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 Motivation 

 
 Correlated vs. uncorrelated variables 

 
 Correlation coefficient 

 
 Linear regression 

 
 Nonlinear models (regression trees, RBF networks) 
  

 
 



Data mining - Lecture 9 3 

Motivation 

3 

Problem:  Let us suppose that we know some information about a car (e.g. 
cylinders, horsepower, weight, acceleration, model etc) and we would like to 
estimate the fuel consumption (e.g. expressed as miles per gallon) 
 
Example [autoMpg.arff   from    http://archive.ics.uci.edu/ml/datasets.html] 
@relation autoMpg 
@attribute cylinders { 8, 4, 6, 3, 5} @attribute displacement real 
@attribute horsepower real @attribute weight real @attribute acceleration real  
@attribute model { 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82}  
@attribute origin { 1, 3, 2}  
@attribute class real  
@data 
8,307,130,3504,12,70,1,18 
8,350,165,3693,11.5,70,1,15 
4,113,95,2372,15,70,3,24 
6,198,95,2833,15.5,70,1,22 
6,199,97,2774,15.5,70,1,18   
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Problem:  Let us suppose that we know some information about a car (e.g. 
cylinders, horsepower, weight, acceleration, model etc) and we would like to 
estimate the fuel consumption (e.g. expressed as miles per gallon) 
 
Example [autoMpg.arff   from    http://archive.ics.uci.edu/ml/datasets.html] 
@relation autoMpg 
@attribute cylinders { 8, 4, 6, 3, 5} @attribute displacement real 
@attribute horsepower real @attribute weight real @attribute acceleration real  
@attribute model { 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82}  
@attribute origin { 1, 3, 2}  
@attribute class real  
@data 
8,307,130,3504,12,70,1,18 
8,350,165,3693,11.5,70,1,15 
4,113,95,2372,15,70,3,24 
6,198,95,2833,15.5,70,1,22 
6,199,97,2774,15.5,70,1,18   
 
 
 
 
  
 

We are looking for a dependence between the 
fuel consumption (class attribute in the dataset)   
the car characteristics (first 7 attributes in the 
dataset) 
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Some synthetic 2D data   
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What can we say about the data in 
each set? 
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Some synthetic 2D data   
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y Set 3 

Set 1:  the data seem to be “positively 
correlated” = when x increases y also 
increases  
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Some synthetic 2D data   
 
 
 
 
  
 

x 

y 

x 

y 

Set 1 

Set 2 

x 

y Set 3 

Set 2:  the data seem to be “negatively 
correlated” = when x increases  y 
decreases 
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Some synthetic 2D data   
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Set 1 

Set 2 

x 

y Set 3 

Set 3:  the data does not seem to be 
correlated (it seems to be just a cloud of 
points) 
Questions:  
 How can be measured the degree of 

correlation? 
 What kind of correlation? 
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How can be measured the degree of correlation?   
                                                                  [reminder – Probability and Statistics] 
 For instance, by using the Pearson correlation coefficient – it expresses the 

degree of linear correlation between two variables  
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),( Remark:  -1<=R(X,Y)<=1 
 
 R(X,Y) close to 1: positive 

linear correlation 
 R(X,Y) close to -1: negative 

linear correlation 
 R(X,Y) close to 0:  no linear 

correlation (however, X and Y 
could be nonlinearly correlated) 
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What kind of correlation?     [reminder – Probability and Statistics] 
Simplest case:   Linear dependence between two variables:  Y=w1X+w0 

 X= predictor (independent, input, explanatory) variable 
 Y= predicted (dependent, response, explained) variable 

 Aim of linear regression:  estimate the parameters w1 and w0 such that the 
available data for the variables X (i.e. x1,x2,…, xn) and Y (i.e. y1,y2,…, yn) are 
well explained by the linear function, i.e. the sum of squared errors is 
minimized  
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Reminder:  some linear algebra 
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Finding the vector w which minimizes SSE(w) is equivalent with finding the 
critical point of SSE, i.e. solving the following equation with respect to w: 
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Multiple linear regression 

