
Many types of data analysis, such as the interpretation of Landsat images
discussed in the accompanying article, involve datasets so large that
their direct manipulation is impractical.  Some method of data compres-

sion or consolidation must first be applied to reduce the size of the dataset without
losing the essential character of the data.  All consolidation methods sacrifice
some detail; the most desirable methods are computationally efficient and yield re-
sults that are—at least for practical applications—representative of the original
data.  Here we introduce several widely used algorithms that consolidate data by
clustering, or grouping, and then present a new method, the continuous k-means
algorithm,* developed at the Laboratory specifically for clustering large datasets.

Clustering involves dividing a set of data points into non-overlapping groups, or
clusters, of points, where points in a cluster are “more similar” to one another than
to points in other clusters.  The term “more similar,” when applied to clustered
points, usually means closer by some measure of proximity.  When a dataset is
clustered, every point is assigned to some cluster, and every cluster can be charac-
terized by a single reference point, usually an average of the points in the cluster.
Any particular division of all points in a dataset into clusters is called a partitioning.

One of the most familiar applications of clustering is the classification of plants or
animals into distinct groups or species.  However, the main purpose of clustering
Landsat data is to reduce the size and complexity of the dataset.  Data reduction is
accomplished by replacing the coordinates of each point in a cluster with the coor-
dinates of that cluster’s reference point.  Clustered data require considerably less
storage space and can be manipulated more quickly than the original data.  The
value of a particular clustering method will depend on how closely the reference
points represent the data as well as how fast the program runs.

A common example of clustering is the consolidation of a set of students’ test
scores, expressed as percentages, into five clusters, one for each letter grade A, B,
C, D, and F (see Figure 1).  The test scores are the data points, and each cluster’s
reference point is the average of the test scores in that cluster.  The letter grades
can be thought of as symbolic replacements for the numerical reference points.

Test scores are an example of one-dimensional data; each data point represents a
single measured quantity.  Multidimensional data can include any number of mea-
surable attributes; a biologist might use four attributes of duck bills (four-dimen-
sional data:  size, straightness, thickness, and color) to sort a large set of ducks
into several species.  Each independent characteristic, or measurement, is one di-
mension.  The consolidation of large, multidimensional datasets is the main pur-
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pose of the field of cluster analysis.  We will describe several clustering methods
below.  In all of these methods the desired number of clusters k is specified be-
forehand.  The reference point zi for the cluster i is usually the centroid of the
cluster.  In the case of one-dimensional data, such as the test scores, the centroid
is the arithmetic average of the values of the points in a cluster.  For multi- 
dimensional data, where each data point has several components, the centroid will
have the same number of components and each component will be the arithmetic
average of the corresponding components of all the data points in the cluster.

Perhaps the simplest and oldest automated clustering method is to combine data
points into clusters in a pairwise fashion until the points have been condensed into
the desired number of clusters; this type of agglomerative algorithm is found in
many off-the-shelf statistics packages.  Figure 2 illustrates the method applied to
the set of test scores given in Figure 1.

There are two major drawbacks to this algorithm.  First—and absolutely prohibi-
tive for the analysis of large datasets—the method is computationally inefficient.
Each step of the procedure requires calculation of the distance between every pos-
sible pair of data points and comparison of all the distances.  The second difficulty
is connected to a more fundamental problem in cluster analysis:  Although the al-
gorithm will always produce the desired number of clusters, the centroids of these
clusters may not be particularly representative of the data.

What determines a “good,” or representative, clustering?  Consider a single cluster
of points along with its centroid or mean.  If the data points are tightly clustered
around the centroid, the centroid will be representative of all the points in that
cluster.  The standard measure of the spread of a group of points about its mean is
the variance, or the sum of the squares of the distance between each point and the
mean.  If the data points are close to the mean, the variance will be small.  A gen-
eralization of the variance, in which the centroid is replaced by a reference point
that may or may not be a centroid, is used in cluster analysis to indicate the over-
all quality of a partitioning; specifically, the error measure E is the sum of all the
variances:
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where xij is the jth point in the ith cluster, zi is the reference point of the ith clus-
ter, and ni is the number of points in that cluster.  The notation ||xij - zi|| stands for
the distance between xij and zi. Hence, the error measure E indicates the overall
spread of data points about their reference points.  To achieve a representative
clustering, E should be as small as possible.

The error measure provides an objective method for comparing partitionings as
well as a test for eliminating unsuitable partitionings.  At present, finding the best

