3, 4, 4, 5, 3, and 3 dis-
crete values respectively. For the heart disease data,
the discrete attributes are left out in discretization
and feature selection although they are used for con-
sistency checking. Among the 5 continuous attributes
(1, 4, 5, 8 and 10), only 2 attributes (5 and 8) should
remain as suggested by Chi2, having 8 and 4 discrete
values respectively. For the cancer and disease data
sets, the default inconsistency rate is used, i.e., 0.

Second, we run C4.5 on both the original data sets
and the dimensionally reduced ones. C4.5 is run using
its default setting. Chi2 discretizes the training data
and generates a mapping table, based on which the
testing data are discretized.

Shown in Figure 2 are predictive accuracies and tree
sizes of C4.5 for the three data sets. Predictive accu-
racy improves and tree size drops (by half) for the
breast cancer and heart disease data. As for the Iris
data, accuracy and tree size remain the same by using
two attributes only (with 4 values each). In a way, it
shows that C4.5 works pretty well without Chi2 for
this data set.
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Figure 2: (a) Predictive accuracy and (b) size of de-
cision trees of C4.5 for the three data sets after and
before the Chi2 processing,.

3.5 Empirical results on controlled data

The purpose of experimenting on the controlled
data is to verify how effective Chi2 is in removing
irrelevant attributes through discretizing numeric at-
tributes. Therefore, it is only necessary to see if Chi2
can 51; discretize the relevant attribute(s) properly
and (2) remove the irrelevant attributes.

Chi2 merged A; into three discrete values (1,2 and
3& corresponding to three classes (1,2, and 3); merged
the other three attributes A, A3, and A4 into one
value. That means that only A; should remain, and
the noise (irrelevant) attributes should be removed.

For the modified Iris data, Chi2 merged six at-
tributes out of eight. They are attributes 0, 1, 4, 5, 6
and 7. The first two are sepal-length and sepal-width.
The last four are added noise (irrelevant) attributes.
The remaining two attributes have been merged into
4 discrete values respectively as did in the real data
experiment.

Through this set of controlled experiments, it is
shown that Chi2 effectively discretizes numeric at-
tributes and removes irrelevant attributes.

4 Discussions

ChiMerge requires a user to specify a proper sig-
nificance level (@) which is used for merging values of
all the attributes. No definite rule is given to choose
this . In other words, it is still a matter of trial-and-
error, and clearly it is not easy to find a proper signifi-
cance level for each problem. Phase 1 of Chi2 extends
ChiMerge to an automated one. That is « is automat-
ically varied until further merging is discontinued by
the stopping criterion (the inconsistency rate). What
makes Chi2 special is its capability of feature selection
- a big step forward from discretization. In Phase 2 of
Chi2, each attribute has its own significance level for
merging in a round robin fashion. Merging stops when
the inconsistency rate exceeds a specified one 4. This
phase of Chi2 accomplishes feature selection. Another
feature of Chi2 is that it can be applied to data with
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mixed attributes (e.g., Heart Disease Data). In addi-
tion, Chi2 can work with multi-calss data. This is an
advantage over some statistic-based feature selection
algorithms such as Relief [5] which is applicable only
to the two-class data.

Other issues such as selecting §, limitations of Chi2
as EVTH as its computational complexity can be found
in [6].

5 Conclusion

Chi2 is a simple and general algorithm that can
automatically select a proper x? value, determine the
intervals of a numeric attribute, as well as select fea-
tures according to the characteristics of the data. It
guarantees that the fidelity of the training data can
remain after Chi2 is applied. The empirical results
on both the real data and controlled data have shown
that Chi2 is a useful and reliable tool for discretization
and feature selection of numeric attributes.
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