12 

Remark:  the same approach can be extended in the case when there are d 
predicting variables  (e.g. as in the autoMPG dataset) 
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Remark:  if the matrix DTD is singular (the inverse cannot be computed) then 
the objective function (SSE) is modified by adding a so-called regularization 
term which will modify the matrix of the linear system in such a way that it 
becomes invertible). 
Examples: 
 Tikhonov regularization (ridge regression) 
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Remarks:  
 the parameter of the regularization term (lambda) is usually chosen 

adaptively based on cross-validation 
 the penalty term “discourages”  the large values of the weights 
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Linear regression - regularization 
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Remark:  if the matrix DTD is singular (the inverse cannot be computed) then 
the objective function (SSE) is modified by adding a so-called regularization 
term which will modify the matrix of the linear system in such a way that it 
becomes invertible). 
Examples: 
 Lasso regularization 
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Remarks:  
 In this case the optimization problem is solved by using numerical methods 
 Is useful for high dimensional data with many irrelevant features (leading to 

sparse models) 
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Main idea:  instead of yi=w1xi+w0 the output (yi) is modelled through a random 
variable with a distribution having a mean f(w1xi+w0) 
 
Main elements of a GLM (generalized linear model): 
 Mean function:  f     
 Link function:  f-1 

 Probability distribution 
 
 
 
 
 
 
  
 

Mean function Link function Distribution 
f(u)=u identity normal 
f(u)=-1/u inverse exponential, gamma 
f(u)=exp(u) Log Poisson 
f(u)=1/(1+exp(-u)) Logit Bernoulli 
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Generalized linear models 

16 

Main idea:  instead of yi=wxi the output (yi) is modelled through a random 
variable with a distribution having a mean f(wxi) 
 
Main elements of a GLM (generalized linear model): 
 Mean function:  f     
 Link function:  f-1 

 Probability distribution 
 
 
 
 
 
 
  
 

Mean function Link function Distribution 
f(u)=u identity normal 
f(u)=-1/u inverse exponential, gamma 
f(u)=exp(u) Log Poisson 
f(u)=1/(1+exp(-u)) Logit Bernoulli 

least 
squares 
regression 
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Generalized linear models 
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Main idea:  instead of yi=wxi the output (yi) is modelled through a random 
variable with a distribution having a mean f(wxi) 
 
Main elements of a GLM (generalized linear model): 
 Mean function:  f     
 Link function:  f-1 

 Probability distribution 
 
 
 
 
 
 
  
 

Mean function Link function Distribution 
f(u)=u identity normal 
f(u)=-1/u inverse exponential, gamma 
f(u)=exp(u) Log Poisson 
f(u)=1/(1+exp(-u)) Logit Bernoulli 

Logistic  
regression 
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What about the cases when the dependence between the predicted variable 
and the predictor(s) is not linear? 
 
Other models are needed 
 
 
 
 
 
 
  
 

x 

y Set 4 

Examples: 
 
 Regression trees 
 Nonlinear neural networks 
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Nonlinear regression 
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Main idea: 
 A nonlinear relationship can be modelled through local linear functions (one 

linear function per region) 
 The regression process would then consist of two steps: 

 
 Identify the regions by splitting the space of the decision variables 
 Identify a regression model (e.g. a linear one) for each of the 

identified regions 
 
 
 
 
 
 
  
 x 
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a b 



Data mining - Lecture 9 20 

Regression trees 

20 

Reminder: 
Decision tree = hierarchical structure containing in the internal nodes 
conditions on the predictor variables and on the leaf nodes information on the 
predicted variables (e.g. class);  if the predicted variable is discrete 
(categorical/ nominal) then the decision tree is in fact a classification tree 
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Regression trees 
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Reminder: 
Decision tree = hierarchical structure containing in the internal nodes 
conditions on the predictor variables and on the leaf nodes information on the 
predicted variables (e.g. class);  if the predicted variable is discrete 
(categorical/ nominal) then the decision tree is in fact a classification tree 
 
 
 
 
 
 
 
 
  
 