Figure 1.  Clustering Test Scores
The figure illustrates an arbitrary parti-
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Figure 2.  Pairwise Agglomerative Clustering
The figure illustrates the operation of an agglomerative clustering method, in which the 20 test scores of Figure 1 are successively

merged by pairs of points and/or pairs of clusters until all the scores are collected into 5 clusters.  The steps of the algorithm are

shown in the branching of a dendrogram, or tree structure (much like a genealogy).  A node, or branch point, indicates the merging

of two branches into one, i.e. two data points into one cluster, or two clusters into one larger cluster.  The algorithm begins with 20

separate clusters of one point apiece.  For the first step in the algorithm, the closest two points (here, scores of 52 and 53) are

found and merged into one cluster {52,53}.  The two individual points are replaced by a single point equal to the unweighted average

of the two points (52.5).  The next step repeats this process (find the closest two points, calculate the average, merge the points),

but with 19 points and 19 clusters (18 one-point clusters, plus 1 two-point cluster).  There will be only one new branch, or merge at

each step.  Hence, if there is more than one pair of points at the minimum distance, only one pair will be merged at each step.  It

takes 15 steps to consolidate 20 points into 5 clusters.
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partitioning (the clustering most representative of an arbitrary dataset) requires
generating all possible combinations of clusters and comparing their error mea-
sures.  This can be done for small datasets with a few dozen points, but not for
large sets—the number of different ways to combine 1 million data points into 256
clusters, for example, is 2561,000,000/256!, where 256! is equal to 256 3 255 3
254 3 … 3 2 3 1.  This number is greater than 102,000,000, or 1 followed by 2
million zeros.

When clustering is done for the purpose of data reduction, as in the case of the
Landsat images, the goal is not to find the best partitioning.  We merely want a
reasonable consolidation of N data points into k clusters, and, if necessary, some
efficient way to improve the quality of the initial partitioning.  For that purpose,
there is a family of iterative-partitioning algorithms that is far superior to the ag-
glomerative algorithm described above.  

Iterative algorithms begin with a set of k reference points whose initial values are
usually chosen by the user.  First, the data points are partitioned into k clusters:  A
data point x becomes a member of cluster i if zi is the reference point closest to x.
The positions of the reference points and the assignment of the data points to clus-
ters are then adjusted during successive iterations.  Iterative algorithms are thus
similar to fitting routines, which begin with an initial “guess” for each fitted para-
meter and then optimize their values.  Algorithms within this family differ in the
details of generating and adjusting the partitions.  Three members of this family
are discussed here:  Lloyd’s algorithm, the standard k-means algorithm, and a con-
tinuous k-means algorithm first described in 1967 by J. MacQueen and recently
developed for general use at Los Alamos.

Conceptually, Lloyd’s algorithm is the simplest.  The initial partitioning is set up
as described above:  All the data points are partitioned into k clusters by assigning
each point to the cluster of the closest reference point.  Adjustments are made by
calculating the centroid for each of those clusters and then using those centroids as
reference points for the next partitioning of all the data points.  It can be proved
that a local minimum of the error measure E corresponds to a “centroidal
Voronoi” configuration, where each data point is closer to the reference point of
its cluster than to any other reference point, and each reference point is the cen-
troid of its cluster.  The purpose of the iteration is to move the partition closer to
this configuration and thus to approach a local minimum for E.

For Lloyd’s and other iterative algorithms, improvement of the partitioning and
convergence of the error measure E to a local minimum is often quite fast—even
when the initial reference points are badly chosen.  However, unlike guesses for
parameters in simple fitting routines, slightly different initial partitionings general-
ly do not produce the same set of final clusters.  A final partitioning will be better
than the initial choice, but it will not necessarily be the best possible partitioning.
For many applications, this is not a significant problem.  For example, the differ-
ences between Landsat images made from the original data and those made from
the clustered data are seldom visible even to trained analysts, so small differences
in the clustered data are even less important.  In such cases, the judgment of the
analyst is the best guide as to whether a clustering method yields reasonable results.



The standard k-means algorithm differs from Lloyd’s in its more efficient use of
information at every step.  The setup for both algorithms is the same:  Reference
points are chosen and all the data points are assigned to clusters.  As with Lloyd’s,
the k-means algorithm then uses the cluster centroids as reference points in subse-
quent partitionings—but the centroids are adjusted both during and after each par-
titioning.  For data point x in cluster i, if the centroid zi is the nearest reference
point, no adjustments are made and the algorithm proceeds to the next data point.
However, if the centroid zj of the cluster j is the reference point closest to data
point x, then x is reassigned to cluster j, the centroids of the “losing” cluster i
(minus point x) and the “gaining” cluster j (plus point x) are recomputed, and the
reference points zi and zj are moved to their new centroids.  After each step,
every one of the k reference points is a centroid, or mean, hence the name “k-
means.”  An example of clustering using the standard k-mean algorithm is shown
in Figure 3.

There are a number of variants of the k-means algorithm.  In some versions, the
error measure E is evaluated at each step, and a data point is reassigned to a dif-
ferent cluster only if that reassignment decreases E.  In MacQueen’s original paper
on the k-means method, the centroid update (assign data point to cluster, recom-
pute the centroid, move the reference point to the centroid) is applied at each step
in the initial partitioning, as well as during the iterations.  In all of these cases, the
standard k-means algorithm requires about the same amount of computation for a
single pass through all the data points, or one iteration, as does Lloyd’s algorithm.
However, the k-means algorithm, because it constantly updates the clusters, is un-
likely to require as many iterations as the less efficient Lloyd’s algorithm and is
therefore considerably faster.

