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Data Mining 

 

Lab 5:  Data Clustering 

  

______________________________________________________________________________ 

 

Summary:    

 Aim of data clustering 

 Partitional clustering algorithms 

 Hierarchical clustering algorithms 

 Density-based clustering algorithms 

 

1. Aim of data clustering 

 

Data clustering aims to identify natural groups in data, i.e. subsets of similar data (according to a 

specific similarity measure) called clusters or groups or classes.  The particularity of a clustering 

task is the fact that the class labels (or even their number) are not known apriori. The goal of a 

clustering algorithm is to identify the clusters by using the relationships between the data.  

 

2. Partitional clustering algorithms 

 

These algorithms provides a partition of the initial dataset in several clusters (usually the clusters 

are disjoint but there are also algorithms which lead to overlapping clusters, e.g. fuzzy clustering 

algorithms). In the case of crisp algorithms (which assign each data to only one cluster) each 

cluster has a representative or cluster prototype. In the case when the cluster prototype is 

computed such that it is the average of the data from the cluster then it is usually called centroid. 

 

The simplest and most popular partitional clustering algorithm is KMeans which generates a set 

of K centroids and assign each data to the closest centroid. 

  

The general structure of the KMeans algorithm : 

 

Step 1.  Initialization:  random selection of K centroids from the dataset 

Step 2.  Repeat 

 Assign each data to the cluster represented by the nearest centroid  

 Recompute the centroids (as averages of data in each cluster) 

  until the partition has not been changed during the last iteration 

 

Remarks: 

 The clustering result is sensitive with respect to the initial values of the centroids 

 The KMeans iterative process aims to minimize the intra-cluster variance (the average 

sum of the distances between data and the centroid of their corresponding cluster)  

 KMeans is appropriate for spherical clusters (e.g. data generated by normal distributions) 

but do not provide a good clustering in the case of arbitrary shaped clusters. 

 

Weka implementations:  

 SimpleKMeans: standard variant of the algorithm; the user can choose between the 

Euclidean and Manhattan distances.  Also there are several variants for the initial 

selection of the centroids: 

o Random:  the centroids are randomly selected from the data 
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o kMeans++:  a pre-clustering is used: 

 Step 1: first centroid is randomly selected 

 Step 2: the distances D(x) between each data x and the closest 

centroid are computed; based on these distances is computed a 

probability distribution (the probability to select x is proportional 

with D(x),  i.e. the probability is higher if the distance is larger). 

 Step 3: select the next centroid using the distribution probability 

constructed at Step 2 

 Step 4: repeat Step 2 and Step 3 until all k centers have been 

selected 

o Canopy:  the main idea is to sequentially assign the data to “pre-clusters” by 

using two thresholds: T1 and T2 (T1>T2)  and  an iterative process consisting 

of: 

 Step 1: select randomly a data used to initialize a new pre-cluster  

 Step 2:  all data at a distance smaller than T1 wrt the seed of the new pre-

cluster are assigned to this pre-cluster. Those for which the distance is 

smaller even than T2 are removed from the initial set.   

 Step 3:  if there are data un-assigned to a pre-cluster go to Step 1 

 Step 4:  the initial centroids for KMens are set based on the pre-clusters   

o Farthest First:   the first centroid is randomly selected; the next ones are selected 

such that they are as far as possible from the already selected centroids.  

 

 XMeans: is a variant which estimates the number of clusters (the user provides a minimal 

and a maximal value for the number of clusters and XMeans applies KMeans for each of 

these values and selects the variant leading to the best quality clustering – e.g. smallest 

intra-variance and largest inter-variance). Remark:  only for versions of Weka less than 

3.8. 

  

Exercise 1:  

a) Open the file “iris.2D.arff” and remove the class attribute 

b) Identify 3 clusters in data by applying KMeans (Cluster->SimpleKMeans). Visualize the 

identified clusters by right clicking on the result (from Result list) and select Visualize 

Cluster Assignments 

c) Analayze the values obtained for the intra-cluster variance (SSE = within cluster squared 

sum of errors) for several values of the number of clusters (the parameter –N from 

SimpleKMeans):  2,3,4,5 

d) Compare the results obtained by using different methods for centroids initialization  

(initializationMethod: Random, kMeans++, Canopy, Farthest First) 

e) Apply EM  (Expectation-Maximization) to the same set of data using the default values 

for the parameters. 

 

3. Hierarchical algorithms 

 

These algorithms provide not only one partition but a hierarchy of partitions organized as a tree 

(dendrogram). The hierarchy can be obtained by one of the following approaches: 

 Agglomerative (bottom-up):  at the beginning each cluster contains only one data and 

then at each step the most similar clusters are joined. The similarity between clusters can 

be measured using different criteria (single-link, complete-link, average-link). The 

merging process continues until all data belong to one cluster (this corresponds to the root 

of the dendrogram).  
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 Divizive (top-down):  the process starts with a unique cluster containing all data in the set 

and apply iteratively a partitional clustering strategy (which can be KMeans) 

 

Exercise 2:  

a) Open the file “data.arff” 

b) Construct and compare the dendrograms corresponding to the cases when different 

cluster similarity measures are used: single-link, complete-link, average-link. Hint:   

select Cluster->Hierarchical. To visualize the tree: right click on the result (from Result 

List) and select VisualizeTree 

 

 

4. Density based clustering algorithms 

 

The main idea of these algorithms is that the data are classified as core points, border points or 

noise based on the data density.  For each data the density is estimated by counting the number of 

other data belonging to a neighborhood of a given radius.  

Remark:  the density based algorithms are used for spatial data and they allow to identify clusters 

of arbitrary shapes.  

 

Exercise 3  (only for Weka versions less than 3.8):  

a) Open the file “iris.2D.arff” 

b) Apply the algorithm DBSCAN for different values of the parameter Eps (neighborhood 

radius) and MinPoints (minimal number of data in the neighborhood) and compare the 

results. Test values:  Eps in {0.2,0.4,0.6,0.8}, MinPoints in {5,10,15,20,30}  

 

 

5. Examples from scikit-learn 

 

kMeans:   

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-

auto-examples-cluster-plot-kmeans-assumptions-py  

 

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html#sphx-glr-auto-

examples-cluster-plot-cluster-iris-py  

 

Agglomerative clustering: 

http://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html#sphx-glr-

auto-examples-cluster-plot-agglomerative-clustering-py  

 

DBSCAN:  http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-

examples-cluster-plot-dbscan-py  
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