Question: 
 What about the case when the 

predicting variable is 
continuous? (e.g. we would like 
to obtain not only a yes/no 
answer to the “weather-play” 
problem but a value in [0,1] 
expressing the degree of 
decision between 0 (no) and 1 
(yes) 
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Regression trees 
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Main idea: 
 Use a similar process of splitting the space of the decision (predictor) 

variables as in the case of trees used for classification  
 In the case of continuous predictor variables the splitting condition  

is of the one of the types:  variable < value  or variable > value or 
variable in [min,max] 

 Infer a regression model (e.g. a linear model) for each region identified by 
the splitting procedure 
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y 
(Very) simple example -> piecewise 
linear model: 
 
 
 
 
 
  
 a b 

x<a 

y=x+1 

x<b 

y=a+1 y=a+b+1-x 



Data mining - Lecture 9 23 

Nonlinear regression 
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Beyond piecewise linear models: 
 Extending basic linear regression by using derived input features: 
          y=w0+w1h1(x)+w2h2(x)+…+wmhm(x) 
(x can be a vector and hi a function associating a scalar/vector to another 
vector) 
Particular case 1.  Polynomial models:  y= w0+w1x+w2x2+…+wmxm     
(x is a scalar) 
 
 
 
 
 
  
 

x 

y 

Particular case 2.    
Kernel-based models: hi are functions 
which can take significant values only for a 
limited region of the input space.  
 when these functions are with radial 

symmetry (e.g. gaussian functions) then 
we obtain the so-called RBF networks 
(a particular case of neural networks) 
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RBF networks 
RBF - “Radial Basis Function”: 
 
Architecture:   

– Two levels of functional units 
– Aggregation functions: 

 
• Hidden units:  distance 

between the input vector 
and the corresponding 
center vector 
 

• Output units: weighted sum 
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Rmk: hidden units do not have 
bias values (activation thresholds)  
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RBF networks 
The activation functions for the hidden neurons 

are functions with radial symmetry 
 

– Hidden units generates a significant 
output signal only for input vectors 
which are close enough to the 
corresponding center vector 
 

The activation functions for the output units are 
usually linear functions 

 

N K M 
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centers weights 
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RBF networks 
Examples of functions with radial 

symmetry: 
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RBF networks 
Computation of  the output signal: 
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The vectors  Ck can be interpreted as prototypes;  
       - only input vectors similar to the prototype of the hidden unit “activate” that 

unit 
       - the output of the network for a given input vector will be influenced only by 

the output of the hidden units having centers close enough to the input vector 
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RBF networks 
Each hidden unit is “sensitive” to a region 

in the input space corresponding to a 
neighborhood of its center. This region 
is called receptive field 

 
The size of the receptive field depends on 

the parameter σ 
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RBF networks 
• The receptive fields of all hidden 

units covers the input space 
• A good covering of the input space 

is essential for the approximation 
power of the network  

• Too small or too large values of the 
width of the radial basis function 
lead to inappropriate covering of the 
input space 
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RBF networks 
• The receptive fields of all hidden 

units covers the input space 
• A good covering of the input space 

is essential for the approximation 
power of the network  

• Too small or too large values of the 
width of the radial basis function 
lead to inappropriate covering of the 
input space 

undercovering overcovering 

appropriate covering 

σ=0.01 

σ=1 

σ=100 
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RBF networks 
RBF networks are universal approximators:   
     a network with N inputs and M outputs can approximate any 

function defined on RN, taking values in RM, as long as there are 
enough hidden units 

 
The theoretical foundations of RBF networks are: 
 
• Theory of approximation 
• Theory of regularization 
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RBF networks 
Adaptive parameters: 
• Centers (prototypes) corresponding to hidden units 
• Receptive field widths (parameters of the radial symmetry 

activation functions) 
• Weights associated to connections between the hidden and 

output layers 
 

Learning variants: 
• Simultaneous learning of all parameters (similar to 

BackPropagation) 
– Rmk:  same drawbacks as multilayer perceptron’s 

BackPropagation 
• Separate learning of parameters: centers,  widths, weights 

Data mining - Lecture 9 



33 

RBF networks 
Separate learning : 
Training set:   {(x1,d1), …, (xL,dL)} 
 
1.  Estimating of the centers:  simplest variant 

• K=L  (nr of centers = nr of examples),  
• Ck=xk  (this corresponds to the case of exact 

interpolation: see the example for XOR)  
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RBF networks 
Example (particular case) :  RBF network to represent XOR 
• 2 input units 
• 4 hidden units 
• 1 output unit 