The Continuous 

 

k-Means Algorithm

The continuous k-means algorithm is faster than the standard version and thus ex-
tends the size of the datasets that can be clustered.  It differs from the standard
version in how the initial reference points are chosen and how data points are se-
lected for the updating process.
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(a)  Setup:
Reference point 1 (filled red circle) and 
reference point 2 (filled black circle) are 
chosen arbitrarily.  All data points (open 
circles) are then partitioned into two clusters:  
each data point is assigned to cluster 1 or 
cluster 2, depending on whether the data point 
is closer to reference point 1 or 2, respectively.

(b) Results of first iteration:
Next each reference point is moved to the 
centroid of its cluster.  Then each data point is 
considered in the sequence shown.  If the 
reference point closest to the data point 
belongs to the other cluster, the data point is 
reassigned to that other cluster, and both 
cluster centroids are recomputed.

(c) Results of second iteration:
During the second iteration, the process in 
Figure 3(b) is performed again for every data 
point.  The partition shown above is stable; it 
will not change for any further iteration.

Figure 3.  Clustering by the 
Standard k-Means Algorithm
The diagrams show results during two 

iterations in the partitioning of nine two-

dimensional data points into two well-

separated clusters, using the standard 

k-means algorithm.  Points in cluster 1

are shown in red, points in cluster 2 are

shown in black; data points are denoted

by open circles and reference points by

filled circles.  Clusters are indicated by

dashed lines.  Note that the iteration con-

verges quickly to the correct clustering,

even for this bad initial choice of the two

reference points.
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In the standard algorithm the initial reference points are chosen more or less arbi-
trarily.  In the continuous algorithm reference points are chosen as a random sam-
ple from the whole population of data points.  If the sample is sufficiently large,
the distribution of these initial reference points should reflect the distribution of
points in the entire set.  If the whole set of points is densest in Region 7, for ex-
ample, then the sample should also be densest in Region 7.  When this process is
applied to Landsat data, it effectively puts more cluster centroids (and the best
color resolution) where there are more data points.

Another difference between the standard and continuous k-means algorithms is the
way the data points are treated.  During each complete iteration, the standard algo-
rithm examines all the data points in sequence.  In contrast, the continuous algo-
rithm examines only a random sample of data points.  If the dataset is very large
and the sample is representative of the dataset, the algorithm should converge
much more quickly than an algorithm that examines every point in sequence.  In
fact, the continuous algorithm adopts MacQueen’s method of updating the cen-
troids during the initial partitioning, when the data points are first assigned to clus-
ters.  Convergence is usually fast enough so that a second pass through the data
points is not needed. 

From a theoretical perspective, random sampling represents a return to MacQueen’s
original concept of the algorithm as a method of clustering data over a continuous
space.  In his formulation, the error measure Ei for each region Ri is given by

Ei 5E
x
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where ρ (x) is the probability density function, a continuous function defined over
the space, and the total error measure E is given by the sum of the Ei’s.   In Mac-
Queen’s concept of the algorithm, a very large set of discrete data points can be
thought of as a large sample—and thus a good estimate—of the continuous proba-
bility density r (x).  It then becomes apparent that a random sample of the dataset
can also be a good estimate of r (x).  Such a sample yields a representative set of
cluster centroids and a reasonable estimate of the error measure without using all
the points in the original dataset.

These modifications to the standard algorithm greatly accelerate the clustering
process.  Since both the reference points and the data points for the updates are
chosen by random sampling, more reference points will be found in the densest re-
gions of the dataset and the reference points will be updated by data points in the
most critical regions.  In addition, the initial reference points are already members
of the dataset and, as such, require fewer updates.  Therefore, even when applied
to a large dataset, the algorithm normally converges to a solution after only a
small fraction (10 to 15 percent) of the total points have been examined.  This
rapid convergence distinguishes the continuous k-means from less efficient algo-
rithms.  Clustering with the continuous k-means algorithm is about ten times faster
than clustering with Lloyd’s algorithm. 
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The computer time can be further reduced by making the individual steps in the
algorithm more efficient.  A substantial fraction of the computation time required
by any of these clustering algorithms is typically spent in finding the reference
point closest to a particular data point.  In a “brute-force” method, the distances
from a given data point to all of the reference points must be calculated and com-
pared.  More elegant methods of “point location” avoid much of this time-consum-
ing process by reducing the number of reference points that must be considered—
but some computational time must be spent to create data structures.  Such
structures range from particular orderings of reference points, to “trees” in which
reference points are organized into categories.  A tree structure allows one to elim-
inate entire categories of reference points from the distance calculations.  The con-
tinuous k-means algorithm uses a tree method to cluster three-dimensional data,
such as pixel colors on a video screen.  When applied to seven-dimensional Land-
sat data, the algorithm uses single-axis boundarizing, which orders the reference
points along the direction of maximum variation.  In either method only a few
points need be considered when calculating and comparing distances.  The choice
of a particular method will depend on the number of dimensions of the dataset.

Two features of the continuous k-means algorithm—convergence to a feasible
group of reference points after very few updates and greatly reduced computer
time per update—are highly desirable for any clustering algorithm.  In fact, such
features are crucial for consolidating and analyzing very large datasets such as
those discussed in the accompanying article.
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