0 
1 

1 

 0 

Centers: 
Hidden unit 1:  (0,0) 
Hidden unit 2:  (1,0) 
Hidden unit 3:  (0,1) 
Hidden unit 4:  (1,1) 

Weights: 
w1:  0 
w2:  1 
w3:  1 
w4:  0 

Activation function: 
g(u)=1 if u=0 
g(u)=0 if u<>0 

This approach cannot be applied for general approximation problems 
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RBF networks 
Separate learning : 
Training set:   {(x1,d1), …, (xL,dL)} 
 
1. Estimating of the centers 

 

• K<L :  the centers are established  
•  by random selection from the training set 

• simple but not very effective 
  

•  by systematic selection from the training set (Orthogonal 
Least Squares) 
 

• by using a clustering method 
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RBF networks 
Orthogonal Least Squares: 
 
• Incremental selection of centers such that the error on the training set 

is minimized 
 
• The new center is chosen such that it is orthogonal on the space 

generated by the previously chosen centers (this process is based on 
the Gram-Schmidt orthogonalization method)  
 

• This approach is related with regularization theory and ridge regression 

Data mining - Lecture 9 



37 

RBF networks 
Clustering: 
 
• Identify K groups in the input data {X1,…,XL} such that data in a group 

are sufficiently similar and data in different groups are sufficiently 
dissimilar 
 

• Each group has a representative (e.g. the mean of data in the group) 
which can be considered the center  
 

• The algorithms for estimating the representatives of data belong to the 
class of partitional clustering methods 
 

• Classical algorithm: K-means 
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RBF networks 
Incremental variant: 
 
• Start with a small number of centers, randomly initialized 

 
• Scan the set of input data: 

 
– If there is a center close enough to the data then this center is 

slightly adjusted in order to become even closer to the data 
 

–  if the data is dissimilar enough with respect to all centers then a 
new center is added (the new center will be initialized with the data 
vector) 
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RBF networks 
Incremental variant: 
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RBF networks 
2. Estimating the receptive fields widths. 
 
Heuristic rules: 
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RBF networks 
3. Estimating the weights of 

connections between hidden 
and output layers: 

 
• This is equivalent with the 

problem of training one layer 
linear network 
 

• Variants: 
– Apply linear algebra tools 

(pseudo-inverse 
computation) 

– Apply Widrow-Hoff 
learning (training based on 
the gradient method 
applied to one layer neural 
networks)  

 
 

 Initialization:   
wij(0):=rand(-1,1)  (the weights are randomly 
initialized in [-1,1]),  
k:=0  (iteration counter) 

 Iterative process 
REPEAT 
    FOR l:=1,L DO 
       Compute yi(l) and deltai(l)=di(l)-yi(l),  i=1,M     
       Adjust the weights: wij:=wij+eta*deltai(l)*xj(l) 
    Compute the SSE(W) for the new values of 
the weights 
     k:=k+1 
UNTIL SSE(W)<E* OR k>kmax 
 
(E*=approximation error, kmax=maximal 
number of iterations)  
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RBF vs. BP networks 
RBF networks: 
 
• 1 hidden layer 

 
• Distance based aggregation 

function for the hidden units 
• Activation functions with radial 

symmetry for hidden units 
 

• Linear output units 
• Separate training of adaptive 

parameters 
 
• Similar with local approximation 

approaches 
 

BP networks: 
 
• many hidden layers 

 
• Weighted sum as aggregation 

function for the hidden units 
• Sigmoidal activation functions for 

hidden neurons 
 

• Linear/nonlinear output units 
 

• Simultaneous training of adaptive 
parameters 
 

• Similar with global approximation 
approaches 
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